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ABSTRACT 

A lot of research and various techniques have been devoted for finding the topological 

descriptor Wiener index, but most of them deal with only particular cases. There exist three 

regular plane tessellations, composed of the same kind of regular polygons namely triangular, 

square, and hexagonal. Using edge congestion-sum problem, we devise a method to compute 

the Wiener index and demonstrate this method to all classes of regular tessellations. In 

addition, we obtain the vertex Szeged and vertex PI indices of regular tessellations. 

 

Keywords: Wiener index; Szeged index; PI index; embedding; congestion; regular plane 

tessellations. 

 
1. INTRODUCTION 

A graph G  consists of a set of vertices ( )V G  and a set of edges ( )E G . A graph G  is 

connected if any two vertices are joined by a path. A maximal connected subgraph of G  is 

called a component of G . A molecular graph is a collection of vertices representing the 

atoms in the molecule and a set of edges representing the covalent bonds. Graph 

representation of molecular structures is widely used in computational chemistry. Trinajstić 

noted that the roots of chemical graph theory may be found in the works by chemists of 18-

19th centuries such as Higgins, Kopp and Crum Brown [34]. 

Quantitative structure-activity relationships (QSAR) and quantitative structure-

property relationships (QSPR) represent attempts to correlate activities or properties with 

structural descriptors of compounds. To correlate and predict physical, chemical and 

biological activity/property from molecular structure is a very important and an unsolved 
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problem in theoretical and computational chemistry [33]. The most important step in 

QSAR/QSPR is to numerically code the chemical structures of various molecules so as to 

build a correlation model between the chemical structures of various chemical compounds 

and the corresponding chemical and biological activities/properties. Thus, how to exactly 

transfer the chemical formula (or molecular graph) into numerical format has been a major 

task in QSAR/QSPR researches. There are many methods to quantify the molecular 

structures, of which the topological index is the most popular since it can be obtained 

directly from molecular structures and rapidly computed for large number of molecules [1, 

4, 27, 40]. 

Topological indices are designed basically by transforming a molecular graph into a 

number. The first use of a topological index was made in 1947 by the chemist Harold 

Wiener [36]. The Wiener index is used to study the relation between molecular structure 

and physical and chemical properties of certain hydrocarbon compounds. It is defined as 

the sum of the distances between every pair of vertices of G . In the initial applications, the 

Wiener index is employed to predict physical parameters such as boiling points, heats of 

vaporization, molar volumes and molar refractions of alkanes [5, 8]. The study of Wiener 

index is one of the current areas of research in mathematical chemistry [3]. Researchers 

made some attempts to devise techniques for finding the Wiener index of chemical 

compounds [3, 5, 8, 12, 13, 16, 19, 31, 32] and also used brute force method based on 

distance matrix to compute the same [28]. In theoretical computer science, Wiener index is 

considered as one of the basic descriptors of fixed interconnection networks because it 

provides the average distance between any two nodes of the network [9, 37]. 

The rest of the paper is organized as follows: In Section 2, we survey the techniques 

for computing the Wiener index. In Section 3 we develop a method to find the Wiener 

index using edge congestion-sum problem. The Wiener indexes of all classes of regular 

tessellations are given in Section 4. In Sections 5 and 6 respectively, we give the vertex 

Szeged index and the vertex PI index of regular tessellations. Finally, in Section 7, we 

conclude the paper with a remark. 

 
2. THE EXISTING TECHNIQUES FOR WIENER INDEX 

For a graph G , let ( , )Gd u v  be the number of edges on any shortest path joining vertex u  

to vertex v . The Wiener index is defined as 
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where the sum runs over all ordered pairs of vertices. The factor (1/ 2)  is needed in order to 

count each pair exactly once. If the vertex set is linearly ordered, we can write 
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In this section we present the methods that are available in the literature [25] to find the 

Wiener index. 

 

The Cut Method: Given two connected graphs H  and G , we say that H  admits an 

isometric embedding into G  if there exists a mapping : ( ) ( )V H V G   such that for all 

vertices , ( )u v V H  we have ( ( ), ( )) ( , )G Hd u v d u v   . Clearly,   is injective and maps 

edges to edges, thus H  can be considered as an induced subgraph of G . We can also say 

that H  is an isometric subgraph of G  [24]. 

The n -dimensional hypercube nQ  is the Cartesian product of n  copies of the 

complete graph 2K  on two vertices. In other words, if we set 2( ) {0,1}V K  , then the vertex 

set of nQ  consists of all strings of length n  over {0,1} and two such strings are adjacent if 

and only if they differ in exactly one position. 

Graphs that can be isometrically embedded into a hypercube are called partial 

cubes. In other words, a graph G  is a partial cube, if there is an isometric embedding 

: ( ) ( )nV G V Q   for some n . The class of graphs that consists of all isometric subgraphs 

of hypercubes turns out to be very important in the field of chemical graph theory. It was 

observed that hypercubes, even cycles, trees, median graphs (in particular acyclic cubical 

complexes), benzenoid graphs, phenylenes, and Cartesian products of partial cubes are 

partial cubes [25]. 

Let G  be a connected graph. Then the edges ( , )e x y  and ( , )f u v  are in the 

Djokovic-Winkler [11, 38] relation   if ( , ) ( , ) ( , ) ( , )G G G Gd x u d y v d x v d y u   . The 

relation is always reflexive and symmetric, and is transitive on partial cubes. Therefore,   

partitions the edge set of a partial cube G  into equivalence classes, called  -classes. 

 

Theorem 1. [22] Let G  be a partial cube and let 1 2, ,..., kF F F be its  -classes. Let 1( )in F  

and 2 ( )in F  be the number of vertices in the two connected components of iG F . Then 

1 2
1

( ) ( ) ( )
k

i i
i

W G n F n F


   . 

 

Elementary Cut Method: The elementary cut method is based on the result of Theorem 1 

and was first introduced for calculation of the Wiener index of benzenoid graphs [18]. Let 

B  be a benzenoid graph. A straight line segment C  in the plane with end points 1P  and 2P  

is called a cut segment if C  is orthogonal to one of the three edge directions, each 1P  and 

2P   is the centre of an edge and the graph obtained from B  by deleting all edges intersected 
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by C  has exactly two connected components. An elementary cut is the set of all edges 

intersected by a cut segment. Let ( )BC  be the set of all elementary cuts of B . In benzenoid 

graphs the  -classes are precisely their elementary (orthogonal) cuts. For ( )C BC , let 

1( )n C  and 2 ( )n C  be the number of vertices in the connected components of B C . 

  

Lemma 1. [18] For a benzenoid graph B , we have 1 2
( )

( ) ( ) ( )
C B

W B n C n C


  
C

. 

L1–Graphs: In 1997, Chepoi et al. [7] extended Theorem 1 from partial cubes to the class 

of all 1L -graphs that contains also many (chemical) non-bipartite graphs. A graph G  is an 

1L -graph if it admits a scale   embeddable into a hypercube, where a scale   embeddable 

of H  into G  is a mapping : ( ) ( )V H V G   such that ( ( ), ( )) ( , )G Hd u v d u v    holds for 

some fixed integer   and all vertices , ( )u v V H . Hence a scale   embeddable with 1   

is an isometric embedding. 

A subset S  of vertices of graph G  is convex if for any vertices ,u v S  all vertices 

on shortest ( , )u v -paths belong to S . If G  is an 1L -graph then for every cut { , }A B  

occurring in the 1L -decomposition of Gd  both sets A  and B  are convex (we call such cuts 

convex). As was established in [10] a graph G  is scale   embeddable into a hypercube if 

and only if there exists a collection ( )GC  of (not necessarily distinct) of convex cuts of G , 

such that every edge of G  is cut by exactly   cuts from ( )GC . 

 

Theorem 2. [7] Let G  be a scale   embeddable into a hypercube and let ( )GC  be the 

family of convex cuts defining this embedding. Then ..
1

)(
)(},{





GCBA
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

 

 

Generalized Elementary Cut Method: In 2002, Shiu et al. [32] introduced the generalized 

elementary cut method for computing the Wiener index of irregular convex triangular 

hexagons. Let G  be an n -net and / 2s n    . Let e  be an edge in a cell of G . The s -

edge of e  is the ths  edge e


 in the same cell counting in anti-clockwise direction from e , 

whereas the s -edge of e  is the ths  edge e


 in the same cell counting in clockwise 

direction from e . Let G  denote the boundary of G . For any e G , define two 

generalized elementary cuts ( )C e
 and ( )C e

. A cut line for ( )C e
 is obtained by joining 

a number of line segments. The first of such line segments, say L , links the mid-point M  

of e  with the mid-point of e. If e G


 , then e


 belongs to another cell of G , say P. In P , 

draw a straight line segment L  through the mid-point of e


 and the mid-point of e. If 
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e G


 , then stop. Otherwise, continue the process with alternate orientation until it 

reaches the boundary (say at the point N). The other generalized elementary cut, starting at 

the edge e  with reverse orientation, that is, joining e  to s -edge of e  and continue with 

alternate orientation. 

Finally, let C  be a polygonal path joined by M  and N  followed by the line 

segments defined above. Then C  is a straight line and C  with endpoints M  and N  is 

called a generalized elementary cut pertaining to e. Identify the generalized elementary cut 

C  with the set of edges of G  which are crossed by C . The set of all generalized 

elementary cuts of G  is denoted by ( )GC . 

Let C  be a generalized elementary cut of G . The G C  consists of two 

components denoted by )(CG  and )(CG  . 

 

Lemma 2. [32] Let G  be an n -net, where n is odd. Further assume that G  is connected. 

Then 1
2

( )

( ) ( ) ( )
C G

W G G C G C
 



  
C

, where H  denotes the order of H  

 

In this section, we use embedding as a tool to devise an elegant and simple method 

for computing the Wiener index of graphs. Indeed this method coincides the result of 

Theorem 2. We begin with certain definitions of the embedding problem. 

Graph embedding has been known as a powerful tool for implementation of parallel 

algorithms or simulation of different interconnection networks. A graph embedding [2] of a 

guest graph G  into a host graph H  is defined by an injective function : ( ) ( )f V G V H  

together with a mapping fP  which assigns to each edge ( , )u v  of G  a path (( , ))fP u v  

between ( )f u  and ( )f v  in H . If ( , ) ( )e u v E G  , then the length of (( , ))fP u v  in H  is 

called the dilation of the edge e . 

The dilation-sum [29]  of an embedding f  of G  into H  is defined as 

 

where ( ( ), ( ))Hd f u f v  is the length of the path (( , ))fP u v  in H . 

The minimum dilation-sum of G  into H  is defined as 

 
where the minimum is taken over all embeddings f  of G  into H .  

The congestion of an embedding f  of G  into H  is the maximum number of edges 

of the guest graph that are embedded on any single edge of the host graph. Let ( , ( ))fC G H e  

denote the number of edges ( , )u v  of G  such that e  is in the path (( , ))fP u v . In other 
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words, 

( , ( )) |{( , ) ( ) : (( , ))}| .f fC G H e u v E G e P u v    

For ( )S E H , the congestion on S  is the sum of the congestions on the edges in S  . That 

is, ( , ( )) ( , ( ))f f
e S

C G H S C G H e


  . The congestion-sum [29]  of an embedding f  

of G  into H  is defined as 

 
The minimum congestion-sum of G  into H  is defined as 

 
where the minimum is taken over all embeddings f  of G  into H. For any embedding, the 

congestion-sum and the dilation-sum are one and the same [29]. This motivates the 

following result. 

 

Theorem 3. (k-Division Method) Let G  be a graph on n  vertices. Let ( )kE G  denote a 

collection of edges of G  with each edge in G  repeated exactly k  times. Let 1 2{ , ,..., }mS S S  

be a partition of ( )kE G  such that each iS  is an edge cut of G  and the removal of edges of 

iS  leaves G  into 2 components iG  and 
iG  . Also each iS  satisfies the following conditions: 

(i) For any two vertices , iu v G , a shortest path between u  and v  has no edges in 

iS . 

(ii) For any two vertices , iu v G , a shortest path between u  and v  has no edges in 

iS . 

(iii) For any two vertices iu G  and iv G , a shortest path between u  and v  has 

exactly one edge in iS . 

Then 1

1

( ) ( ) ( ( ) )
m

i ik
i

W G V G n V G


  . 

Proof. Let nK  be a complete graph on n  vertices with vertex set ( ) {1,2, , }nV K n . Let 

: ( ) ( )nf V K V G  be an embedding given by ( )f x x  such that every edge ( , )u v  in nK  

is mapped to a shortest path between u  and v  in G , for all 1 u v n   . For each edge cut 

iS , 1 i m  , clearly 1( )if G  induces a complete graph on | ( ) |iV G  vertices. By condition 

(i), no pair of vertices in iG  contributes to ( , ( ))f n iC K G S  and also by condition (ii), no pair 

of vertices in iG   contributes to ( , ( ))f n iC K G S . By condition (iii), any pair of vertices 

iu G  and iv G  increments ( , ( ))f n iC K G S  by 1. Hence ( , ( )) ( ) ( )f n i i iC K G S V G V G   
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for all i . The congestion-sum 
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The dilation-sum  

 

    ,  , ( )

( , )
n

G
u v u v V K

d u v
 

   

    ,  , ( )

( , )G
u v u v V G

d u v
 

   . 

Since congestion-sum is equal to dilation-sum, we get 

1

,  , ( ) 1

( , ) ( ) ( ( ) )
m

G i ik
u v u v V G i

d u v V G n V G
  

    . Hence 1

1

( ) ( ) ( ( ) )
m

i ik
i

W G V G n V G


  .        

 

Illustration for 1-Division Method: Consider the 3-dimensional hypercube 3Q . Let 

1 2 3{ , , }S S S  be a partition of 3( )E Q  such that the removal of edges of iS  leaves 3Q  into 2 

components iG  and 
iG   where ( ) 4iV G   and ( ) 4iV G  . See Figure 1. Hence 

3( ) 4 4 4 4 4 4 48W Q        . 

 

 
 

Figure 1. 1 2 3, ,S S S  are Edge Cuts of 3Q . 

 

Illustrations for 2-Division Method: 

 

(a) Consider the triangular snake 5S . Let 1 2 3{ , , ,S S S 4 5 6, , }S S S  be a partition of 

2

5( )E S . For 1,2,3,6i  , the removal of edges of iS  leaves 5S  into 2 
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components iG  and 
iG   where ( ) 1iV G   and ( ) 4iV G  . For 4,5i  , the removal 

of edges of iS  leaves 5S  into 2 components iG  and 
iG   where ( ) 2iV G   and 

( ) 3iV G  . See Figure 2. Hence 1
5 2

( ) {4(1 4) 2(2 3)} 14W S      . 

 

 
Figure 2. 1 2 3, , ,S S S 4 5 6, ,S S S  are Edge Cuts of 5S . 

(b) Consider the irregular triangular snake 6S . Let  91:  iSi  be a partition of 

2

6( )E S . For 1,2,3,8,9i  , the removal of edges of iS  leaves 6S  into 2 iG  and 

iG   where ( ) 1iV G   and ( ) 5iV G  . For 4,6,7i  , the removal of edges of iS  

leaves 6S  into 2 components iG  and 
iG   where ( ) 2iV G   and ( ) 4iV G  . For 

5i  , the removal of edges of iS  leaves 6S  into 2 components iG  and 
iG   where 

( ) 3iV G   and ( ) 3iV G  . See Figure 3. Hence 

1
6 2

( ) {5(1 5) 3(2 4) 3 3} 29W S        . 

 
 

Figure 3. Si: 1  i  9 is an Edge Cut of S6. 

 

3. REGULAR TESSELLATIONS 

Patterns covering the plane by fitting together replicas of the same basic shape have been 

created by Nature and Man either by accident or by design. Examples range from the 

simple hexagonal pattern of the bees' honeycomb or a tiled floor to the intricate 

decorations. These patterns are called tessellations. A regular tessellation is a pattern made 

by repeating a regular polygon. There are only three regular tessellations, composed of the 

same kind of regular polygons namely equilateral triangles, squares and hexagons. See 
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Figure 4. These are the basis for the design of direct interconnection networks with highly 

competitive overall performance. Mesh connected computers and tori are based on regular 

square tessellations and are popular and well-known models for parallel processing. 

Hexagonal and honeycomb networks are based on regular triangular and hexagonal 

tessellations respectively. The inconsistency in the name selection (note that a hexagonal 

network is not based on a hexagon, but on a triangular tessellation) is due to the duality of 

the two tessellations (one can be obtained from the other by joining the centres of the 

neighbouring polygons). 

 

(a) (b) (c)  
 

Figure 4. Three Regular Tessellations Composed of the Same Kind of Regular Polygons: 

(a) Equilateral Triangles (b) Squares and (c) Hexagons. 
 

Honeycomb and hexagonal networks have been studied in a variety of contexts. 

They have been applied in chemistry to model benzenoid hydrocarbons in image processing 

[35], computer graphics [26] and cellular networks [14]. Honeycomb architecture was 

investigated in [30], where a suitable addressing scheme, routing and broadcasting 

algorithms were proposed. An addressing scheme for processors and corresponding routing 

and broadcasting algorithms for hexagonal network are studied in [6]. 

A two dimensional mesh ( , )M m n  is defined as the Cartesian product m nP P  

where mP  and nP  denote the path on m  and n  vertices respectively. The Wiener index of 

mesh ( , )M m n  had incorrectly stated in [23], we here give the correct value. 

 

Lemma 3. The Wiener index of mesh is given by 1
6

( ( , )) ( )( 1)W M m n mn m n mn   . 

 

Honeycomb networks can be built from hexagons in various ways. A hexagon is 

treated as a honeycomb of size one, denoted by (1)HC . The honeycomb (2)HC  of size 

two is obtained by adding six hexagons to the boundary edges of (1)HC . Inductively, 

honeycomb ( )HC n  of size n  is obtained from ( 1)HC n  by adding a layer of hexagons 

around the boundary of ( 1)HC n . Alternatively, the size n  of ( )HC n  is determined as the 

number of hexagons between the centre and boundary (inclusive) of ( )HC n . The number 

of vertices and edges of ( )HC n  are 26n  and 29 3n n , respectively [30]. In the literature 

honeycomb network is also known as circumcoronene series. 
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Lemma 4. [18, 31] The Wiener index of Honeycomb network is  

).30164(
5

1
))(( 35 nnnnHCW   

Hexagonal networks are based on the partition of a plane into equilateral triangles. 

Hexagonal network ( )HX n  of dimension n  has 23 3 1n n   vertices and 29 15 6n n   

edges, where n  is the number of vertices on one side of the hexagon [6]. The diameter is 

2 2n . There are six vertices of degree three which we call as corner vertices. There is 

exactly one vertex v  at distance 1n  from each of the corner vertices. This vertex is called 

the centre of ( )HX n  and is represented by O . For convenience we shall introduce a 

coordinate system for the hexagonal network. In this system, three axes ,x y  and z  are 

parallel to three edge directions and are at a mutual angle of 120 between any two of them 

at O . Any line parallel to x -axis in the clockwise (anti clockwise) direction at a distance i  

from the corner vertex of x -axis is denoted by ix -line ( ix -line). Similarly we define iy -

line, iy -line, iz -line and iz -line. For convenience we denote the ,x y  and z  axes by 0x -

line, 0y -line and 0z -line respectively. See Figure 5. 

 
Figure 5. Coordinate System for Hexagonal Network. 

 

The Wiener index of hexagonal networks have been obtained using the generalized 

elementary cut method [32], whereas the k-division method, introduced in the paper is 

successful in computing the same in simple and elegant way. 

 

Theorem 4. The Wiener index of hexagonal network is given by 

O 
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   4 2 2 2( ( )) /10 (41 100 9) / 4 (41 19)W HX n n n n n n     . 

 

Proof. For 1 1i n   , let iA  (resp. iA ) be the set of edges in the hexagonal network such 

that each edge has one vertex in 1ix  -line (resp. 
( 1)ix 

-line) and the other vertex in ix -line 

(resp. ix -line). For 1 1i n   , let iB  (resp. iB ) be the set of edges in the hexagonal 

network such that each edge has one vertex in 1iy  -line (resp. 
( 1)iy 

-line) and the other 

vertex in iy -line (resp. iy -line). For 1 1i n   , let iC  (resp. iC ) be the set of edges in 

the hexagonal network such that each edge has one vertex in 1iz  -line (resp. 
( 1)iz 

-line) and 

the other vertex in iz -line (resp. iz -line). See Figure 6. 

 

 
 

Figure 6. Edge Cuts of HX(3). 

 

Thus { , , , , , : 1 1}i i i i i iA A B B C C i n       is a partition of 
2( ( ))E HX n . For 1 1i n   , 

the removal of iA  leaves ( )HX n  into two components 
iAG  and 

iAG   where 

1
2

( ) ( )(3 1)
iAV G n i n i     and 2 1

2
( ) (3 3 1) ( )(3 1)

iAV G n n n i n i        . By the 

symmetry of hexagonal network, for 11  ni , ( ) \ , ( ) \ ,i iHX n A HX n A ( ) \ ,iHX n B  

( ) \ , ( ) \i iHX n B HX n C  and ( ) \ iHX n C  are all isomorphic. The edge cuts 

, , , , ,i i i i i iA A B B C C   , 1 1i n   , satisfy conditions (i)-(iii) of the 2-Division Method. 

Hence    
1

21 1 1
2 2 2

1

( ( )) 6 ( )(3 1) (3 3 1) ( )(3 1)
n

i

W HX n n i n i n n n i n i




               

   4 2 2 2/10 (41 100 9) / 4 (41 19)n n n n n     . See Figure 7 for the graph representation 

of ( ( ))W HX n  drawn using MATLAB.                                                                                  
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Figure 7. Graph Representation of W(HX(n)). 

 
 

4. VERTEX SZEGED INDEX 

The Wiener index is the first topological index introduced by the chemist Harold Wiener 

for investigating boiling points of alkanes [36]. Let ( , )e u v  be an edge of the graph G . 

The number of vertices of G  whose distance to the vertex u  is smaller than the distance to 

the vertex v  is denoted by ( )un e . In other words, 

( ) { : ( ), ( , ) ( , )}u G Gn e w w V G d u w d v w   . Analogously, ( )vn e  is the number of vertices 

of G  whose distance to the vertex v  is smaller than the distance to the vertex u . In other 

words, ( ) { : ( ), ( , ) ( , )}v G Gn e w w V G d v w d u w   . Note that the vertices equidistant to u  

and v  are not counted. Wiener [36] defined his index for tree (acyclic graph) T  as  

( , ) ( )

( ) ( ) ( )u v
e u v E T

W T n e n e
 

   . It is natural to ask, what would happen if one would apply it 

to cyclic graphs? Research along these lines led to the concept of Szeged index [15]. The 

vertex Szeged index [15, 21] is a molecular structure descriptor and is defined as  

( ) ( , ) ( )

( ) ( ) ( ) ( ).
v vz z u v

e E G e u v E G

S G S e n e n e
  

      

Let ( , )e u v  be an edge of a partial cube G  and suppose that it belongs to the  -

class F. Then it follows easily from definitions that ( )un e  and ( )vn e  induce the connected 

components of G F . Therefore, Theorem 1 has its variant for the vertex Szeged index. 

Theorem 5. [25] Let G  be a partial cube and let 1 2, ,..., kF F F  be its  -classes. Let 1( )in F  
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and 2 ( )in F  be the number of vertices in the two connected components of iG F . Then 

1 2
1

( ) ( ) ( )
v

k

z i i i
i

S G F n F n F


    . 

By elaborating Theorem 5, the vertex Szeged index of benzenoid system has been 

computed by considering its elementary cuts or orthogonal cuts [17]. An elementary cut is a 

line segment that starts at the center of a peripheral edge of a benzenoid system B , goes 

orthogonal to it and ends at the first next peripheral edge of B . We denote an elementary 

cut by C  and the number of edges that it intersects by C . 

 

Lemma 5. The vertex Szeged index of the benzenoid system B  is given by 

1 2
( )

( ) ( ) ( )
vz

C B

S B C n C n C


   
C

 where 1( )n C  and 2 ( )n C  are the numbers of vertices lying 

on the two sides of the elementary cut C , and where the summation goes over all 

elementary cuts of B . 
 

Note that 1 2( ) ( ) ( )n C n C V B   for all elementary cuts. This technique leads to 

computation of vertex Szeged index of mesh and honeycomb network, but fails to compute 

the vertex Szeged index of hexagonal network. We note that the vertex Szeged index of 

mesh ( , )M m n  had wrongly stated in [23], we here give the correct value. 

 

Lemma 6. The vertex Szeged index of mesh is given by 
2 2 2 21

6
( ( , )) (2 )

vzS M m n mn m n m n   . 

 

Lemma 7. [17] The vertex Szeged index of Honeycomb network is  
2 4 23

2
( ( )) (36 1)

v

n
zS HC n n n   . 

 

We compute the vertex Szeged index of hexagonal network using coordinate 

system. 
 

Theorem 6. The vertex Szeged index of hexagonal network is given by 
6 5 4 3 21

24
( ( )) {101 303 383 261 92 12 }

vzS HX n n n n n n n       . 

 

Proof. We partition the edge set of ( )HX n  into 3 sets namely A , B  and C  where  

 { :A e e  lies in 0x -line or ix -line or ix -line for 1 1}i n   ,  

{ :B e e  lies in 0y -line or iy -line or iy -line for 1 1}i n    and  

{ :C e e  lies in 0z -line or iz -line or iz -line for 1 1}i n   .  

By the symmetry of hexagonal network, 



178                                                                   P. MANUEL, I. RAJASINGH AND M. AROCKIARAJ 

( ( )) ( ) ( ) ( ) 3 ( )
v v v v vz z z z z

e A e B e C e C

S HX n S e S e S e S e
   

         

For convenience we shall describe the set C  as follows: The edges on the 0z -line 

will be represented by 
0,ie , 1 2 2i n   , from left to right. Similarly, when 1 1j n    , 

the edges on the 
jz -line (resp. 

jz -line) will be represented by 
,j ie  (resp. 

, )j ie , 

1 2 2i n j      from left to right. 

Let 
1 0, ,{ : 1 1} { : 1 1,1 1 }i j iR e i n e j n i n j            ,  

 

 1,11:,2  nijnnjeR ij  

3 0, ,{ : 2 2} { : 1 1, 2 2 }i j iR e n i n e j n n i n j             and 

4 ,{ : 1 1, 1}j iR e j n n j i n        . See Figure 8. 

Again by the symmetry of hexagonal network,  

1 3

( ) ( )
v vz z

e R e R

S e S e
 

    and  
2 4

( ) ( )
v vz z

e R e R

S e S e
 

    . 

Therefore 

1 2 3 4 1 2

( ( )) 3{ ( ) ( ) ( ) ( )} 6{ ( ) ( )}
v v v v v v vz z z z z z z

e R e R e R e R e R e R

S HX n S e S e S e S e S e S e
     

            . 

 

 
 

Figure 8. The Edges on C is Partitioned into Four Sets R1, R2, R3 and R4. 

 

To compute ( )un e  and ( )vn e  for each edge ( , )e u v  on z -line, we can find vertices a  and 

b  if exist) adjacent to u  and v  on above and below the z -line and the number of vertices 

between x -line and y -line intersecting at u  and v  are ( )un e  and ( )vn e  respectively. See 

Figure 9.  
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For an edge 
,j ie , 0 1,1 1j n i n j       ,  

2

,( ) ( 1) 2{1 2 ... ( 1)} ( )u j in e i j i i ij          and  

,( ) (2 1 ) {(2 1 ) (2 2 ) (v j in e n j i j n j i n j i n             terms)}   

{(2 2 ) (2 3 ) ( 1 )n j i n j i n j          terms =  

2 2{3 3 1 (2 1) / 2 / 2 (2 1) }n n n j j n i       . 

For an edge 
,j ie , 1 1, 1j n n j i n       ,  

,( ) {1 2 ... ( 1)} { ( 1) ( )u j in e ij i i i n j           terms}  

2 2 21
2
{ ( )(2 1) }i i j n j n n       and 

,( ) (2 1 )( ) {(2 2 ) (2 3 ) ( 1 )v j in e n i n j n i n i n i             terms}

2 21
2
{7 7 2 (3 2 )(2 1) 2 }n n i j n i ij       . 

Hence 

       
1

1
2 2

1

( ) {3 3 1 (2 1)}
v

n

z
e R i

S e i n n i n


 

                 

                        
11

2 2 2

1 1

2 ( ) {3 3 1 (2 1) / 2 / 2 (2 1) }
n jn

j i

i ij n n n j j n i
 

 

             

and 

2

1 1
2 2 2 2 21 1

2 2
1

( ) { ( )(2 1) } {7 7 2 (3 2 )(2 1) 2 }
v

n n

z
e R j i n j

S e i i j n j n n n n i j n i ij
 

   

                 

 implies that 
6 5 4 3 21

24
( ( )) {101 303 383 261 92 12 }

vzS HX n n n n n n n      .                         

u v

a

b

 
 

Figure 9. The Vertices Equidistant to u and v are Represented by Hollow Vertices. 
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5. VERTEX PI INDEX 

The vertex PI index is a distance-based molecular structure descriptor, which recently 

found numerous chemical applications. The vertex PI index is defined as 

( ) ( , ) ( )

( ) ( ) ( ) ( )v v u v
e E G e u v E G

PI G PI e n e n e
  

     . If G  is a bipartite graph then 

( ) ( ) ( )vPI G V G E G , because G  is without odd cycles [39]. This implies the following 

results. 

 

Lemma 8. The vertex PI index of mesh is given by ( ( , )) (2 )vPI M m n mn mn m n   . 

 

Lemma 9. The vertex PI index of Honeycomb network is given by 
3( ( )) 18 (3 1)vPI HC n n n  . 

 

Using the proof techniques of Theorem 6, we compute the vertex PI index of 

hexagonal network. 

 

Theorem 7. The vertex PI index of hexagonal network is given by 
4 3 2( ( )) 18 50 54 28 6vPI HX n n n n n      . 

Proof. As in the proof of Theorem 6,  

( ( )) ( ) ( ) ( ) 3 ( )v v v v v
e A e B e C e C

PI HX n PI e PI e PI e PI e
   

         

and therefore 
1 2

( ( )) 6{ ( ) ( )}v v v
e R e R

PI HX n PI e PI e
 

    . But  

            1

1
2 2

1

( ) {3 3 1 (2 1)}
n

v
e R i

PI e i n n i n


 

           

                               

11
2 2 2

1 1

2 ( ) {3 3 1 (2 1) / 2 / 2 (2 1) }
n jn

j i

i ij n n n j j n i
 

 

            

and   

            2

1 1
2 2 21

2
1

( ) { ( )(2 1) }
n n

v
e R j i n j

PI e i i j n j n n
 

   

              

                               2 21
2
{7 7 2 (3 2 )(2 1) 2 }n n i j n i ij         

implies that 4 3 2( ( )) 18 50 54 28 6vPI HX n n n n n     .                                                       

 

6. CONCLUDING REMARK 

In this paper we have devised an elegant method to compute the Wiener index of graphs. 

We have good reasons to believe that many more chemical graphs remain to be explored 



Wiener, Szeged and vertex PI indices of regular tessellations                                              181 

whose Wiener index can be computed applying our technique. 
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