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ABSTRACT 

A spanning tree of graph G is a spanning subgraph of G that is a tree. In this paper, we focus 

our attention on (n,m) graphs, where m = n, n + 1, n + 2, n + 3 and n + 4. We also determine 

some coefficients of the Laplacian characteristic polynomial of fullerene graphs. 
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1. INTRODUCTION  

Throughout this paper all graphs are simple. A (n,m) graph is a graph with n vertices and m 

edges. A spanning tree in a graph G is a tree that has the same vertex set as G. The study of 

the number of spanning trees τ(G) in a graph has an old history and has been very active 

since, counting the number is interesting, and it has different practical applications in 

different fields. For example, this number can be characterized the reliability of a network 

in physics, see [2, 47] for more details. 

A famous theoretical result on finding the number is the matrix tree theorem [9] 

which expresses the number of spanning trees in terms of the determinant of Laplacian 

matrix of the graph. But, counting the number of spanning trees by this method is difficult 

for large graphs [1, 7, 12]. Due to this reason, there have paid much attention to deriving 

explicit and possibly simple formulas for certain special classes of graphs. For example, for 

the complete graph Kn, Cayley's tree formula [8] states that τ(Kn) = n
n-2

. 

In the next section we compute the number of spanning trees of (n, n + i) graphs, 

where i=0, 1, 2, 3, 4. Finally in section 3, we determine the Laplacian coefficients of 

fullerene graphs. Throughout this paper, our notation is standard and mainly taken from [3, 

11]. 
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2. RESULTS AND DISCUSSION 

The aim of this section is enumerating of spanning trees for (n, n + i) graphs, where i = 0 

…, 4. For example, consider the graphs G, H depicted in Figure 1. It is easy to see that (G) 

= 97 and (H) = 183. At the first step, let G be a unicycle graph. One can see that by 

removing any edge of the cycle, the resulted graph is a spanning tree and so we conclude 

that:  

 
 

G H 
 

Figure 1. The Graph G and H. 

 

Theorem 1. If G be a (n, n) graph, then τ(G)=n. 

 

Now, consider a (n, n+1) graph as depicted in Figure 2. In this case we have two 

classes of graphs. One of them can obtained by joining two cycles by a path on k+ 1 

vertices, Figure 2(1) and the second is a Ө – graph, see Figure 2(2). In both cases we have: 
 

Theorem 2. If G be a (n, n+1) graph, then τ(G) = m1m2  k
2
. 

 

Proof. Let G be isomorphic with a bicycle graph as depicted in Figure 2(1), where two 

cycles are connected by a path with k + 1 vertices. In this case, G has exactly two cycles 

such as C1 and C2 and by removing two edges (one edge from C1 and another from C2) we 

can construct a spanning tree. Let m1 and m2 are the number of edges of mentioned cycles, 

respectively. Then τ(G) = m1  k(m2  k) + k(m1+m2  2k) = m1m2  k
2
. By this method for 

the second class of (n, n+1) graphs, we get again the above formula. 
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Figure 2. All Bicyclic Graphs. 

 

Here, we consider a (n, n + 2) graph. There are six classes of graphs in this case, see Figure 

3. In this case the graph G is a tricycle graph or a Ө – graph and it has three cycles such as 

C1, C2 and C3. By removing exactly three edges from G, a spanning tree can be resulted. To 

explain our method, let m1, m2 and m3 be the number of edges of the cycles of G, 

respectively. The following conditions hold:  
 

1. The graph G is composed of three cycles separated by two paths as depicted in 

Figure 3(1). 

2. The graph G is composed of three cycles separated by three paths, see Figure 3(2). 

3,4. The graph G is composed of two subgraphs H, K connected by a path of length k 

and H is isomorphic with graph of Figure 2(2). 

5. A graph isomorphic with Figure 3(5). 

6. A graph isomorphic with Figure 3(6). 
 

By using the notations of Theorem 2, we have: 
 

Theorem 3. If G be a (n, n+2) graph, then one of the following holds: 


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Proof. The proof of the first claim is clear. For the third and fourth claims note that a 

spanning tree can be constructed by removing an edge from the cycle and two edges from 

theta –subgraph by this condition that the resulted graph always be connected. So, one can 

see that in these cases  

.)()( 3
2

21 mkmmG   

For the fifth case we have: 
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(G) = (m1‎  ‎k1)‎(m2 – k1  k2)(m3‎  ‎k2) + k1(m1‎  ‎k1)(m3  ‎k2) + k2(m1‎  ‎k1)(m3‎  ‎k2) + 

k2(m1‎  k1)(m2‎  ‎k1  k2) + k1(m3‎  ‎k2)(m2‎  ‎k1  k2) + k1k2[(m1‎  ‎k1) + (m2‎  ‎k1  k2) + 

(m3‎  ‎k2)]  = m1m2m3 – m1
2
2k  - m3

2
1k . 

Finally, for the sixth case by using the last conditions we have: 

(G) = (m1‎  ‎k1  k2) (m2‎ ‎ k2  k3) (m3‎  ‎k1  k3) + k1k2(m2 + m3 – k1 – k2 –2k3) 

+ k1k3(m1 + m2 – k1 – 2k2 – k3) + k2k3(m1 + m3 – 2k1 – k2 – k3) + k1(m2‎ ‎k2  k3) 

× (m1 + m3 – 2k1 – k2 – k3)  +  k2 (m3‎  ‎k1   k3) (m1 + m2 – k1 – 2k2  –  k3) + 

k3(m1‎  ‎k1  k2) (m2 + m3 – k1 – k2 –2k3) + k1k2(m1 – k1 – k2) + k1k3(m3 – k1 – k3) 

+ k2k3(m2 – k2 – k3) = m1m2m3  2k1k2k3 – m1  – m2   m3 . 

 

 

Figure 3. All Tricycle Graphs. 

 

We continue our method for (n, n + 3) graphs to compute the number of spanning 

trees. It is a longsome work to see that in this case, there are 22 classes of graphs. We 

enumerate these classes by numbers 1, …, 24, see Figure 4. However, similar to the last 

theorems we can compute the number of spanning trees. Hence, we have the following 

theorem without proof: 
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Theorem 4. If G be a (n, n+3) graph, then one of the following cases hold: 

 for graph 4(1): (G) = m1m2m3m4 

 for graph 4 (2):(G) = m1m2m3m4 

 for graph 4 (3):(G) = m1m4(m2m3    k2) 

 for graph 4 (4):(G) = m1m4(m2m3   k2) 

 for graph 4 (5): (G) = m1m4(m2m3    k2) 

 for graph 4 (6):(G) = m1m2(m3m4    k2) 

 for graph 4 (7): (G) = m1m2(m3m4   k2) 

 for graph 4 (8): (G) = m3m4(m1m2    k2) 

 for graph 4 (9): (G) = m3m4(m1m2   k2) 

 for graph 4 (10): (G) = (m1m2  
2
1k  ) (m3m4   

2
2k  ) 

 for graph 4 (11): (G) = (m1m2   
2
1k  ) (m3m4   

2
2k  ) 

 for graph 4 (12): (G) = (m1m2   
2
1k ) (m3m4   

2
2k ) 

 for graph 4 (13): (G) = (m1m2 m3  m1
2
2k   m3

2
1k )m4 

 for graph 4 (14):(G) = (m1m2 m3  m1
2
2k   m3

2
1k )m4 

 for graph 4 (15): (G) = (m1m2 m3  m1
2
2k   m3

2
1k )m4 

 for graph 4 (16): (G) = (m1m2m3  2k1k2k3 – m1
2
3k  – m2

2
1k   m3

2
2k  ) m4 

 for graph 4 (17): (G) = (m1m2m3  2k1k2k3 – m1
2
3k  – m2

2
1k   m3

2
2k ) m4 

 for graph 4 (18): (G) = (m1m2m3  2k1k2k3 – m1
2
3k  – m2

2
1k   m3

2
2k ) m4 

 for graph 4 (19): (G) = (m1m2m3  2k1k2k3 – m1
2
3k  – m2

2
1k  m3

2
2k ) m4 

 for graph 4 (20): (G) = (m1‎  ‎k1)(m2 –k1  k2)(m3 – k2  k3)(m4‎  ‎k3) + 

k1(m3 –k2  k3) (m4‎  ‎k3) [(m1‎  ‎k1) + (m2 –k1  k2)] + k2(m1‎  ‎k1) (m4‎  ‎k3) × 

[(m2 –k1  k2) + (m3 – k2  k3)] + k3(m2 – k1  k2) (m1‎  ‎k1) [(m3 – k2  k3) + 

(m4‎  ‎k3)] + k1k3[(m1‎  ‎k1) (m4‎  ‎k3) + (m1‎  ‎k1) (m3 – k2  k3) + (m2 –k1  k2) 

(m4‎  ‎k3)  +  (m2 – k1  k2) (m3 –  k2   k3)]  +  k1k2 (m4‎    ‎k3) [(m1‎    ‎k1)  +  

(m2  – k1 k2) + (m3 – k2  k3)] + k2k3(m1‎  ‎k1)[(m2 –k1  k2) + (m3 – k2  k3) 

+(m4‎  ‎k3)] + k1k2k3[(m1‎  ‎k1) + (m2 – k1  k2) + (m3 – k2  k3) + (m4‎  ‎k3)] = 

m1m2m3m4 +
2
3

2
1 kk   2

1k m3m4 
2
2k m1m4  2

3k m1m2. 

 

 for graph 4 (21): (G) = (m1‎  ‎k1  k2)(m2 – k2  k3)(m3   k3  k4)(m4‎  k1  ‎k4) + 

k1(m2 –k2  k3) (m3   k3  k4) [ (m1‎  ‎k1  k2)  + (m4‎  k1  ‎k4)] + k2(m3   k3  k4) 
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(m4‎  k1  ‎k4) [(m1‎  ‎k1  k2) + (m2   –  k2   k3)]  +  k3(m1   k1 – k2) (m4‎  k1  ‎k4) 

[(m2 – k2  k3)  +  (m3   k3 k4)]  +  k4(m1   k1 – k2) (m2‎  k2  ‎k3) [(m3‎  ‎k3  k4) 

+(m4 – k1  k4)] + k1k2(m3k3  k4)[(m1‎  ‎k1  k2)+(m2 – k2  k3) + (m4  – k1  k4)] 

+ k1k3[(m1‎  ‎k1  k2)(m2 – k2 k3) + (m1 – k1  k2) (m3   k3  k4) + (m2 – k2  k3) 

(m4  – k1  k4) + (m3  k3  k4)(m4– k1    k4)]  +  k1k4(m2   k2 – k3) [(m1‎  ‎k1  k2) 

+ (m3  k3  k4) + (m4 –k1  k4)] + k2k3(m4  k1 – k4)[(m1‎  ‎k1 k2) + (m2– k2  k3) 

+ (m3  k3  k4)] + k2k4[(m1‎  ‎k1 k2) (m3  k3  k4) + (m1‎  ‎k1  k2) (m4 – k1  k4)  

+ (m2  – k2  k3)(m3   k3  k4) + (m2 – k2  k3) (m4 – k1  k4)] + k3k4(m1  k1 – k2) 

[(m2‎  ‎k2k3) + (m3  k3  k4) + (m4–k1k4)]+(k1k2k3+k1k3k4+k1k2k4)(m1‎  ‎k1  k2) 

+ (m2 –k2  k3) + (m3   k3  k4) + (m4‎  k1  ‎k4)  = m1m2m3m4  2k1k2k3k4+
2
3

2
1 kk  

 ‎k1
2
3k  + 2

4
2
2 kk  + k1

2
3k (m2 + m3)  k1

2
4k m2  2

1k m2m3  2
4k m1m2  2

3k m1m4  

2
2k m3m4    k1k2

2
3k   +  k1k2

2
4k     +   k1k3

2
4k   +  (k1k2k3    k1k2k4    k1k3k4)m3  +  

(k1k4  k1k3)m2m3. 
 

 for graph 4 (22): k2 +k4+k6 = m4 and so 

(G) = (m1‎  ‎k1  k2  k3) (m2‎  ‎k3  k4  k5) (m3‎  ‎k1  k5  k6)(k2  + k4 + k6) + 

(m1‎  ‎k1    k2  k3) (m2 ‎   ‎k3  k4  k5) [(k2  +  k4) (k1  + k5 + k6) + k6(k1 + k5)] + 

(m1‎  ‎k1  k2  k3) (m3‎  ‎k1  k5  k6)[(k2  +  k6) (k3  + k4  +  k5) + k4(k3  +  k5)] + 

(m2‎  ‎k3  k4  k5) (m3‎  ‎k1    k5    k6)[(k4  + k6)(k1 + k2 + k3) + k2(k1 + k3)]  +  

[(m1‎   ‎ k1    k2    k3)  +  (m2‎    ‎k3    k4    k5)  +  (m3‎    ‎k1     k5    k6)] k2 kk6 

+ [(m1‎  ‎k1  k2  k3) + (m2‎  ‎k3  k4   k5) +(m3‎  ‎k1  k5  k6)] (k2 + k4 + k6) × 

(k1k3+ k3k5 + k1k5) + [(m1‎  ‎k1  k2  k3) + (m2‎  ‎k3  k4  k5) + (m3‎  ‎k1  k5  k6)] 

[k2k6(k3 + k5) + k4k6(k1 + k3) + k2k4(k1 + k5)] = m1m2m3m4  m2m4
2
1k  m2m3

2
2k  – 

m3m4
2
3k  – m1m3

2
4k   m1m4

2
5k   m1m2

2
6k   2m1k4k5k6  2m2k1k2k6  2m3k2k3k4 

2m4k1k3k5  2k1k2k4k5  2k2k3k5k6  k1k3k4k6 +
2
4

2
1 kk  + 2

5
2
2 kk + 2

6
2
3 kk . 
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Figure 4. All Four Cycle Graphs. 
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3. LAPLACIAN COEFFICIENTS OF FULLERENES 

By the discovery of the first fullerene molecule, i.eC60 by Kroto and his co-authors [10] in 

1985, fullerene graphs are considered by many mathematicians in all over the word. The 

name fullerene was given to cubic carbon molecules in which the atoms are arranged on a 

sphere in pentagons and hexagons. At first fullerene graphs were defined as 3regular 

planar 3connected graphs whose faces are pentagons and hexagons. We denote a fullerene 

with n vertices by Fn. 

The adjacency matrix A(G) of graph G with vertex set V(G) ={v1,v2, …,vn}  is the  

nn symmetric matrix [aij], such that aij = 1 if vi and vj are adjacent and 0, otherwise. The 

characteristic polynomial  φ(G,x) of graph G is defined as 

φ(G,x) = det(x I – A). 

The roots of the characteristic polynomial are the eigenvalues of graph G and form the 

spectrum of this graph. The Laplacian matrix of G is the mark L(G) = [lij] indexed by the 

vertex set of ,with zero row sums, where Lij=  aij for i ≠ j. If D(G) = [dij] is the diagonal 

matrix, indexed by the vertex set of G such that dii is the degree of i, then L = D – A. The 

roots of Laplacian characteristic polynomial 

ψ(G,x) = det(x I – L). 

are the Laplacian eigenvalues of graph G. Let the Laplacian characteristic polynomial of 

fullerene graph F be 







 

1

0

1
1

0 .)1()1()1(),(
n

k

n
n

n
nnkn

k
k cxcxcxcxF   

The aim of this section is to determine c0, c1, …, c7, cn1, cn. The Laplacian matrix L(G) has 

nonnegative eigenvalues μ1 μ2 … μn = 0 [11]. By Viettes formula, ck = k (μ1, μ2, …, 

μn1) is a symmetric polynomial of order n – 1. In particular, c0 = 1, c1 = 2m, cn = 0 and cn-1 

= n(G), where m and (G) denote the number of edges and the number of spanning trees of 

G, respectively. According to the Temperley's Theorem [3], one can also see that 

n
G n 121)( 





. 



Counting the number of spanning trees of graphs                                                                 119 

 

If G is a tree, coefficient cn-2 is equal to its Wiener number, which is defined as the sum of 

distances between all pairs of vertices. 

 

Lemma 5 [3]. The coefficients of the characteristic polynomial of a graph G satisfy: 

 a1 = 0, 

 a2 is the number of edges of G, 

 a3  is twice the number of triangles in G, 

 a4 = na – 2nb, where na is the number of pairs of disjoint edges in G, and nb is the 

number of 4-cycles in G. 

Let G be a graph. A subgraph of G whose components are circuits or a complete graph 

with two vertices is called an elementary subgraph of G. 
 

Lemma 6 [3]. The coefficients of the characteristic polynomial are given by 

  )()( 2)1()1( sr
i

i a , 

where the summation goes on the elementary subgraphs  of G with i vertices. 
 

Theorem 7 The coefficients of the Laplacian characteristic polynomial of a fullerene graph 

F satisfy: 

 c1 = 3n, 

 c2 = 3/2n(3n  4), 

 c3 =  9/2n
3
+ 18n

2
  18n, 

 c4 = 27/8n
4
  27n

3
 + 72n

2
 – 129/2n, 

 c5 =  81/40n
5 

+ 27n
4
  135n

3
 + 603/2n

2
  1278/5n + 24, 

 c6 =81/80 n
6
 – 81/4n

5
 + 162n

4
 – 2601/4n

3
 + 6579/5n

2
 - 1154n + 380, 

 c7 =  243/560 n
7
 + 243/20 n

6
  567/4 n

5
 + 3537/4n

4
 – 15606/5n

3
+ 30243/5n

2 
 

42612/7n + 3840. 

Proof. Let F be a fullerene graph on n vertices and eigenvalues 1, …, n. Since a fullerene 

graph is a 3-regular, then the Laplacian eigenvalues are μi = 3 – i. This completes the first 

assertion. For the second part, notice that  


ji

jic
,

2  . 

But from the first part  i i = 3n. This implies that (i i )
2
 = 9n

2
. On the other hand, it 

is well known fact that  

 
i

i

i

i dm 22 2 . 
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This completes the second claim. The coefficient c3 can be given by 
 

  
kji kji

kjikjic
,, ,,

3 )3()3()3(  . 

But 
i i 0 and this completes the proof of part 3. 

From Lemma 5(iv), a4= na – 2 nb. Since fullerenes haven't 4-cycles, so we should to 

enumerate all elementary subgraphs with 4 vertices that are pairs of disjoint edges and this 

value is m(m - 5)/2. This means that a4=3n(3n  10)/8 and c4 can be obtained as follows: 

.])(3)(3)()(9

99)(27)(2781[
,,,

,,,

4

skjijisrsrjisrji

skji

srjisrji

skji

skjic

















 

Finally, since every fullerene graph has only 12 pentagonal faces, according to 

Lemma 6, a5 = 24. By using a similar method with the last parts, the fifth Laplacian 

coefficient can be obtained. 
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