Remarks on Distance-Balanced Graphs

M. Tavakoli and H. Yousefi-Azari*
School of Mathematics, Statistics and Computer Science, University of Tehran, Tehran, I. R. Iran

(Received May10, 2011)

Abstract

Distance-balanced graphs are introduced as graphs in which every edge uv has the following property: the number of vertices closer to u than to v is equal to the number of vertices closer to v than to u. Basic properties of these graphs are obtained. In this paper, we study the conditions under which some graph operations produce a distance-balanced graph.

Keywords: Distance-balanced graphs, graph operation.

1. Introduction

For an edge $e=a b$ of a graph G, let $n_{a}^{G}(e)$ be the number of vertices closer to a than to b. That is, $n_{a}^{G}(e)=|\{\mathrm{u} \in \mathrm{V}(\mathrm{G}) \mid \mathrm{d}(\mathrm{u}, \mathrm{a})<\mathrm{d}(\mathrm{u}, \mathrm{b})\}|$. In addition, let $n_{0}^{G}(e)$ be the number of vertices with equal distances to a and $b ; n_{0}^{G}(e)=|\{\mathrm{u} \in \mathrm{V}(\mathrm{G}) \mid \mathrm{d}(\mathrm{u}, \mathrm{a})=\mathrm{d}(\mathrm{u}, \mathrm{b})\}|$.

Here is our key definition. We call a graph G distance-balanced, if $n_{a}^{G}(e)=n_{b}^{G}(e)$ holds for any edge $e=a b$ of G. These graphs were, at least implicitly, first studied by Handa [4] who considered distance-balanced partial cubes. The term itself, however, is due to Jerebic et al. [1] who studied distance-balanced graphs in the framework of various kinds of graph products. The transmission $T(u)$ of a vertex $\mathrm{u} \in \mathrm{V}$ is defined as follows:

$$
T(u)=\sum_{v \in V} d(u, v) .
$$

A graph G is said to be transmission-regular if all its vertices have the same transmission. As examples of transmission-regular graphs, we can cite the complete graph K_{n} on $\mathrm{n} \geq 2$ vertices, the complete bipartite graph $K_{n, n}$ on $2 \mathrm{n} \geq 2$ vertices.

[^0]Let G and H be two graphs. The corona product G o H is obtained by taking one copy of G and $|\mathrm{V}(\mathrm{G})|$ copies of H; and by joining each vertex of the i-th copy of H to the ith vertex of $G, \mathrm{i}=1,2, \ldots,|\mathrm{~V}(\mathrm{G})|$, see $[2,3]$. The join $\mathrm{G}+\mathrm{H}$ of graphs G and H with disjoint vertex sets V_{1} and V_{2} and edge sets E_{1} and E_{2} is the graph union $\mathrm{G} \cup \mathrm{H}$ together with all the edges joining V_{I} and V_{2}. The symmetric difference $\mathrm{G} \oplus \mathrm{H}$ of two graphs G and H is the graph with vertex set $\mathrm{V}(\mathrm{G}) \times \mathrm{V}(\mathrm{H})$ and edge set

$$
\mathrm{E}(\mathrm{G} \oplus \mathrm{H})=\left\{\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right) \mid \mathrm{u}_{1} \mathrm{v}_{1} \in \mathrm{E}(\mathrm{G}) \quad \text { or } \quad \mathrm{u}_{2} \mathrm{v}_{2} \in \mathrm{E}(\mathrm{H}) \text { but not both }\right\} .
$$

The cluster $\mathrm{G}\{\mathrm{H}\}$ is obtained by taking one copy of G and $|\mathrm{V}(\mathrm{G})|$ copies of a rooted graph H, and by identifying the root of the ith copy of H with the $i^{\text {th }}$ vertex of $G, \mathrm{i}=1,2, \ldots$, $|\mathrm{V}(\mathrm{G})|$. The composite graph $\mathrm{G}\{\mathrm{H}\}$ was studied by Schwenk [9]. Throughout this paper our notation is standard and taken mainly from the standard book of graph theory. We encourage the reader to consult papers [5,7,8,10-12] for background material as well as basic computational techniques.

2. Main Results

A regular graph is a graph where each vertex has the same number of neighbors. A regular graph with vertices of degree k is called a k-regular graph or regular graph of degree k. In this section, we study the conditions under which some graph operations produce a distance-balanced graph. We begin by the following theorem which states the relationship between distance-balanced and transmission-regular graphs:

Theorem 1. A graph G is distance-balanced if and only if G is transmission-regular.
Proof. It is well-known fact that if G is a connected graph and $u v=e \in E(G)$, then n_{u}^{G} (e) $=\mathrm{n}_{\mathrm{v}}^{\mathrm{G}}(\mathrm{e})$ if and only if $\mathrm{T}(\mathrm{u})=\mathrm{T}(\mathrm{v})$ [6], proving the result.

Theorem 2. Let G and H be connected graphs. Then $\mathrm{G}+\mathrm{H}$ is distance-balanced if and only if G and H are r and k regular graphs, respectively, and $|\mathrm{V}(\mathrm{G})|-\mathrm{r}=|\mathrm{V}(\mathrm{H})|-\mathrm{k}$.

Proof. Consider the following partition of $\mathrm{E}(\mathrm{G}+\mathrm{H})$:

$$
\begin{aligned}
A & =\{u v \in E(G+H) \mid u, v \in V(G)\}, \\
B & =\{u v \in E(G+H) \mid u, v \in V(H)\}, \\
C & =\{u v \in E(G+H) \mid u \in V(G) \text { and } v \in V(H)\} .
\end{aligned}
$$

We first assume that G and H are $\mathrm{r}-$ and $\mathrm{k}-$ regular graphs respectively, and $|\mathrm{V}(\mathrm{G})|-\mathrm{r}=|\mathrm{V}(\mathrm{H})|-\mathrm{k}$. Let $\mathrm{uv}=\mathrm{e} \in \mathrm{A}$ and $m_{0}^{G}(e)=|\{\mathrm{x} \in \mathrm{V}(\mathrm{G}) \mid \mathrm{d}(\mathrm{u}, \mathrm{x})=\mathrm{d}(\mathrm{v}, \mathrm{x})=1\}|$.

Notice that

$$
d_{G+H}(x, y)=\left\{\begin{array}{cc}
0 & x=y \\
1 & (x \in V(G) \text { and } y \in V(H)) \text { or }(x y \in E(H)) \text { or }(x y \in E(G)) \\
2 & \text { otherwise }
\end{array}\right.
$$

Thus we have $n_{u}^{G+H}(\mathrm{e})=\operatorname{deg}_{G}(\mathrm{u})-m_{0}^{G}(e)$ and $n_{v}^{G+H}(\mathrm{e})=\operatorname{deg}_{G}(\mathrm{v})-m_{0}^{G}(e)$. Since G is regular $\operatorname{deg}_{G}(\mathrm{u})=\operatorname{deg}_{G}(\mathrm{v})$, and thus $n_{u}^{G+H}(e)=n_{v}^{G+H}(e)$. We now assume that uv $=\mathrm{e} \in \mathrm{B}$. In a similar way we can see that $n_{u}^{G+H}(e)=n_{v}^{G+H}(e)$. Assume that $\mathrm{uv}=\mathrm{e} \in \mathrm{C}$. Then we have $n_{u}^{G+H}(\mathrm{e})=|\mathrm{V}(\mathrm{H})|-\operatorname{deg}_{H}(\mathrm{v})$ and $n_{v}^{G+H}(\mathrm{e})=|\mathrm{V}(\mathrm{G})|-\operatorname{deg}_{\mathrm{G}}(\mathrm{u})$. Therefore, $n_{u}^{G+H}(\mathrm{e})=n_{v}^{G+H}(\mathrm{e})$ and thus $\mathrm{G}+\mathrm{H}$ is distance-balanced. Conversely, assume that $\mathrm{G}+\mathrm{H}$ is distance-balanced. By above argument for an edge e of A , we see $n_{u}^{G+H}(\mathrm{e})=$ $n_{v}^{G+H}(\mathrm{e})$ implies that any two adjacent vertices of G have the same degree. Since G is connected, this implies that G is r-regular for some r. In a similar way we can see that H is k -regular, for some k. For an edge $\mathrm{uv}=\mathrm{e} \in \mathrm{C}$, it follows again from earlier analysis that $n_{u}^{G+H}(\mathrm{e})=|\mathrm{V}(\mathrm{H})|-\operatorname{deg}_{\mathrm{H}}(\mathrm{V})$ and $n_{v}^{G+H}(\mathrm{e})=|\mathrm{V}(\mathrm{G})|-\operatorname{deg}_{\mathrm{G}}(\mathrm{u})$. Since $\mathrm{G}+\mathrm{H}$ is distance balanced, two above equations imply that $|\mathrm{V}(\mathrm{H})|-\operatorname{deg}_{\mathrm{H}}(\mathrm{v})=|\mathrm{V}(\mathrm{G})|-\operatorname{deg}_{\mathrm{G}}(\mathrm{u})$.

Corollary. Let G and H be connected graphs. $\mathrm{G}+\mathrm{H}$ is transmission-regular if and only if G and H be r and k regular respectively, such that $|\mathrm{V}(\mathrm{G})|-\mathrm{r}=|\mathrm{V}(\mathrm{H})|-\mathrm{k}$.

Proof. The proof follows from Theorems 1 and 2.
A graph G is called nontrivial if $|\mathrm{V}(\mathrm{G})|>1$.
Theorem 3. The corona product of two arbitrary, nontrivial and connected graphs is not distance-balanced.

Proof. Let G and H be arbitrary, nontrivial and connected graphs and H_{i} be the i-th copy of H. Assume that $\mathrm{uv}=\mathrm{e} \in \mathrm{E}(\mathrm{GoH})$ such that $\mathrm{u} \in \mathrm{V}(\mathrm{G})$ and $\mathrm{v} \in \mathrm{V}\left(\mathrm{H}_{\mathrm{i}}\right)$. Thus, we have :

$$
n_{u}^{G o H}(\mathrm{e})=|\mathrm{V}(\mathrm{G})|(|\mathrm{V}(\mathrm{H})|+1)-\operatorname{deg}_{\mathrm{GoH}}(\mathrm{v}) \text { and } n_{v}^{G o H}(\mathrm{e})=1 .
$$

Therefore, we have $n_{u}^{G o H}$ (e) $\neq n_{v}^{G o H}$ (e). Thus $G o H$ is not distance-balanced.
Corollary. The corona product of two arbitrary, nontrivial and connected graphs is not transmission - regular.

Proof. The proof follows from Theorems 1 and 3.

Let $\mathrm{e}=(\mathrm{a}, \mathrm{x})(\mathrm{b}, \mathrm{y}) \in \mathrm{E}(\mathrm{G} \oplus \mathrm{H})$ such that $\mathrm{ab} \in \mathrm{E}(\mathrm{G})$, and $\mathrm{N}_{(\mathrm{a}, \mathrm{x})}(\mathrm{e})=\{(\mathrm{u}, \mathrm{v}) \in$ $\mathrm{V}(\mathrm{G} \oplus \mathrm{H}) \mid \mathrm{d}((\mathrm{u}, \mathrm{v}),(\mathrm{a}, \mathrm{x}))<\mathrm{d}((\mathrm{u}, \mathrm{v}),(\mathrm{b}, \mathrm{y}))\}$. Consider the following partition of $\mathrm{N}_{(\mathrm{a}, \mathrm{x})}(\mathrm{e})$:
$A_{(a, x)}=\{(u, v) \in V(G \oplus H) \mid a u \in E(G), v x \notin E(H), u b \in E(G), v y \in E(H)\}$,
$B_{(a, x)}=\{(u, v) \in V(G \oplus H) \mid(u, v) \neq(b, y), a u \in E(G), v x \notin E(H), u b \notin E(G), v y \notin E(H)\}$,
$C_{(a, x)}=\{(u, v) \in V(G \oplus H) \mid a u \notin E(G), v x \in E(H), u b \in E(G), v y \in E(H)\}$,
$\mathrm{D}_{(\mathrm{a}, \mathrm{x})}=\{(\mathrm{u}, \mathrm{v}) \in \mathrm{V}(\mathrm{G} \oplus \mathrm{H}) \mid \mathrm{au} \notin \mathrm{E}(\mathrm{G}), \mathrm{vx} \in \mathrm{E}(\mathrm{H}), \mathrm{ub} \notin \mathrm{E}(\mathrm{G}), \mathrm{vy} \notin \mathrm{E}(\mathrm{H})\}$ and $\mathrm{F}_{(\mathrm{a}, \mathrm{x})}=\{(\mathrm{a}, \mathrm{x})\}$. We have:

Theorem 4. Let G and H be nontrivial and regular graphs. Then the symmetric difference $\mathrm{G} \oplus \mathrm{H}$ is distance-balanced.

Proof. Let $\mathrm{e}=(\mathrm{a}, \mathrm{x})(\mathrm{b}, \mathrm{y}) \in \mathrm{E}(\mathrm{G} \oplus \mathrm{H})$, where $\mathrm{ab} \in \mathrm{E}(\mathrm{G})$. Then $\mathrm{n}_{(\mathrm{a}, \mathrm{x})}(\mathrm{e})=\left|\mathrm{N}_{(\mathrm{a}, \mathrm{x})}(\mathrm{e})\right|, \mathrm{N}_{(\mathrm{a}, \mathrm{x})}(\mathrm{e})=$ $A_{(a, x)} \cup B_{(a, x)} \cup C_{(a, x)} \cup D_{(a, x)} \cup F_{(a, x)}$ and $N_{(b, y)}(e)=A_{(b, y)} \cup B_{(b, y)} \cup C_{(b, y)} \cup D_{(b, y)} \cup F_{(b, y)}$. On the other hand, since G and H are regular, $\left|\mathrm{A}_{(\mathrm{a}, \mathrm{x})}\right|=\left|\mathrm{A}_{(\mathrm{b}, \mathrm{y})}\right|, \ldots,\left|\mathrm{B}_{(\mathrm{a}, \mathrm{x})}\right|=\left|\mathrm{B}_{(\mathrm{b}, \mathrm{y})}\right|,\left|\mathrm{C}_{(\mathrm{a}, \mathrm{x})}\right|=$ $\left|\mathrm{C}_{(\mathrm{b}, \mathrm{y})}\right|,\left|\mathrm{D}_{(\mathrm{a}, \mathrm{x})}\right|=\left|\mathrm{D}_{(\mathrm{b}, \mathrm{y})}\right|$ and $\left|\mathrm{F}_{(\mathrm{a}, \mathrm{x})}\right|=\left|\mathrm{F}_{(\mathrm{b}, \mathrm{y})}\right|$. Therefore, $\mathrm{n}_{(\mathrm{a}, \mathrm{x})}(\mathrm{e})=\mathrm{n}_{(\mathrm{b}, \mathrm{y})}(\mathrm{e})$. If $\mathrm{e}=(\mathrm{a}, \mathrm{x})(\mathrm{b}, \mathrm{y})$, $x y \in E(H)$, then a similar argument shows that $n_{(a, x)}(e)=n_{(b, y)}(e)$, proving the result.

Theorem 5. The cluster of two arbitrary, nontrivial and connected graphs is not distancebalanced.

Proof. Let G and H be arbitrary, nontrivial and connected graphs and H_{i} be the i-th copy of H. Assume that $u v=\mathrm{e} \in \mathrm{E}(\mathrm{G}\{\mathrm{H}\})$ such that u is the root of the $\mathrm{i}^{\text {th }}$ copy of H and $\mathrm{u} \neq \mathrm{v}$ $\in \mathrm{V}\left(\mathrm{H}_{\mathrm{i}}\right)$. Thus, we have :

$$
\mathrm{n}_{\mathrm{u}}^{\mathrm{G}\{\mathrm{H}\}}(\mathrm{e})=|\mathrm{V}(\mathrm{H})|(|\mathrm{V}(\mathrm{G})|-1)+\mathrm{n}_{\mathrm{u}}^{\mathrm{H}}(\mathrm{e}) \quad \text { and } \quad \mathrm{n}_{\mathrm{v}}^{\mathrm{G}\{\mathrm{H}\}}(\mathrm{e})=\mathrm{n}_{\mathrm{v}}^{\mathrm{H}}(\mathrm{e}) .
$$

Therefore, $\mathrm{n}_{\mathrm{u}}^{\mathrm{G}\{\mathrm{H}\}}(\mathrm{e}) \neq \mathrm{n}_{\mathrm{v}}^{\mathrm{G}\{\mathrm{H}\}}(\mathrm{e})$ and so $\mathrm{G}\{\mathrm{H}\}$ is not distance-balanced.

REFERENCES

1. J. Jerebic, S. Klavžar and D. F. Rall, Distance-balanced graphs, Ann. Combin. 12 (2008) 71-79.
2. Y. N. Yeh and I. Gutman, On the sum of all distances in composite graphs, Discrete Math. 135 (1994) 359-365.
3. D. Stevanovic, Hosoya polynomial of composite graphs, Discrete Math. 235 (2001) 237-244.
4. K. Handa, Bipartite graphs with balanced (a,b)-partitions, Ars Combin. 51 (1999) 113119.
5. M. H. Khalifeh, H. Yousefi-Azari and A. R. Ashrafi, The hyper-Wiener index of graph operations, Comput. Math. Appl. 56 (2008) 1402-1407.
6. M. Aouchiche and P. Hansen, On a conjecture about the Szeged index, European J. Combin. 31 (2010) 1662-1666.
7. M. K. Khalifeh, H. Yousefi-Azari, A. R. Ashrafi and S. G. Wagner, Some new results on distance-based graph invariants, European J. Combin. 30 (2009) 1149-1163.
8. A. Ilić, S. Klavžar and M. Milanović, On distance-balanced graphs, European J. Combin. 31 (2010) 733-737.
9. A. J. Schwenk, Computing the characteristic polynomial of a graph, in: A. Dold and B. Eckmann, eds., Graphs and Combinatorics, Lecture Notes in Mathematics, 406 (Springer, Berlin, 1974) 153-172.
10. M. Tavakoli and H. Yousefi-Azari, Computing PI and Hyper-Wiener indices of corona product of some graphs, Iranian J. Math. Chem. 1 (2010) 131-135.
11. A. T. Balaban, P. V. Khadikar and S. Aziz, Comparison of topological indices based on iterated 'sum' versus ' product' operations, Iranian J. Math. Chem. 1 (2010) 43-60.
12. P. V. Khadikar, Padamakar-Ivan Index in Nanotechnology, Iranian J. Math. Chem, 1 (2010) 7-42.

[^0]: -Corresponding author (Email: hyousefi@ut.ac.ir).

