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ABSTRACT 

Let G be a graph. The first Zagreb M1(G) of graph G is defined as: M1(G) = uV(G) deg(u)
2
. In 

this paper, we prove that each even number except 4 and 8 is a first Zagreb index of a 

caterpillar. Also, we show that the fist Zagreb index cannot be an odd number. Moreover, we 

obtain the fist Zagreb index of some graph operations. 
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1. INTRODUCTION 

Throughout this paper graph means simple connected graphs. Let G be a connected graph 

with vertex and edge sets V(G) and E(G), respectively. As usual, the degree of a vertex u of 

G is denoted by deg(u) and it is defined as the number of edges incident with u. A 

topological index is a real number related to a graph. It must be a structural invariant, i.e., it 

preserves by every graph automorphisms. There are several topological indices have been 

defined and many of them have found applications as means to model chemical, 

pharmaceutical and other properties of molecules. 

The Zagreb indices have been introduced more than thirty years ago by Gutman and 

Trinajestić [3]. The first Zagreb M1(G) of graph G is defined as: M1(G) = uV(G) deg(u)
2
, 

see [1,4,6]. A tree is an undirected graph in which any two vertices are connected by 

exactly one simple path. In other words, any connected graph without cycles is a tree. A 

caterpillar or caterpillar tree is a tree in which all the vertices of the caterpillar are within 

distance 1 of a central path. We denote the path graph and the cycle of order n by Pn and 

Cn, respectively. 

                                                 

 Corresponding author (Email: Mostafa.tavakoli@stu-mail.um.ac.ir). 

http://en.wikipedia.org/wiki/Undirected_graph
http://en.wikipedia.org/wiki/Vertex_(graph_theory)
http://en.wikipedia.org/wiki/Path_(graph_theory)
http://en.wikipedia.org/wiki/Connectedness
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In what follows, four types of graphs resulting from edge subdivision will be 

introduced. Two of them, the subdivision graph and the total graph, belong to the folklore, 

while the other two were introduced in [1] and further investigated in [8]. For a connected 

graph G, define four related graphs as follows: 

I. S(G) is the graph obtained by inserting an additional vertex in each edge of 

G. Equivalently, each edge of G is replaced by a path of length 2. 

II. R(G) is obtained from G by adding a new vertex corresponding to each edge 

of G, then joining each new vertex to the end vertices of the corresponding 

edge. Another way to describe R(G) is to replace each edge of G by a 

triangle. 

III. Q(G) is obtained from G by inserting a new vertex into each edge of G, then 

joining with edges those pairs of new vertices on adjacent edges of G. 

IV. T(G) has as its vertices, the edges and vertices of G. Adjacency in T(G) is 

defined as adjacency or incidence for the corresponding elements of G. 

 

2. MAIN RESULTS 

A regular graph is a graph where each vertex has the same number of neighbors. A regular 

graph with vertices of degree k is called a kregular graph or regular graph of degree k. If G 

has vertices v1, v2,…,vn, the sequence (deg(v1), deg(v2),…, deg(vn)) is called a degree 

sequence of G. We begin by the following simple proposition: 

 
 

Proposition 1. If G is a graph, then M1(G) is not equal to 4 or 8. 
 

Proof. If M1(G) is equal to 4, then G has degree sequence as (1,1,1,1) or (2) that is 

impossible and if M1(G) is equal to 8, then G has degree sequence as  


8

11 ,,  or ( 

4

11 ,, ,2) 

or (2,2) that is a contradiction. So, M1(G) is not equal to 4 or 8.                                            

 

Proposition 2. Let G is a graph. Then M1(G) is an even number. 

 

Proof. Let G is a graph and v1, v2, ..,vk are vertices of odd degree in it. It is a well-known 

fact that the number of vertices of odd degree in a graph is even. Thus k is an even number 

and so deg
2
(v1) + deg

2
(v2) + …+ deg

2
(vk) is an even number, which completes the 

argument.                                                                                                                                 

 

By definition of first Zagreb index, it is not difficult to see that: 
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Lemma 3.Let T is a tree with more than 1 vertices and T′ is obtained from T by adding a 

new vertex u and joining it to a pendent of T. Then M1(T′)=M1(T)+4.                                  

 

 

 
 

 

Figure 1. Some Tree Graphs with Their First Zagreb Indices. 

 

 

Theorem 4. Each even number except 4 and 8 is a first Zagreb index of a caterpillar.  

 

Proof. Use induction on n. By Figure 1, the result is valid for n = 2, 6, 10 or 12. Let n >12 

and assume the theorem holds for n. Consider the number m = n + 2. Then by our 

assumption, there is a caterpillar T such that M1(T) = m  – 4. On the other hand, by lemma 3 

there is a caterpillar T′ that M1(T′) = M1(T) + 4 and this completes the proof.                       

 

The line graph L(G) of a graph G is defined as follows: each vertex of L(G) 

represents an edge of G, and any two vertices of L(G) are adjacent if and only if their 

corresponding edges share a common endpoint in G, see [7]. 

 

Theorem 5. Let G is a connected graph. Then 
 

1. M1(S(G))=M1(G)+4|E(G)|, 

2. M1(R(G))=4M1(G)+4|E(G)|, 

3. M1(T(G))=4M1(G)+M1(L(G))+8|E(L(G))|+4|E(G)|, 

4. M1(Q(G))=M1(G)+ M1(L(G))+8|E(L(G))|+4|E(G)|. 
 

Proof. The parts 1 and 2 is easy by definitions of S(G) and R(G), respectively. Now, we 

prove the part 3, to do this, suppose V1 is the set of new vertices of T(G) corresponding to 

edges of G. If x is a vertex of V1 corresponding to edge uv of G, then 

degT(G)(x)=degG(u)+degG(v). Thus, the sum of deg
2

T(G)(x) over all vertices of V1, is qual to: 

 

M1(L(G))+8|E(L(G))|+ 4|E(G)|. 
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On the other hand, if x is a vertex of V(T(G))V1, then degT(G)(x)=2degG(x), which 

completes the proof of the part 3 and using similar arguments, we can prove the last 

section.                                                                                                                                    

 

The tensor product GH of graphs G and H is a graph such that: 

 The vertex set of GH is the Cartesian product V(G) × V(H); and 

 Vertices (u,u') and (v,v') are adjacent in GH if and only if u' is adjacent 

with v' and u is adjacent with v [5]. 

 

Proposition 6. Let G and H be two graphs. Then M1(GH)=M1(G)M1(H). 

 

Proof. It is clear that for each (u,x) V(GH), degGH((u,x))=degG(u)degH(x) and so the 

sum of deg
2

GH(x) over all vertices of V(GH), is qual to: M1(G)M1(H).                             

 

Suppose G1, …,Gn are connected rooted graphs with root vertices r1,…, rn, 

respectively. The generalized link   
 n1

n1

k,,k
r,,rn1 G,,G




  is obtained by adding a new vertex 

x, then joining x to ri  by a path of length ki, i = 1,2, …, n. Thus, we can write: 

 

Proposition 7. Let G1,…,Gn are connected rooted graphs with root vertices r1,…,rn, 

respectively. Then M1(   
 n1

n1

k,,k
r,,rn1 G,,G




 ) =   

n

1i i1 GM  + 2   

n

1i iG rdeg
i

  

+4 

n

1i ik + n(n–3), where ki>0, i=1,…, n. 

 

The second Zagreb M2(G) of graph G is defined as: M2(G) = uvE(G)deg(u)deg(v). 

So, it is clear that for some graphs, M1 is larger than M2 and for some graphs, M2 is larger 

than M1. But, we can say: 

 

Proposition 8. Let G is a regular graph with n>2 vertices. Then M1(G)≤ M2(G), with 

equality if and only if G  Cn. 

 

Proof. Let G is a kregular graph. Then for each uv of E(G), we have deg(u)deg(v)=r
2
 and 

so M2(G) = |E(G)|r
2
. Also, we obtain M1(G) = |V(G)|r

2
. On the other hand, since G is 

kregular and |V(G)| > 2, so |E(G)| ≥ |V(G)|, with equality if and only if GCn, which 

completes the proof.                                                                                                                

 

The graph X is said to be strongly distancebalanced if for any edge uv of X and any 

integer k, the number of vertices at distance k from u and at distance k+1 from v is equal to 

http://en.wikipedia.org/wiki/If_and_only_if
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the number of vertices at distance k+1 from u and at distance k from v [9]. The following 

proposition is directly obtained by definition of strongly distancebalanced graphs and 

Proposition 8: 

 

Proposition 9. Let G is a strongly distance‒balanced with n>2 vertices. Then M1(G)≤ 

M2(G), with equality if and only if GCn.                                                                                
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