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Design of some crystal and quasicrystal networks, 
based on rhombellane tiling, is presented. 
[1,1,1]Propellane, is a synthesized organic molecule; 
its hydrogenated form, the bicyclo[1.1.1]pentane, may 
be represented by the complete bipartite graph K2,3 
which is the smallest rhombellane. Topology of 
translational and radial structures involving 
rhombellanes is described in terms of vertex symbol, 
connectivity sequence, ring sequence and map 
operations relating structures to their seeds. It is 
shown, by alternating sum of ranked substructures, that 
radial structures represent complex constructions of 
higher rank. Basic properties of rhombellanes, coloring 
included, are outlined. 
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1 INTRODUCTION 

[1,1,1]Propellaneis an organic molecule, first synthesized by Wiberg and Walker 
in 1982 [1]. By IUPAC rules, it is named Tricyclo[1.1.1.01,3]pentane, a 
hydrocarbon with formula C5H6 and three rings of three atoms. The hydrogenated 
form of propellane, C5H8, eventually named bicyclo[1.1.1]pentane, has only 
rhomb/square rings; it can be represented by K2,3 - the complete bipartite graph, 
which is the smallest rhombellane. The two bridge carbon atoms can be 
functionalized, e.g., by bromine or COOH, or even by repeating the K2,3 motif, as 
in the polymer called staffane [2].  

Rhombic polyhedra are known as aesthetic appeal objects, of mathematical 
interest [3]; the well-known triacontahedron, the dual of Archimedean 
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icosidodecahedron, has 30 rhombic faces. In the book “Multi-shell polyhedral 
clusters” [4],the cluster C152 was described consisting of K2,3 units, which are not 
polyhedra cf. Steinitz Theorem [5] but tiles [6]. 

Design of rhombellanes is made by a general procedure [7], achieved as 
follows: join by a point (called “rbl-point”) the two vertices lying opposite 
diagonal in each rhomb of an all rhomb-map (i.e. the zero-generation, Rh0). Then, 
add new vertices opposite to the parent vertices and join each of them with the rbl-
vertices lying in the proximity of each parent vertex, thus local Rh-cells being 
formed. The process can continue, taking the envelope Rhn as “Rh0” for Rhn+1, in 
this way shell by shell being added to the precedent structure. Since the two 
diagonals may be topologically different, each generation may consist of two 
isomers.  

The paper is organized as follows: after an introduction, construction of 
some periodic rhombellane-consisting structures is presented; in the third section, 
non-periodic radial structures are discussed; the forth section details the 
rhombellanic character, in mathematical chemistry terms; in the fifth section, a 
graph coloring problem related to rhombellanes is exposed; conclusions and 
references will close the paper. 
 
2.  PERIODIC RHOMBELLANIC STRUCTURES 

According to Steinhardt definition [8], crystals are highly ordered structures, with 
atomic clusters repeated periodically, in three independent directions of the space, 
and showing an essentially discrete diffraction diagram; the symmetry of infinite 
crystal lattices is completely described by the 230 symmetry groups of the space.  

Starting from the simplest crystal network, namely the simple cubic pcu net, 
of which repeating unit is a cube C, it is possible to build a variety of triple 
periodic structures.  

Let first locate a point/atom in the center of cube and join it with all the 
corners of cube; the obtained unit is referred here as CP8.9 (Figure 1, left), P8 
meaning a point of connectivity 8. By translating this unit along the three 
coordinate axes results in a “body centered cubic” bcc network, including both pcu 
and bcu networks; by this reason, it is named here pcu-bcu (Figure 2, left). Second, 
cut-off, in an alternating manner, four of the edges emerging from the central point 
to the corners of cube; the unit thus obtained is named CP4.9 (Figure 1, middle) 
while the network resulted from itby a simple translation is denoted pcu-dia 
(Figure 2, middle). Third, translate CP4 unit along the three coordinate axes, each 
step rotated 90o, thus resulting the network called here pcu-flu (Figure 2, right); its 
repeating unit consists of eight CP4 units, with a total of 35 points/atoms.  



Rhombellanic Crystals and Quasicrystals                                                                    169 

 

   

CP8.9 (pcu-bcu) CP4.9 (pcu-dia); (pcu-flu) CD.8 (bcu) 
 

Figure 1. Seeds for three periodic networks. 
 

   
pcu-bcu pcu-dia pcu-flu 
CP8.9 CP4.9 CP4& CP4R(90o) 

 
Figure 2. Networks superposed over the simple cubic net pcu; 
seeds are indicated on the bottom row. 

 
The bcu, dia and flu nets alone (see [9] for symbols), resulted by deleting the 

pcu net (Figure 2), are illustrated in Figure 3. Also, bcu can be generated by 
translating the unit CD.8 (Figure 1, right), a diagonalized cube, representing a 
substructure of the unit Rh12P8.15 (Figure 4, top, middle). 
 

 

   
bcu (Im-3m) dia (Fd-3m) flu (Fm-3m) 
 
Figure 3. Periodic nets envisaged by deleting the simple cubic net 
pcu in Figure 2. 
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The void of flu net is the rhombic dodecahedron Rh12.14 (Figure 4, top, 

left), a space filler. By doping Rh12 with a body centered atom, P8, results in 
Rh12P8.15, a cluster of rank k = 5 (see Table 1S, Supplementary material); it is the 
seed of bcu net (Figure 5, top, middle and right); relation between the two netsorks 
is illustrated in Figure 4.Any atom of bcuis retrievedin the pcu (i.e., twin/entangled 
pcu) net (and the reciprocal is true); it is clear that Figure 2, left, shows the bcu net 
with the rectangular edges of pcu also represented. However, any of flu atoms 
belongs to the (twin) pcu but the reciprocal is not true. 

 
 

   
Rh12.14 = dmC.14 Rh12P8.15 = (dmC)P8.15 bcu 

   
  flu 

 
Figure 4. Doping by a point/atom the seed of flu, Rh12 (top, left),  
becomes Rh12P8.15 (top, middle), the seed of bcu (top right); the 
void Rh12 and its complement (within the pcu frame) form the flu 
net (bottom). 

 
Similarly, the net pcu-dia (Figure 2, middle), of which seed is CP4.9, is in 

fact the twin dia net, of Fm-3m space group: a “face centered cubic” fcc net is 
entangled with its self-dual net; the two nets are displaced along the body diagonal 
of the cube by one quorter of the diagonal length, as illustrated in Figure 5. Any 
atom of (twin) dia is retrieved in the (twin) pcu net (and the reciprocal is true); in 
the retrieved pcu net, the atoms of the two dia nets alternate in populating the 
cubic net, as in the cube bipartite coloring (Figure 6). If rotates  90o  to each other 
(and identifies the superposed points) dia-dia changes to the flu net (Figures 3 and 
4). 
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Triple periodic networks can be characterized by sequences of vertex 
connectivity, as given in the crystallographic databases [9]. Sequences of a given 
topological property are counted as rows in layer/shell matrices, LM/ShM [10,11]; 
in this case, LC is the layer of connectivity matrix, which is taken up to the 
distance ten from the chosen vertex. In addition, if the strong rings surrounding 
vertices are considered, the layer of rings matrix LR [12] can be obtained; the 
characterization of a triple periodic network is (for the first time) more complete. 
Lists of such data for the  nets: pcu, bcu, fcu, dia, flu, pcu-bcu, pcu-dia and pcu-flu 
are given elsewhere (Tables 2S and 3S − Supplementary material). (The figure 
count for the seeds of the discussed networks is given in Table 1S− Supplementary 
material). 

 

   
ada = diafcc dia (Fd-3m) co-ada = diabcc 
 

Figure 5. Diamond net substructures entangled within the pcu 
frame: dia = ∪(fcc; bcc). 

 

   
   

ada = diafcc Cubic dia Twin dia (entangled) 
 

Figure 6. Two dia-nets complementarily occupy the same space 
generated by the CP4 seed: there is only one ada unit (red) and one 
co-ada (yellow − left); in the cubic dia net, the space filler is only 
CP4 unit (red − middle); in the retrieved pcu net, the atoms of the 
two entangled dia nets alternatively populate the cubic net, as in 
the bipartite coloring (right). 
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3. RHOMBELLANIC  RADIAL STRUCTURES 

Quasicrystals are finite aperiodic structures, with long-range positional and 
orientational order [8]. Among the rotational symmetries, 2−, 3−, 4− and 6−fold 
axes are allowed in crystals, while 5−, 7− and all higher (non-crystallographic) 
rotational symmetries are encountered in quasicrystals. Atomic clusters are 
repeated in a complex, non-periodic pattern; electron diffraction shows sharp 
patterns, as found experimentally by Shehtman [13] the Nobel prize winner in 
2011. Radial structures with rhombellanic characteristics can be obtained by 
applying iteratively the “rhombellation” procedure, described in the introductory 
section. The procedure is illustrated in Figre 7, starting from the cube. 
 

 

   
Rh3 = K2.3 Rh6 and rbl points (in red) rbl1 generation (Rh12 hull) 

 
Figure 7. Rhombellane Rh3 and rhombellation starting from the cube (i.e.,Rh6). 

 
The new envelope Rhn+1 has twice the number of rhombs in the precedent 

Rhn envelope; the number of vertices in a new generation is counted iteratively as: 
vn+1 = vn+2hn + 2, with v = |V(G)| being the number of vertices, hn the number of 
rhombs in the hull of n-generation (embedded in the sphere) and 2 is the Euler 
characteristic (see below) of the sphere. Referring to the zero-generation, Rh0, the 
actual number of vertices can be obtained by the formula:  

vn = 2(n + 1) + h0 (2n+1 – 1). 
Radial series can be characterized, as the crystal structures, by shells of 

connectivity LM and shells of rings around vertex LR matrices (see Supplementary 
material, Table 4S). 

About space dimensionality or ranking, as defined by Schulte [14], each 
rhombellane generation (i.e. shell) can be seen as a cluster of rank k = 4 (Table 1); 
then, two such shells share a common 3-facet, which is a sphere tessellated by 
rhombs f4, a true cell (Figure 8). It means, a shell pair (1;2) or (2:3) are structures 
of rank k = 5. Further, a pair {(1;2);(2:3)} will share a shell of rank k = 4 (in this 
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case, the shell (2)); thus, the structure 3full, (Table 1, bottom), bonded by two facets 
of rank k = 5, is a structure of rank k = 6 and the process can continue. 

 

   

1[1].94 2[1,1].184 (1;2)[1,1].216 

   
1[2].94 2[2,2].184 (1;2)[2,2].216 

 
Figure 8. Facets of the shell pair (1;2) of rhombellanes rbln(Rh30). 

 
Table 1. Figure count for Rh30rbln[1,..,1]; K2.3

* = f4/3; M = No. (inner + outer) 
cells. 
[1,..,1] v e f4 K2.3 K2.4 K2.5 Rh8 Rh10 K2.3

* M 3 4 5 6 
1 94 240 270 20 0 0 0 12 90 2 124 0 (30;60) 
2 184 480 540 20 0 12 30 0 180 2 244 0 (60;120) 
3 364 960 1080 20 30 12 60 0 360 2 484 0 (120;240) 

(1;2) 216 600 750 40 0 12 30 12 270 2 366 2 2 - 
(2;3) 426 1200 1470 40 30 24 60 0 540 2 696 2 2 - 
3full 458 1320 1710 60 30 24 90 12 630 2 848 2 2 0 

 
Note, in Table 1, the presence of K2.n  complete bipartite graphs and related 

rhombic cells Rhn; also note the count of f4 (pair (Rhn, Rhn+1) at the top of #5 and 
#6 columns). For the series [2,..,2], see Table 5S, (Supplementary material). Euler 
characteristic χ [15] of a surface S can be calculated as an alternating sum of 
figures, of rank k: 0 1 2 3( ) ...,S f f f f      . 
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4. RHOMBELLANIC CHARACTER 

Proposition [7]. A structure is a rhombellane if all the following conditions are 
obeyed: (a) All strong rings are squares/rhombs; (b) Vertex classes consist of all 
non-connected vertices; (c) Omega polynomial has a single term: 1X^|E|; (d) Line 
graph of the original graph shows a Hamiltonian circuit; (e) Structure contains at 
least one K2.3 subgraph. 
 

Cube (actually Rh6) is an all-square graph and Hamiltonian; its line-graph, 
the cuboctahedron, is also Hamiltonian but its Omega polynomial [16,17]: Ω(C) = 
3X^4, meaning not all of its edges are topologically parallel; also, the vertices of 
cube form a singlevertex class and thus cannot be disconnected.  

Triacontahedron, Rh30, has all-square rings, all non-connected vertex 
classes but not 1X^e Omega polynomial unique term and no Hamiltonian circuit of 
its lines. Rhomb Icosahedron, Rh20, has not all classes of non-connected vertices. 

Omega polynomial is defined as: Ω(x) = Ʃkmxs, m being the number of 
opposite edge strips, ops, of length s, in a graph G. There are graphs with a single 
ops, which is a Hamiltonian circuit. For such graphs, Omega polynomial has a 
single term: Ω(x) = 1xs; s = e = |E(G)|, in other words, “all the edges in G are 
topologically parallel”. However, Hamiltonicity is an NP complete problem, being 
taken here as a corollary of a single ops in Omega polynomial; however, not all the 
graphs having a Hamiltonian circuit have all the edges topologically parallel (see 
the case of cube and cuboctahedron). 

The smallest rhombellane Rh3 is K2.3, the complete bipartite graph 
(corresponding to the molecular graph of C5H8, bicyclo[1.1.1]pentane); all K2.n 

graphs fulfill all the above conditions. Any K2.n graph consists of n(n−1)(n−2)/6 
K2.3 substructures. There are rhomb-tessellated cages that fulfil the first four 
criteria but do not contain any K2.3 substructure. 

Further, there are graphs with more than two vertex classes obeying the 
above conditions. Rhombellation operation provides such graphs, with n 
shells/generations, when applied iteratively. The rbl-vertices added in the first step 
of any new generation are disjoint with respect to each other while in the second 
step they are joined by means of new vertices superposed on the parent vertices 
(thus not connected, neither to the parent vertices nor to themselves); this 
construction provides classes of vertices non-connected to each other within a 
same class. Rhombellanes represent n-partite graphs, both by topology and 
coloring (see below). Rhombellanic crystal networks also fulfill all the five above 
criteria: among the discussed network, only the dia net (as the superposed pcu-dia) 
is full rhombellanic, whereas pcu-bcu has triangles while flu does not cover all 
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points/atoms in pcu. Accordingly, only the CP4.9 seed show a full rhombellanic 
character. 
 
Corollary. In a finite molecular rhombellane, with vertex classes consisting of 
distinct atom types, there are only polar bonds while covalent non-polar bonds 
may not exist. 
 
5. COLORING PROBLEM 

The chromatic number Ch of a graph is the smallest number of colors needed to 
color its vertices so that no edge has the both endpoints colored the same [18]. 
Several graph constructions have been proposed about graph coloring [19−22]; two 
of them are more related to our proposed construction: 
 
Mycielski’s Theorem ([23], 1955). For any integer n > 1, there exists a triangle-
free n-chromatic graph. 
 
Zykov’s Theorem ([24], 1949): There exist triangle-free graphs with arbitrary 
large chromatic number.  
 

Hamiltonicity and other properties of triangle-free graphs transformed by 
Mycielski’s construction were discussed in [25,26]. Note that, the 4-polytope 24-
Cell is three-colored, its medial (i.e., line-graph) C96 is four-colored, its face-dual 
is also four-colored; however, these graphs have a single topological vertex class; 
it means, the coloring does not superposes over topology. Also, bipartite graphs 
(i.e. graphs with all even size cycles) have Ch = 2 but may have more than two 
topological vertex classes. In rhombellanes, topology superposes over coloring; for 
rbl1(C).22, we found Ch = 5; for rbl2(C).48, Ch = 8. 
 

    
Q4.8CP8.24 = 24-Cell 

Ch=3, Cls=1 
Q4.8CP8.24 

Torus T4,4 embedding 
Q4.8CP4sa.24 
Ch=2, Cls=2 

Q4.CD.16 
Ch=16, Cls=16 

 
Figure 9. Hypercube Q4 derivatives. 
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Jensen and Royle [27] provided an easy construction of a 22-vertex graph 

(from the Grötzsch graph) and an easy proof that the result is triangle-free and 5-
chromatic. By repeating two times Mycielski’s procedure, a 45-vertex, triangle-
free, 6-chromatic graph was obtained; it is unknown if a smaller such graph exists 
[18] (however, graphs of 44 or 43 vertices were questioned [28]). In this light, our 
results are correct, with respect to chromatic number and our procedure seems to 
be simpler than those already published. 

Rhombellation operation provides triangle-free graphs with arbitrarily large 
chromatic number. Figure 9 illustrates three derivatives of the hypercube Q4 – 
Tesseract, in four representations: (i) Q4.8CP8.24=24-Cell (Ch=3; Cls=1); the 
construction is made in the idea of cube-derivatives CP8, CP4 and CD, used as 
network seeds (Figure 1) and seems to be a new way to build the 24-Cell 4-
polytope [7]; it has Ch = 3 but is not rbl in character (it contains triangles and has a 
single class of vertices, thus cannot be disconnected); (ii) The object Q4.8CP8.24 
embedded in the torus T4,4;(iii) Q4.8CP4sa.24, a syn-anti isomer with Ch = 2 and 
Cls=2; it has a rbl character and (iv) Q4.CD.16, a diagonalized hypercube having 
Ch=|V(G)|=16 (i.e., the number of atoms/vertices in the molecule/graph); in other 
words, each class consists of singular vertices, clearly disconnected, as they belong 
each to different classes; this is also a rhombellanic structure, obeying all the five 
rbl criteria. Topology of these Q4-derivatives is given in Tables 6S to 8S 
(Supplementary material). 

Vertex classes were computed by our Nano-Studio software [29], as 
centrality indices, and confirmed by permutations in the adjacency matrix of 
graphs, performed by Mathematica [30]. 
 
6. CONCLUSIONS 

Rhombellane, Rh3 or K2.3, is the smallest tile with rhombic rings/faces; it 
represents a real chemical molecule. Generalized rhombellanes, designed by the 
rhombellation procedure, have non-connected vertex classes (of interest in graph 
coloring); all the edges are topologically parallel (as shown by the single term 
Omega polynomial, further involving Hamiltonian circuits visiting their edges) and 
contain at least one K2.3  subgraph. 

For some well-known triple periodic crystal networks, like pcu, bcu or dia, 
rhombellanes enable a deeper description, helpful in understanding relations 
among networks apparently not related. Cube-like molecules or crystal networks 
have been reported [31,32]. For the first time in literature, crystals and 
quasicrystals were characterized by sequences of strong rings around atoms. 
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Exploring network seeds led to a new building way of the 4-polytope 24-
cell. Radial structures, generated by propellation are ordered (yet hypothetical) 
structures of higher rank. 

Rhombellanes represent a new class of structures, with promising properties, 
both in theory and applications. 

 
Supplementary Material. Available on request, at www.esmc.ro. 
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