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ABSTRACT. Altan derivatives of polycyclic conjugated hydrocarbons were 
recently introduced and studied in theoretical organic chemistry. We now 
provide a generalization of the altan concept, applicable to any graph. Several 
earlier noticed topological properties of altan derivatives of polycyclic 
conjugated hydrocarbons are shown to be the properties of all altan derivatives 
of all graphs. Among these are results pertaining to Kekulé structures/perfect 
matchings, determinant of the adjacency matrix, and graph spectrum. 
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1. INTRODUCTION 

Altan derivatives of polycyclic conjugated molecules recently came into the focus of 
attention of theoretical organic chemists [1-5]. The name “altan” is an abbreviated form of 
“alternating annulene”, which is a fragment encircling the parent conjugated system.  

The altan derivative of a conjugated hydrocarbon is constructed so that each hydrogen 
atom is replaced by a vinyl group, and each two adjacent vinyl groups are condensed into a 
new cycle. The construction of altan-phenanthrene is shown in Fig. 1. 

An interesting and attractive property of altan molecules is that the π-electron system of 
the annulene that surrounds the parent hydrocarbon is only weakly interacting with the π-
electron system of the parent hydrocarbon. From the point of view of Kekulé structures, the π-
electron conjugation in the annulene and the parent hydrocarbon are fully independent. In 
particular, the Kekulé structure count of the altan derivative is equal to the product of the 
Kekulé structure count of the parent hydrocarbon and the number of Kekulé structure of the 
annulene (which, of course is equal to two) [5,6]. 
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Fig. 1. Construction of altan-phenanthrene from phenanthrene. Note that the perimeter of 
altan-phenanthrene is a [20]annulene, encircling the phenanthrene subunit. 
 

It is easy to see that if the number of hydrogen atoms of the parent conjugated 
molecule is even, then the annulene in the altan-derivative has size 4k+2 (and thus contains 
4k+2 π-electrons). According to the Hückel (4k+2)-rule [7-9], such a π-electron system 
contributes to antiaromaticity and possesses a paratropic ring currect. 

In what follows, we show that the above listed properties of altan-molecules are 
properties of a much more general class of graph derivatives, which we define in the 
subsequent section. 

 

2. GENERALIZING THE CONCEPT OF ALTAN -DERIVATIVES 

Definition 1. Let G be a graph of order n. For 2 h n  , let 1 2( , . , )hU v v v   be an ordered 

h-tuple of vertices of G.  The altanderivative of the graph G with regard to U is the graph 
† †( )G G U  constructed in the following manner. For 1, 2, ,i h  , attach a new vertex ix  to 

the vertex iv . Then attach a new vertex iy  to the vertex ix . Then for 1, 2, , 1i h  , connect 

the vertices iy  and 1ix   and also connect the vertices ny  and 1x . 
 

 As a direct consequence of Definition 1 we see that: 
1) If the graph G has n vertices, then † † ( )G G U has n+2h vertices. 

2) If the graph G has m edges, then † † ( )G G U has m+3h edges. 
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3) The degree of the vertices 1 2, , , hx x x  is 3. 

4) The degree of the vertices 1 2, , , hy y y  is 2. 
 

Remark 2. If G is a molecular graph of a polycyclic conjugated hydrocarbon, then in its 
altan-derivative † † ( )G G U , the vertices 1 2( , . , )hU v v v   are those corresponding to 
carbon atoms to which a hydrogen atom is connected, arranged along the perimeter. Then h is 
just the number of hydrogen atoms of the underlying hydrocarbon. If so, then the cycle 
formed by the vertices 1 1 2 2 h hx y x y x y  corresponds to the annulene encircling the parent 
hydrocarbon. Evidently, its size is 2h.  

 

In what follows, we denote by 2h  the (2h)membered cycle of † †( )G G U , induced 

by the vertices 1 1 2 2 h hx y x y x y  . 
 

3. ON PERFECT MATCHINGS OF ALTAN –GRAPHS 

If u and v are two adjacent vertices of a graph, then the edge connecting them will be 
denoted by uv. We say that uv covers the vertices u and v. Two edges of a graph are said to be 
independent if they cover 4 vertices. 

A perfect matching of a graph G is a set of mutually independent edges which cover 
all vertices of G. The number of perfect matchings of the graph G will be denoted by K(G).  

In case of molecular graphs, perfect matchings are in a one-to-one correspondence 
with Kekulé structures. Then K(G) is just the Kekulé structure count of the underlying 
conjugated molecule. For details on this correspondence see [8,10]. 
 

Theorem 3. Let the vertices of the altan graph †G  be labeled as in Definition 1. Then the 
edges , 1, 2, ,i iv x i h  , do not belong to any perfect matching of †G . 
 

Proof. Suppose the contrary, namely that †( )M G  is a perfect matching of †G  and that 
†

1 1 ( )v x M G . Then, in order that the vertex 1y  be covered, it must be †
1 2 ( )y x M G . Then, 

in order that the vertex 2y  be covered, it must be †
2 3 ( )y x M G . Continuing this argument, 

we see that in order that the vertex 1hy   be covered, it must be †
1 ( )h hy x M G  . Then, 

however, the vertex hy  cannot be covered in †( )M G  because hy  is adjacent only to 1x  and 

hx  , and the edges  1 1v x  and 1h hy x  are already in †( )M G .  Therefore †
1 1 ( )v x M G is not 

possible, and analogously †( )i iv x M G  is not possible for any 1, 2, ,i h  .     �  
 

Corollary 4. For any graph G and for any h-tuple U, †( ( )) 2 ( )K G U K G . 
 

Proof. By Theorem 3, deleting the edges i iv x  from †G does not change the number of perfect 

matchings. After deleting all , 1, 2, ,i iv x i h  , what remains is the disconnected subgraph 

2hG . Corollary 4 follows from 2 2( ) ( ) ( )h hK G K G K     and 2( ) 2hK   .     �  
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Remark 5. The Kekulé-structure equivalents of Theorem 3 and Corollary 4, valid for altan-
derivatives of conjugated hydrocarbons, were noticed in all papers [1-4]. A formal proof 
thereof, applicable to altan-benzenoids was offered in [5]. We now see that these are just 
special cases of a much more general regularity. 
 

4. DETERMINANT OF ADJACENCY MATRIX OF ALTAN –GRAPHS 

Let G be a graph of order n. A Sachs graph of G is a subgraph of G whose all 
components are cycles and/or 2-vertex complete graphs 2K   [8,11,12]. Denote by ( )S G  the 
set of all Sachs graphs that are spanning subgraphs of the graph G (i.e., that have same 
number of vertices as G). It is known [8,11-13] that the determinant of the adjacency matrix 

( )A G  of a graph G satisfies the relation 
( ) ( )

( )

det ( ) ( 1) ( 1) 2n p c

S G
A G  



        (1) 

where ( )p  and ( )c  are, respectively, the number of components and of cycles in the Sachs 
graph  . 
 

Theorem 6. Let the vertices of the altan graph †G  be labeled as in Definition 1. Then the 
edges , 1, 2, ,i iv x i h  , do not belong to any Sachs graph from the set †( )S G . 
 

Proof. Suppose the contrary, namely that there exists a Sachs graph †( )S G  , such that the 
edge 1 1v x  belongs to one of its components. We have to distinguish between two cases: Either 

(a) 1 1v x  belongs to a 2K -component of  , or (b) 1 1v x  belongs to a cycle of  .  

Case (a). If 1 1v x  belongs to a 2K -component of  , then also 1 2y x must belong to 

another 2K -component of  . Same holds for 2 3y x , …, 1h hy x  Then, however, the vertex hy  

cannot belong to any component of  , because hy  is adjacent only to 1x  and hx  , and the 

edges  1 1v x  and 1h hy x  are already in  .  Therefore the edge 1 1v x cannot belong to a 2K -

component of †( )S G   , and analogously, the same holds for the edges  i iv x  for all 
1, 2, ,i h  . 

Case (b). It the edge 1 1v x  belongs to a cyclic component of  , then either the vertices 

1 2,y x  or the vertices ,h hy x  (but not both pairs!) belong to the same cycle. Without loss of 

generality, assume this is the pair ,h hy x  . Then the edge 1 2y x  must belong to a 2K -

component of  . Same holds for the edges 2 3y x , …, 2 1h hy x  . Then, however, the vertex 1hy   

cannot belong to any component of  , because 1hy   is adjacent only to 1hx   and hx  , and 

these latter vertices are already in  .  Therefore the edge 1 1v x cannot belong to a cyclic 

component of †( )S G   , and analogously, the same holds for the edges  i iv x  for all 
1, 2, ,i h  .              �  
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Corollary 7. For any graph G and for any h-tuple U, †
2det ( ( )) det ( ) det ( )hA G U A G A   . 

 

Proof. By Theorem 6, and bearing in mind Eq. (1), deleting the edges i iv x  from †G does not 

change the determinant of the adjacency matrix. After deleting all , 1, 2, ,i iv x i h  , what 

remains is the disconnected subgraph 2hG . Corollary 7 follows now from 

2 2det ( ) det( ) det( )h hA G G     .           �  
 

 As well known [8,11,12], and as a direct consequence of Eq. (1), the determinant of 
the cycle of size 2h is equal to -4 is h is odd, and is equal to 0 is h is even. This yields: 
 

Corollary 8. For any graph G and for any h-tuple U, if h is even, then †det ( ( )) 0A G U   

whereas if h is odd, then †det ( ( )) 4det ( )A G U A G  . 
 

Corollary 9. For any graph G and for any h-tuple U with even h, the altan-graph †G  is 
singular, i.e., its spectrum possesses at least one zero eigenvalue. 
 

Remark 10. Polycyclic conjugated hydrocarbons necessarily possess an even number of 
hydrogen atoms. Therefore, in all chemically relevant altan-derivatives, the parameter h is 
even, implying that one of the graph eigenvalues is equal to zero. In the language of 
theoretical chemistry [8,11,14], all altan-derivatives of conjugated hydrocarbons have a non-
bonding molecular orbital. This important fact was observed in all earlier papers [1-5].  We 
now see that this is just special cases of a much more general regularity. 
 

The nullity ( )G  of a graph G is the multiplicity of its eigenvalue zero [14].  
 

Corollary 11. If h is even, then †( ) 1G  . The nullity of †G  may be greater than unity. In 

particular, †( ) ( )G G  , whereas the nullity of the parent graph G may assume any value 

between 0 and n [14]. The case †( ) ( )G G   is, for example, encountered if G is the graph 

without edges. The case †( ) ( ) 1G G    is encountered if G is non-singular.  

If h is odd, then the situation with nullity is simple: †( ) ( )G G  holds in all cases.
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