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ABSTRACT 

In this paper we present explicit formulas for the eccentric connectivity index of three classes 
of chain hexagonal cacti. Further, it is shown that the extremal chain hexagonal cacti with 
respect to the eccentric connectivity index belong to one of the considered types. Some open 
problems and possible directions of further research are mentioned in the concluding section. 
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1. INTRODUCTION 

The eccentric connectivity index is a graph invariant that attracted a lot of attention of 
researchers working in the area of QSAR/QSPR. It has been found useful in modeling 
various physico-chemical properties of several classes of chemical compounds [12, 20, 22]. 
After some initial delay, it also became a subject of a number of mathematical papers [1, 4, 
6, 7, 17, 24, 25]. Here we continue with investigation of its behavior on a class of graphs of 
some relevance in statistical mechanics, chemistry, and theory of networks. 

The central objects of this note, the cactus graphs, were introduced in the scientific 
literature some sixty years ago under the name of Husimi trees. They appeared in papers of 
Husimi [16] and Riddell [19] concerned with cluster integrals in the theory of condensation 
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in statistical mechanics[23]. Besides statistical mechanics, where they serve as simplified 
models of real lattices [18, 21], the Husimi trees were also found useful in the theory of 
electrical and communication networks [28] and in chemistry [15, 26]. 

From the mathematical point of view, the Husimi trees were first studied in a series 
of papers by Harary, Uhlenbeck and Norman, concerned with their enumerative properties 
[13, 14]. Later they become known as cactus graphs, and under that name attracted some 
attention when it was found out that some facility allocation problems that are NP-hard for 
general graphs can be solved in polynomial time for the cactus graphs [2, 27]. Also, they 
spawned a number of generalizations, such as block-cactus graphs [3, 29]. 

In this paper we study certain uniform and regular classes of cactus graphs. We 
present explicit formulas for the eccentric connectivity index of such cacti and show that 
the extremal values of this quantity are achieved on two of the considered classes. 

The paper is organized as follows. In Section 2 we formally introduce the classes of 
graphs relevant for our investigation. Section 3 is concerned with the explicit formulas for 
three types of chain hexagonal cacti. In Section 4 we establish the extremal values and find 
the extremal chains with respect to the eccentric connectivity index. The paper is concluded 
by indicating some possible directions for future research. 

 
2.  DEFINITIONS AND PRELIMINARY RESULTS 

All graphs considered in this paper will be finite, simple and connected. For a graph G, we 
denote the set of its vertices by V(G) and the set of its edges by E(G).For two vertices u and 
v of V(G) we define their distanced(u, v) as the length of a shortest path between u and v in 
G. For a given vertex u of V(G) its eccentricity )(u is the largest distance between u and 
any other vertex v of G. Hence, ),(max)( )( vudu GVv . The eccentric connectivity index

)(G of a graph G is defined as 

 )()()( uudG  , 

where )(ud denotes the degree of vertex u, i. e., the number of its neighbors in G. 
A cactus graph is a connected graph in which no edge lies in more than one cycle. 

Consequently, each block of a cactus graph is either an edge or a cycle. If all blocks of a 
cactus G are cycles of the same size m, the cactus is m-uniform. 

A hexagonal cactus is a 6-uniform cactus, i.e., a cactus in which every block is a 
hexagon. A vertex shared by two or more hexagons is called a cut-vertex. If no hexagon 
of a hexagonal cactus G has more than two cut-vertices, and each cut-vertex is shared by 
exactly two hexagons, we say that G is a chain hexagonal cactus. Hence, in a chain 
hexagonal cactus there are no branching hexagons. The number of hexagons in G is called 
the length of the chain. An example of a chain hexagonal cactus is shown in Fig. 1. 
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Figure 1. A Chain Hexagonal Cactus of Length 8. 

 

Obviously, a chain hexagonal cactus of length n has 5n + 1 vertices and 6n edges. 
Furthermore, any chain hexagonal cactus of length greater than one has exactly two 
terminal hexagons, i.e., two hexagons with only one cut-vertex. Any remaining hexagons, 
if present, are called internal hexagons. We denote the set of all chain hexagonal cacti of 
length n by nCHC)( .It is obvious from the definition that all chain hexagonal cacti are 
planar, and that all their bounded faces are hexagons. A class of graphs with somewhat 
similar properties (planar graphs whose all bounded faces are cycles of length 6) known as 
benzenoid graphs, has been studied for a long time as the mathematical model of a wide 
and important class of chemical compounds called benzenoid hydrocarbons. As a result, 
many terms of chemical origin became well established in the theory of benzenoid graphs. 
We adopt some of those terms and use them as a mean of concise description of three types 
of chain hexagonal cacti. 

Let us consider a hexagon C6. Two vertices u and v of C6 are said to be in ortho-
position if they are neighbors in C6. If the distance between u and v is 2, they are in meta-
position. Finally, if the distance between u and v is 3, we say that they are in para-
position. The ortho-, meta-, and para-position of two vertices in C6 are shown in Fig. 2. 

 

 
 

Figure 2. Ortho-, Meta-, and Para-Position of Two Vertices in C6 
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An internal hexagon in a chain hexagonal cactus is called ortho-hexagon, meta-
hexagon, or para-hexagon if its cut-vertices are in ortho-, meta-, and para-position, 
respectively. If all internal hexagons of a hexagonal chain cactus are of the same type, we 
say that the chain is regular. Obviously, three given types of internal hexagons give rise to 
three classes of regular chain cacti. A chain hexagonal cactus nCHC)(  is an ortho-chain if 
all its internal hexagons are ortho-hexagons. The meta-chain and para-chain are defined 
in a completely analogous manner. The ortho-chain of length n is denoted by nOC)( and the 

meta-chain is denoted by nMC)( . The para-chain of length n will be denoted by nPC)( . 
We conclude this section by noting that the number of chain hexagonal cacti grows 

exponentially with the number of hexagons. 

Theorem 2.1. There are



















 

 2
1

2 33
2
1 n

n different chain hexagonal cacti of length n. 

The result follows by counting words of length n − 2 in a ternary alphabet and 
eliminating palindromes. We refer the reader to [5] for the proof. 
 
3.  ECCENTRIC CONNECTIVITY INDEX OF REGULAR CHAINS 

The unbranched nature of chain cacti allows for a natural ordering of their hexagons. It is 
clear that the eccentricity of vertices of a given hexagon mostly depends on the position of 
the hexagon in the chain and then on the way it is connected to its neighbors. The 
dependence is particularly simple (in fact linear) for regular chains. This fact allows us to 
derive explicit formulas for the eccentric connectivity index of three classes of regular 
chains. Throughout this section we assume n ≥ 2. 

 
3.1. Ortho-chain. 

Theorem 3.1.The eccentric connectivity index of an ortho-chain of length n is given by 

  nOC)(
n
n

nn
nn

|2
|2

3369
369

2

2






 . 

 
Proof. We start by labeling vertices of nOC)(  in the way shown in Fig. 3. The vertices of 
degree 4 are labeled by positive integers from 1 to n − 1, while the vertices of degree 2 are 
labeled by a pair of integers, the first one indicating the hexagon they belong to, and the 
second one denoting their place within that hexagon. There are two cases 
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Figure 3. The Labeling of Vertices of nOC)( . 

 

Case 1: Let n be even, n = 2k. Because of the symmetry, it is enough to calculate the 
eccentricities of vertices of first k hexagons. Their eccentricities are obtained as follows: 

i. For any i,   .2,1 invki i    

ii. For any i, ,2 ki    ,31 invi      invv ii  442  and 

  .53 invi   

iii.     ,21511  nvv      31412  nvv  and   .413  nv  
The total contribution of vertices of degree 2 of the i-th hexagon is now equal to 
 .41642 in  By adding all contributions, doubling the result, and subtracting the 

contribution of the middle vertex that was included twice, we obtain 
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Case 2: Let n be odd, .12  kn The eccentricities of vertices in the first   2/1 nk  
hexagons are given by the same formulas as in the even case. For the middle hexagon we 
have       knvv kk   34111   and       .43121 knvv kk    The total 

contribution of the vertices of degree 2 in the middle hexagon is now given by
   822722  nkn . The other contributions remain the same as in the previous case. 

Therefore 
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□ 
3.2. Meta-Chain 

 
Theorem 3.2. Let nMC)(  be a meta-chain with n hexagons. Then the eccentric 

connectivity index of nMC)(  for n > 3 is given by 
 

  .
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21818
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)( 2

2

n
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MC n 






  

and   .208)( 3 MC  
 
Proof. The vertices of degree 4 and the vertices of degree 2 of first and i-th hexagons of 

nMC are labeled in the way shown in Fig. 4. 

 
 

 
Figure 4. The Labeled Vertices of nMC)( . 

 
Again we consider two cases. 
 
Case1: Let n be even, n = 2k. It is enough to calculate the eccentricities of vertices of 
the first k hexagons. 

 

i. For any i,     ,12,1  invki i  
ii. For any i,           32,22,2 321  invinvvki iii  and 

    .424  invi  
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iii.         12,2 14121511  nvvnvv  and   .2213  nv  
Then the total contribution of vertices of degree 2 of the i-th hexagon is equal to

  .1182  in By the above calculation we have 
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Case 2: Let n be odd, .12  kn The eccentricities of vertices of the first k hexagons 
remain the same, while for the middle hexagon we have     ,211 knv k 

        224121   knvv kk   and      .1231  knv k Therefore 
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□ 

3.3. Para-chain. 

Theorem 3.3. The eccentric connectivity index of a para-chain on n vertices is given by 

 
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Proof. We label the vertices of nPC)(  in the way shown in Figure 5. 
 

 
Figure 5. The Labeled Vertices of nPC)( . 

 

Case 1: Let n be even, n = 2k. It is enough to calculate the eccentricities of vertices of 
the first k hexagons. 
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i. For anyi,    .13,1  nvki i  

ii. For any i,       23,2 41  invvki ii  and       .1332  invv ii   

iii.         13,23 14121511  nvvnvv  and   .313 nv   
By the above calculation we have 
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Case 2: Let n be odd, n = 2k + 1. The contributions of the non-middle hexagons remain the 
same, while for the middle hexagon we have        knvv kk   34111   and 

   21kv      .1331  knv k  
Therefore 
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□ 
As expected, all three formulas give the same value of 108 for n = 2. It is clear from 

the leading coefficients that for long regular chains the para-chain has the largest and the 
ortho-chain the smallest eccentric connectivity index. In the next section we show that 
those chains remain extremal also when we drop the condition of regularity. 
 

4.  EXTREMAL CHAIN HEXAGONAL CACTI 

In what follows, we prove a general theorem for obtaining extremal chain hexagonal cacti 
with respect to the eccentric connectivity index. 
Theorem 4.1. Let H1 and H2 be connected disjoint graphs, such that  1HVu and 

 2HVv .The graphs G1, G2 and G3 are the graphs obtained by identifying the vertices u 
and v with para-, meta- and ortho-position of vertices in C6, respectively (see Fig. 6). Then 

     123 GGG   . 
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Figure 6. Graphs G1, G2 and G3. 

 
Proof. There is nothing to prove if H1 or H2 is trivial, i.e., if   0

1
uH or   .0

2
vH

Hence we may assume that  ud and  vd are at least equal to 3. It is clear that for any 
   21 HVHVw  its degree remains the same in all three cases,      .21 wdwdwd GG   

We start by proving the right inequality. We break the argument into 3 steps. In the first 
step we look at the vertices of    21 HVHV  and compare their contributions to  1G  and 
 2G .In the second step we compare the contributions of vertices u and v. Finally, in the 

third step, we look at the vertices of degree 2 in the hexagon C6 connecting H1 and H2. 
Step 1: For any     ,,, 21 HVwwHVww  we have    wwdwwd GG  ,, 21 . Also, for 

any  1HVw  and  2HVw  , we have 
       
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By the above argument, we conclude that    .
21

ww GG    for any

   21 HVHVw  .In particular, we can say that if the eccentricity of
    21 HVwHVw  in G1 is attained at a vertex of H1 (H2), then    ww GG 21

  . If the 

eccentricity of     21 HVwHVw   in G1 is attained at a vertex of H2 (H1), then
    1

21
 ww GG  . 

Step 2: Let x be a vertex of G1. We denote by 
*x a vertex of G1 such that    *,

1
xxdxG 

.By Step 1 it follows that for every    21 HVHVx  its eccentricity in G2 is attained on 
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the same vertex *x as in G1. Now we look at u and v. We claim that  2
* HVu  or 

 1
* V Hv  .Let us suppose otherwise, i.e.,  1

* HVu   and  2
* HVv  . Without loss of 

generality we can assume that    ** ,,
11

vvduud GG  . Then we have  

         
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This is a contradiction. Hence, by Step1,         1

21
 uuduud GG  or

        1
21

 vvdvvd GG  . Then             .3
211

 vudvvduud GGG  Hence, the total 

contribution of u and v to  1G exceeds their total contribution to  2G . 
Step 3: Let   muH 

1
 and let it be attained at vertex  1* HVu  .Similarly, let   lvH 

2
 and 

it is attained on  2* HVv  .Then   muud H *,
1

and   ., *2
lvvd H   Without loss of 

generality we can assume m≤l. We consider two cases. 
Case 1: m = l. Label the vertices of C6 in G1 and G2 as shown in Fig. 7. Then 

        25421 1111
 luuuu GGGG  and     .363 11

 luu GG   

        1,2,3 5231 2222
 lvlvlvv GGGG  and     .264 11

 lvv GG   

Since the degrees of u and v in G1 and G2 are at least 3, then     6 vdud and by using 
the eccentricity of vertices of C6 in G1 and G2, we have the following inequality: 
 

 
Figure 7. Labeling Vertices of C6 in G1 and G2. 
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           
       

   










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6

1

22

11

22942

33842

i iGiG

i iGiG

vvd

lvdludl

lvdludluud





 

 
Therefore by Step 1, we conclude that    .12 GG    
Case 2: m < l. From Fig. 7 and Step 2 we obtain the following minimum values of 
eccentricity of vertices of degree 2 of C6 in G1 and the maximum values of eccentricity of 
vertices of degree 2 of C6 in G2. 

    251 11
 luu GG  and     ,142 11

 luu GG 

        .1,2,3 5321 1222
 lvvlvlv GGGG  Hence 

             
         
     

   















6

1

6

1

,

742

3642

642

22

2

22

1111

i iGiG

G

GG

i GGiGiG

vv

vvdl

vvduudl

vvduudluud









 

and by Step 1, we conclude that    .12 GG    
 

By similar reasoning we can prove that    .
23 GG   .We omit the details. Since the 

inequalities in Step 3 are strict, we have the following result. 
 

Corollary 4.2. Let nCHC)(  be a chain hexagonal cactus of length n. Then

     ,)()()( nnn PCCHCOC   with the right (left) equality if and only if 

 .)()()()( nnnn OCCHCPCCHC   
 

    5. CONCLUDING REMARKS 

In this section we present some results concerning the eccentric connectivity index of a 
family of hexagonal cacti considered in [8] and [5]. Then we show that such graphs can be 
also viewed as a special case of chains. That observation points toward a more general 
setting that encompasses in a natural way both the graphs considered here and in a series of 
works by Farrell [9, 10, 11]. 

A star hexagonal cactus (SHC)n is obtained by taking n copies of C6and splicing them 
all together in a single vertex u in a way shown in Fig. 8. 
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Figure 8. A Star Hexagonal Cactus. 

Theorem 5.1. 
  nSHC n 54)(   

 
The star hexagonal cacti were treated separately here since the results follow by a 

direct computation, much easier than for the chain cacti of the previous two sections. 
However, star hexagonal cacti fit neatly into the class of chains by allowing the two cut 
vertices of all internal hexagons to coincide. Hence, a star hexagonal cactus is a “chain” 
hexagonal cactus whose cut-vertices are separated by a path of length 0. Now we can 
abandon our chemical nomenclature and index the chains by an integer parameter equal to 
the distance between the cut-vertices. By doing so, we obtain a uniform notation for all 
hexagonal cacti considered here:       ,)(2,6,)(1,6,)(0,6 nnnnnn MCCOCCSHCC   and

  .)(3,6 nn PCC   
By using the above notation we can present our results by a single formula. 

 
Theorem 5.2. 

         .14
2

113189,6 ,
2

ko

n

n dknkknkC 


  

Here 1, kod if k=0and 0 otherwise. 

The general setting referred to at the beginning of this section now consists of 
considering the chain cacti Cn(m, k) made of n copies of m-gons whose cut-vertices are at 

the distance k. Here we assume that .
2 




mk  It would be interesting to derive results for 

general (m, k)-chains analogous to the ones presented here. Also, it would be interesting to 
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find explicit formulas and extremal values and graphs for several generalizations of the 
eccentric connectivity index, such as, e.g., the augmented eccentric connectivity index. 
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