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Many problems in chemistry, nanotechnology, biology, natural 
science, chemical physics and engineering are modeled by two 
point boundary value problems. In general, analytical solution of 
these problems does not exist. In this paper, we propose a new 
class of high-order accurate methods for solving special second 
order nonlinear two point boundary value problems. Local 
truncation errors of these methods are discussed. To illustrate the 
potential of the new methods, we apply them for solving some 
well-known problems, including Troesch’s problem, Bratu’s 
problem and certain singularly perturbed problem. Bratu’s and 
Troech’s problems, may be used to model some chemical reaction-
diffusion and heat transfer processes. We also compare the results 
of this work with some existing results in the literature and show 
that the new methods are efficient and applicable. 
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1. INTRODUCTION  

The study through boundary value problem is an interesting in recent years. This interest 
can be attributed due to its wide range of application in scientific research. In general, 
nonlinear boundary value problems do not always have solutions which we can obtain 
using analytical methods. Therefore, techniques for rapidly computing approximate 
solutions of boundary value problem are very importance. 

In this paper, we introduce two fast and accurate numerical schemes for the solution 
of second-order nonlinear differential equations of the form 

yᇱᇱ = f(x, y),        a < ݔ < ܾ, (1) 
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subject to the boundary conditions: 
y(a) =  α, y(b) =  β, (2) 

where a, b, α and β are the given constants. The existence and uniqueness of the solutions 
to problem (1)−(2) are discussed in [1]. The literature on the numerical approximation of 
solutions of boundary value problems is large and still growing rapidly. Among the most 
recent works concerned with numerical methods, we can consider direct implicit block 
method [2], Chebyshev finite difference method [3], sinc collocation method [4, 5], 
compact finite difference method [6], non-standard finite difference method [7, 8] and 
rational finite difference method [9, 10]. Also, Ramos [11] presented a non-standard 
explicit algorithm for initial-value problems. 

In this paper a new class of novel non-classical difference methods is proposed for 
the solution of problem (1)−(2). Our methods are based on the idea behind in [10, 11]. Two 
point boundary value problems (1)−(2) covers many interesting problems. Three of these 
important problems, which we consider in this paper, are as follows: 
 
1.1 TROESCH’S PROBLEM 

Troesch’s problem is defined by 
 

ቊyᇱᇱ − µ sinh൫µy(x)൯ = 0,     0 ≤ x ≤ 1,
y(0) = 0,     y(1) = 1,                             

 
(3) 

where µ is a positive constant. This problem arises in an investigation of the confinement of 
a plasma column under radiation pressure [12]. Also, this problem comes from the theory 
of gas porous electrodes [13]. Moreover, as pointed out in [14], Troesch’s problems may be 
used to model some chemical reaction-diffusion and heat transfer processes. 

The known closed-form solution of this problem in terms of the Jacobi elliptic 
function is (see [15]) 

y(x) =
2
µ sinhିଵ ቊ

yᇱ(0)
2  sc ൬µxฬ1 −

1
4 yᇱ(0)ଶ ൰ቋ . 

Here yᇱ(0)  =  2√1− m, and the constant m satisfies the transcendental equation 
 

sinh ቀஜ
ଶ
ቁ

√1 − m
= sc(µ|m), 

 
where, sc(µ|m) is the Jacobi elliptic function. As is said in [16], this problem is inherently 
unstable and difficult, especially when the sensitivity parameter µ is large. Therefore, 
Troesch’s problem has become a widely used test problem, and has been studied 
extensively. In the last decade, variational spline method [14], discontinuous Galerkin finite 
element method [17], variational iteration method [18], shooting method [19], B-spline 
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collocation method [20], Christov collocation method [21], sinc-Galerkin method [22], 
nonstandard finite difference method [7], finite difference method [23] and homotopy 
analysis method [24] are used to solve this problem. 
 
1.2  BRATU’S PROBLEM 

The classical Bratu’s problem is given as: 
 

൜y
ᇱᇱ + λ exp(y) = 0, 0 ≤ x ≤ 1,

y(0) = y(1) = 0,                                
(4) 

 

where λ is a constant. For  λ >  0, the analytical solution to this problem reads [24, 25, 
26, 27], 

y(x) = −2 ln ൦
cosh ൬ቀx − ଵ

ଶ
ቁ θ/2൰

cosh(θ/4) ൪, 
 

(5) 

 
 

where θ satisfies θ =  ,cosh (θ/4) . It is well known that, this problem has zero, one ߣ2√ 
or two solutions when λ >  λc, λ =  λc and λ <  λc, respectively. Here λc, called the 
critical value, is given by λc =  3.513830719 [24, 25]. 

The Bratu model appears in a large variety of applications such as the model of 
thermal reaction process, questions in geometry and relativity about the Chandrasekhar 
model, radiative heat transfer, nanotechnology and the fuel ignition model of the thermal 
combustion theory (for example, we refer the reader to see [24, 25, 26, 27, 28, 29, 30], and 
the references therein). Various numerical methods such as homotopy analysis method 
[24], Adomian decomposition method [25, 28], sinc-Galerkin method [26], B-spline 
method [27], pseudospectral method [29] and finite difference method [29] have been 
applied to this problem. Also, recently, Temimi and Ben-Romdhane [30] proposed an 
iterative finite difference method to solve the Bratu’s problem. 
 
 
1.3  SINGULARLY PERTURBED PROBLEM 

We consider a class of singularly perturbed boundary value problems given in [6, 31, 32] as 
 

൜−ϵyᇱᇱ(x) + p(x)y(x) = q(x),   0 ≤ x ≤ 1, p(x) > 0,
y(0) = α,      y(1) = β,                                                   (6) 

 
where α,β are given constants and ϵ ∈  (0, ϵ), ϵ  ≪  1, is a small perturbation parameter. 
Further, p(x) and q(x) are assumed to be sufficiently continuously differentiable functions. 
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This type of problem occurs in many fields of science and engineering (see [6, 31, 32]). As 
pointed out in [32], usual numerical treatment of singular-perturbation problems gives 
major computational difficulties. This problem, has been studied by several researchers. 
Gelu et al. [6] used sixth-order compact finite difference method and Rashidinia et al. [31] 
employed quantic spline method. Khan et al. [32] solved this problem by sixth-order 
method based on sextic splines. Also, we refer the interested readers to [33, 34, 35, 36, 37]. 
The organization of the rest of this paper is as follows. In Section 2, the methods are 
described and also local truncation errors are discussed. In section 3, the numerical results 
of applying the methods of this paper on three test problems are presented. Finally a 
conclusion is drawn in Section 4. 

 
2. THE PROPOSED METHODS 

To approximate the solution of problem (1)−(2), first of all, the domain [a, b] is divided 
into N equal subintervals of fixed mesh length h =  (b − a)/N. The grid points are given 
by x୧  = a + ih, i = 0, . . . , N, in which N is a positive integer. For convenience 
let y(୩)(x୧)  =  y୧

(୩), and f (୩)൫x୧, y(x୧)൯ =  f୧
(୩), k =  0,1,2,⋯. Now, following the ideas in 

[11, 10], we suggest the following difference equation 
 

y୧ାଵ − 2y୧ + y୧ିଵ
୦మ

ଵା(୦)

= f୧, 
 

(7) 

equivalently, 
(y୧ାଵ − 2y୧ + y୧ିଵ)൫1 + g(h)൯ = hଶf୧, (8) 

where g(h) ≠ −1 is a sufficiently differentiable unknown function that has to be 
determined. Expanding g(h) in Taylor’s expansion about h =  0 and also expanding 
y୧ାଵ and y୧ିଵ on the left side of Eq. (8) in the neighborhood of x୧ by Taylor’s expansion, 
we obtain 
 

ቆhଶy୧′′ +
hସ

12 y୧
(ସ) +

h

360 y୧
() + ⋯ቇቆ1 + g(0) + hg ′(0) +

hଶ

2 g ′′(0) + ⋯ቇ  = hଶf୧. (9) 

 
Now, we rewrite Eq. (9) as follows 
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hଶൣy୧ᇱᇱ൫1 + g(0)൯ − f୧൧ + hଷ[y୧ᇱᇱgᇱ(0)] + hସ 
y୧ᇱᇱ൫gᇱᇱ(0)൯

2 +
y୧

(ସ)

12
൫1 + g(0)൯൩

+ hହ 
y୧ᇱᇱg(ଷ)(0)

6 +
y୧

(ସ)gᇱ(0)
12

൩

+ h 
y୧ᇱᇱg(ସ)(0)

24 +
y୧

(ସ)gᇱᇱ(0)
24 +

y୧
()൫1 + g(0)൯

360
൩ + O(h)

= 0. 

 
 
 
 

(10) 

 
In order to obtain a fourth-order scheme, the coefficients of hଶ, hଷ and hସ in Eq.(10) 

must be zero. So, we have 

g(0) = 0, gᇱ(0) = 0, gᇱᇱ(0) = −
1
6 

y୧
(ସ)

y୧ᇱᇱ
. 

 
 (11) 

By substituting the above values in the Taylor series of g(h) we obtain 

g(h) = −
hଶ

12
y୧

(ସ)

y୧ᇱᇱ
+ O(hଷ). 

 

 
(12) 

From Eqs.(8) and (12) we get 

(y୧ାଵ − 2y୧ + y୧ିଵ)൭1 −
hଶ

12
y୧

(ସ)

y୧ᇱᇱ
൱ − hଶf୧ = 0. 

 
(13) 

 
Therefore, using Eq. (13) and having in mind the problem (1)−(2), we obtain the numerical 
method given by 
 

Scheme 1: ൝(y୧ାଵ − 2y୧ + y୧ିଵ) ൬1 − ୦మ

ଵଶ
 

(మ)


൰ = hଶf୧,   i = 1,2,⋯ , N − 1,

y = α, y = β.                                                                              
 (14) 

 

Similarly, in order to obtain a sixth-order scheme, the coefficients of hଶ, hଷ, hସ, hହ 
and h in Eq.(10) must be zero. So, we obtain 
 

g(0) = gᇱ(0) = g(ଷ)(0) = 0,  gᇱᇱ(0) = −
1
6 

y୧
(ସ)

y୧ᇱᇱ
, 

g(ସ)(0)   = −
y୧

(ସ)gᇱᇱ(0)
y୧ᇱᇱ

+ y୧
() 1 + g(0)

15y୧ᇱᇱ
. 

(15) 

 
Therefore, 
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g(h) = −
hଶ

12 
y୧

(ସ)

y୧ᇱᇱ
+

hସ

y୧ᇱᇱ
 ቌ

1
144 

ቀy୧
(ସ)ቁ

ଶ

y୧ᇱᇱ
−

y୧
()

360
ቍ+ O(hହ). (16) 

 
Employing Eqs. (1), (2), (16) and (8), we obtain the numerical method given by 

 

Scheme 2: 

⎩
⎪
⎨

⎪
⎧ (y୧ାଵ − 2y୧ + y୧ିଵ)ቌ1 − ୦మ

ଵଶ
 

(మ)


+ ୦ర


  ቆ

ቀ
(మ)ቁ

మ

ଵସସ
− 

(ర)

ଷ
ቇቍ = hଶf୧,

i = 1,2,⋯ , N − 1,                                                                                  
y = α, y = β .                                                                                    

 (17) 

 
2.1  LOCAL TRUNCATION ERROR 

It follows from the construction of the methods in Eqs. (14) and (17) that the new Scheme 1 
and Scheme 2 are at least of fourth-order and sixth-order respectively. In fact, for Scheme 1, 
let us define 

LTE୧ଵ = (y(x୧ + h) − 2y(x୧) + y(x୧ − h)) ቆ1 −
hଶ

12
 
f (ଶ)൫x୧, y(x୧)൯

f൫x୧, y(x୧)൯
ቇ − hଶf൫x୧, y(x୧)൯. (18) 

 
After expanding each term on the right side of Eq. (18) in Taylor series about x୧ and 
collecting terms in h we get 

LTE୧ଵ =

⎝

⎛−
1

144
ቀy(ସ)(x୧)ቁ

ଶ
    

yᇱᇱ(x୧)
+

1
360 y()(x୧)

⎠

⎞h + O(h଼). (19) 

Similarly, for Scheme 2, we have 

LTE୧ଶ =

⎝

⎛ 1
1728

 
ቀy(ସ)(x୧)ቁ

ଷ

൫yᇱᇱ(x୧)൯
ଶ −

1
2160

y(ସ)(x୧)y()(x୧)
yᇱᇱ(x୧)

+
1

20160
y(଼)(x୧)

⎠

⎞h଼ + O(hଵ).        (20) 

 
3. NUMERICAL RESULTS 

In this section, to validate the application of the presented methods to problem (1)−(2), we 
consider three test problems. We have computed the numerical results by Maple 
programming. 

 
Example 1. (Troesch’s problem)  In this example we will consider Troesch’s problem 
given in Eq. (3) for different values of the parameter µ. We solved this problem, by 
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applying the techniques described in Section 2. Taking µ = 0.5 and µ = 1, in Tables 1 and 2 
we compare our results with the exact solutions given in [7]. Also, in Table 3 the numerical 
solution obtained by Scheme 1 and Scheme 2 for µ =  5 is compared with the numerical 
approximation of the exact solutions given by a Fortran code [20] and the numerical 
solution obtained by B-spline collocation method [20]. From Tables 1−3 we see that 
Scheme1 and Scheme 2 yields a reasonable numerical solution for µ =  0.5, 1 and 5. As 
said in [20, 23], the stiffness ratio near x =  1 increases as µ increases. For this reason, 
most common numerical methods fail to provide enough accurate solutions for large values 
of µ. In Table 4 the numerical solution obtained by the Scheme 2 with N =  300, for 
µ =  10, 30, is compared with the results obtained in [20] by the adaptive collocation 
method over a non-uniform mesh using N =  330 and those obtained in [23] by finite 
difference method (FDM) for mesh size N =  2000. It can be seen from Table 4 that the 
results obtained using Scheme 2 have a good agreement with the results obtained in [20, 
23]. 

 
Table 1: Results for Troesch’s problem (ߤ =  0.5). 

 
x Exact 

 

Scheme1 
N = 10 N = 20 

  

Scheme2 
N = 10 N = 20 

  
 

0.1 0.0959443493 5.0(-10) 1.0(-10)    8.0(-10) 1.0(-10)  
0.2 0.1921287477 1.0(-9) 1.0(-10)    1.4(-9) 1.0(-10)  
0.3 0.2887944009 1.3(-9) 1.0(-10)    2.0(-9) 0  
0.4 0.3861848464 1.7(-9) 1.0(-10)    1.0(-10) 0  
0.5 0.4845471647 1.8(-9) 1.0(-10)    2.7(-9) 0  
0.6 0.5841332484 1.9(-9) 1.0(-10)    2.8(-9) 0  
0.7 0.6852011483 1.8(-9) 1.0(-10)    2.7(-9) 1.0(-10)  
0.8 0.7880165227 1.5(-9) 1.0(-10)    2.3(-9) 1.0(-10)  
0.9 0.8928542161 9.0(-9) 0    1.3(-9) 0  

 

 
Example 2. (Bratu’s problem)  As the second example, we consider Bratu’s problem given 
in Eq. (4) for different values of the parameter λ. Taking λ =  1, 2, Tables 5 and 6, show 
the numerical solution obtained by our methods with N =  200 compared to the exact 
solution given by Eq. (5), as well as to the values computed by iterative finite difference 
(IFD) method with N =  1000 given in [30] and B-spline method given in [27]. Moreover, 
for the critical value λ =  3.51, in Table 7 the numerical solution obtained by the present 
methods with N =  300, is compared with the B-spline method [27] and IFD method [30]. 
As pointed by [30], many existing numerical methods for Bratu’s problem fail to compute 
the solution for λ =  3.51. From Tables 5−7, we see that the present methods are in 
excellent agreement with the exact values and the IFD method. Also, the present methods 
are clearly reliable if compared with the B-spline method. 
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Table 2: Results for Troesch’s problem (µ = 1). 
 

x Exact 
 

Scheme 1 
N = 10 N = 20 

  

Scheme 2 
N = 10 N = 20 

   

0.1 0.0846612565 2.6(-8)       1.7(-9) 4.3(-8) 2.7(-9)  
0.2 0.1701713582 5.2(-8) 3.3(-9) 8.4(-8) 5.4(-9)  
0.3 0.2573939080 7.6(-8) 4.7(-9) 1.2(-7) 7.8(-9)  
0.4 0.3472228551 9.7(-8) 6.1(-9) 1.5(-7) 1.0(-8)  
0.5 0.4405998351 1.1(-7) 7.0(-9) 1.8(-7) 1.1(-8)  
0.6 0.5385343980 1.2(-7) 7.6(-9) 2.0(-7) 1.2(-8)  
0.7 0.6421286091 1.2(-7) 7.5(-9) 2.0(-7) 1.2(-8)  
0.8 0.7526080939 1.0(-7) 6.5(-9) 1.7(-7) 1.1(-8)  
0.9 0.8713625196 6.9(-8) 4.1(-9) 1.1(-7) 7.3(-9)  

 

 
Example 3. Consider the following singularly perturbed problem [6, 31]: 

ቐ
−ϵyᇱᇱ + y = x,     0 ≤ x ≤ 1,          

y(0) = 1,     y(1) = 1 + exp ൬
1
√ϵ
൰ . (21) 

The exact solution of this problem is 

y(x) = x + exp ൬−
x
√ϵ
൰. (22) 

This problem is solved in [6] by sixth-order compact finite difference method. Also, in [31] 
the authors used quintic spline method to solve this problem. For the purpose of 
comparison in Table 8, we compare maximum absolute errors of our methods, for different 
values of ϵ and N, together with the maximum absolute errors given in [6, 31]. 

Furthermore, we have calculated the computational orders of our methods (denoted 
by C-order) with the following formula: 

 

log(E) − log(Eଶ)
log(2) , 

 

where E and Eଶ are maximum absolute errors obtained using N and 2N mesh intervals, 
respectively. The results are summarized in Tables 9 and 10. From Tables 9 and 10, we see 
that the computational and theoretical orders of Scheme 1 and Scheme 2 are very close to 
each other, i.e the order of Scheme 1 and Scheme 2 are O(hସ) and O(h), respectively. 
 
4. CONCLUSION 

In this paper, a new family of schemes for numerically solving two point boundary value 
problems is presented. We showed that, the order of Scheme 1 and Scheme 2 are O(hସ) and 
O(h), respectively. These schemes are used for solving Troesch’s problem, Bratu’s 
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problem and certain singularly perturbed problem. According to the numerical results, 
Scheme 1 and Scheme 2 can handle these kind of problems effectively and the comparison 
show that the proposed methods are in good agreement with the existing results in the 
literature. Also numerical results confirm the theoretical results of the proposed techniques. 
 

Table 3: Comparison of numerical solutions for Troesch’s problem (µ =  5). 
 

 Fortran code ݔ
[20] 

 

Scheme 1 Scheme 2 B-spline 
N = 20 N = 20 [20] 

 

0.2 0.01075342 
0.4 0.03320051 
0.6 0.25821664 
0.8 0.45506034 

 

0.01071950 0.01070406 0.01002027 
0.03309592 0.03304801 0.03099793 
0.25735421 0.25695699 0.24170496 
0.45335039 0.45258050 0.42461830 

 

 

Table 4: Comparison of numerical solutions for Troesch’s problem (µ =  10, 30). 
 

 µ = 10 µ = 30 
 

 Scheme 2 B-spline[20] FDM Scheme 2 FDM[23] 
N ݔ = 300 ܰ = 330 N = 2000 N = 300 N = 2000 

 

0 0 0 0 0 0 
0.1 4.204824(−5) 4.207335(−5) 4.211194(−5) 3.614375(−13) 2.500056(−13) 
0.2 1.297676(−4) 1.298517(−4) 1.299642(−4) 7.277661(−12) 5.033929(−12) 
0.3 3.584358(−4) 3.586905(−4) 3.589786(−4) 1.461766(−10) 1.011094(−10) 
0.4 9.764246(−4) 9.771828(−4) 9.779034(−4) 2.936036(−9) 2.030831(−9) 
0.5 2.655001(−3) 2.657239(−3) 2.659022(−3) 5.897186(−8) 4.079021(−8) 
0.6 7.218002(−3) 7.224571(−3) 7.228934(−3) 1.184481(−6) 8.192908(−7) 
0.7 1.963429(−2) 1.965351(−2) 1.966406(−2) 2.379094(−5) 1.645584(−5) 
0.8 5.364813(−2) 5.370517(−2) 5.373034(−2) 4.778560(−4) 3.305241(−4) 
0.9 1.518614(−1) 1.520568(−1) 1.521140(−1) 9.614584(−3) 6.644214(−3) 

0.95 2.757046(−1) 2.761735(−1)  4.460814(−2) 3.026175(−2) 
0.97 3.713175(−1) 3.721473(−1)  8.991531(−2) 5.753674(−2) 
0.98 4.468330(−1) 4.481030(−1)  1.441330(−1) 8.223035(−2) 
0.99 5.714501(−1) 5.739404(−1)  5.218877(−1) 1.269861(−1) 

1 1 1 1 1 1 
 

 

Table 5: Comparison of numerical solutions for Bratu’s problem (ߣ =  1). 
 

 Exact ݔ
 

Scheme 1 Scheme 2 B-spline[27] IDF[30] 
 

0.1 0.049846791245 
0.2 0.089189934629 
0.3 0.117609095768 
0.4 0.134790253884 
0.5 0.140539214400 
0.6 0.134790253884 
0.7 0.117609095768 
0.8 0.089189934629 
0.9 0.049846791245 

 

0.049846791245 0.049846791245 0.0498438103 0.049846791445 
0.089189934628 0.089189934629 0.0891844690 0.089189934988 
0.117609095767 0.117609095768 0.1176017599 0.117609096243 
0.134790253883 0.134790253884 0.1347817559 0.134790254431 
0.140539214399 0.140539214400 0.1405303221 0.140539214971 
0.134790253883 0.134790253884 0.1347817559 0.134790254430 
0.117609095767 0.117609095768 0.1176017599 0.117609096243 
0.089189934628 0.089189934629 0.0891844690 0.089189934988 
0.049846791245 0.049846791245 0.0498438103 0.049846791444 
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Table 6: Comparison of numerical solutions for Bratu’s problem (ߣ =  2). 
 

 Exact ݔ
 

Scheme 1 Scheme 2 B-spline[27] IDF[30] 
 

0.1 0.114410743268 
0.2 0.206419116488 
0.3 0.273879311826 
0.4 0.315089364226 
0.5 0.328952421341 
0.6 0.315089364226 
0.7 0.273879311826 
0.8 0.206419116488 
0.9 0.114410743268 

 

0.114410743264 0.114410743265 0.1143935651 0.114410743957 
0.206419116481 0.206419116483 0.2063865190 0.206419117764 
0.273879311817 0.273879311820 0.2738344125 0.273879313548 
0.315089364215 0.315089364220 0.3150365062 0.315089366227 
0.328952421330 0.328952421335 0.3288968072 0.328952423437 
0.315089364215 0.315089364220 0.3150365062 0.315089366228 
0.273879311817 0.273879311820 0.2738344125 0.273879313550 
0.206419116481 0.206419116483 0.2063865190 0.206419117767 
0.114410743264 0.114410743265 0.1143935651 0.114410743961 

 

 

Table 7: Comparison of numerical solutions for Bratu’s problem (ߣ =  3.51). 
 

 Exact ݔ
 

Scheme 1 Scheme 2 B-spline[27] IDF[30] 
 

0.1 0.364335803565 
0.2 0.677869705682 
0.3 0.922214197098 
0.4 1.078634240752 
0.5 1.132617978282 
0.6 1.078634240752 
0.7 0.922214197097 
0.8 0.677869705682 
0.9 0.364335803565 

 

0.364335803086 0.364335802967 0.357388461 0.364335803565 
0.677869704751 0.677869704528 0.664283874 0.677869705683 
0.922214195783 0.922214195480 0.902930838 0.922214197097 
1.078634239178 1.078634238825 1.055419782 1.078634240752 
1.132617976616 1.132617976246 1.107989815 1.132617978283 
1.078634239178 1.078634238825 1.055419782 1.078634240752 
0.922214195783 0.922214195480 0.902930838 0.922214197097 
0.677869704751 0.677869704528 0.664283874 0.677869705683 
0.364335803086 0.364335802967 0.357388461 0.364335803565 

 

 
Table 8: Comparison of maximum absolute errors for Example 3. 

 

ϵ N = 16 N = 32 N = 64 
 

Scheme 1    
1/16 2.96(−6) 1.85(−7) 1.15(−8) 
1/32 1.19(−5) 7.45(−7) 4.67(−8) 
1/64 4.74(−5) 2.98(−6) 1.87(−7) 

1/128 1.78(−4) 1.19(−5) 7.46(−7) 
Scheme 2    

1/16 7.34(−9) 1.14(−10) 1.79(−12) 
1/32 5.90(−8) 9.25(−10) 1.45(−11) 
1/64 4.71(−7) 7.41(−9) 1.16(−10) 

1/128 3.54(−6) 5.90(−8) 9.25(−10) 
Method of [6]    

1/16 8.03(−9) 1.26(−10) 1.97(−12) 
1/32 6.41(−8) 1.01(−9) 1.59(−11) 
1/64 5.06(−7) 8.10(−9) 1.27(−10) 

1/128 3.72(−6) 6.42(−8) 1.01(−9) 
Method of [31]    

1/16 2.96(−6) 1.85(−7) 1.15(−8) 
1/32 1.18(−5) 7.54(−7) 4.67(−8) 
1/64 4.74(−5) 2.96(−6) 1.86(−7) 

1/128 1.78(−4) 1.18(−5) 7.46(−7) 
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Table 9: Errors and computational orders obtained by Scheme 1, for Example 3. 
 

 

ܰ 
 

ϵ = 1/16 
E C-order 

  

ϵ = 1/32 
E C-order 

  

߳ = 1/64 
 ே C-orderܧ

  

 

16 2.96(−6) -- 1.19(−5) -- 4.74(−5) -- 
32 1.85(−7) 3.9999 7.45(−7) 3.9975 2.98(−6) 3.9915 
64 1.15(−8) 4.0078 4.67(−8) 3.9957 1.87(−7) 3.9942 

128 7.26(−10) 3.9855 2.92(−9) 3.9993 1.16(−8) 4.0108 
 

 
Table 10: Errors and computational orders obtained by Scheme 2, for Example 3. 

 
 

ܰ 
 

߳ = 1/16 
E C-order 

  

ϵ = 1/32 
E C-order 

  

ϵ = 1/64 
E C-order 

  

 

16 7.34(−9) -- 5.90(−8) -- 4.71(−7) -- 
32 1.14(−10) 6.0086 9.25(−10) 5.9951 7.41(−9) 5.9901 
64 1.79(−12) 5.9929 1.45(−11) 5.9953 1.16(−10) 5.9972 

128 2.80(−14) 5.9983 2.26(−13) 6.0035 1.81(−12) 6.0019 
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