
 

Iranian Journal of Mathematical Chemistry, Vol. 1, No. 2, September 2010,  pp. 5 15 IJMC 
 
 

  

Wiener Way to Dimensionality 
 
OTTORINO ORI

1,, FRANCO CATALDO
1, DAMIR VUKIČEVIĆ

2
 AND ANTE GRAOVAC

2,3 

1Actinium Chemical Research, Via Casilina, 1626/A 00133 Rome, Italy 
2Faculty of Science, University of Split, Nikole Tesle 12, HR-21000 Split, Croatia 
3“The R. Bošković Institute”, HR-10002 Zagreb, POB 180, Croatia 
 

(Received June 13, 2010) 

 

ABSTRACT 

This note introduces a new general conjecture correlating the dimensionality dT of an infinite 
lattice with N nodes to the asymptotic value of its Wiener Index W(N). In the limit of large N 
the general asymptotic behavior W(N)≈Ns is proposed, where the exponent s and dT are related 
by the conjectured formula s=2+1/dT allowing a new definition of dimensionality dW=(s-2)-1. 
Being related to the topological Wiener index, dW is therefore called Wiener dimensionality. 
Successful applications of this method to various infinite lattices (like graphene, nanocones, 
Sierpinski fractal triangle and carpet) testify the validity of the conjecture for infinite lattices.  
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1 INTRODUCTION 

The Wiener index W(N) of a lattice (or graph) with N vertices is the topological invariant 

defined as the halfsum of its chemical distances dij: 
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This topological invariant measures in practice the compactness of the lattice. In case of 

similar molecular structures with N atoms, the Wiener index assumes its minimum values 

in correspondence of the most compact isomers that appears quite often among the most 

stable ones. This is indeed the case of the C60 fullerene [1,3] where the physically stable 

icosahedral C60(Ih) ‘‘buckyball’’ shows the minimum W=8340 value among 1812 

nonisomorphic isomers. Similarly, stable isomers of the C40, C28, C76, C78 fullerenes 

present low values Wiener index, see articles [1,2,3,4].  
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Considering graphs of infinite structures as polymers, Equation (1) is still applicable 

and the resulting integer W(N) shows divergent values. The infinite growth of the Wiener 

index has the remarkable property, originally discovered by Bonchev and Mekenyan [5] in 

their studies of the energy gap in conjugated polymers, of being exactly described by cubic 

polynomials of the number of atoms N.  

 
a) N = 4, W = 8 
 
b)  N = 6, W = 27 
 
c)  N = 8, W = 64 
 
d)  N = 10, W = 125 

 
Figure 1. Graphs of dT=1 torus with growing even number of nodes N;  

                                 Wiener index values W are reported. 
 

The general form of the Wiener index for monodimensional (dT=1) infinite 

periodic lattices, i.e. lattices generated by translations of a given unit cell in one dimension, 

is expressed by:  
 

W(N) = a3N
3 + a2N

2 + a1N + a0     for dT =1 lattices                                 (2) 
 

In the limit N→∞ monodimensional lattices follow the general asymptotic 

behavior W(N) ≈ N3. The rational coefficients ai strictly depend from the specific lattice 

under study and may be determined by interpolation methods. For example, Figure 1 shows 

four growing steps of the closed-ends linear lattice with even number of nodes and the 

relative Wiener index values; coefficients ai are easily computed from the (N,W) pairs: 

a3=2-3, a2=a1=a0=0; Wiener index  (2) is then WC
LIN (N) = N3/8. 

Some other few examples of open-ends monodimensional lattices are listed in 

Table 1, where black circles identify the n0 nodes belonging to the lattice unit cells. Their 

Wiener index polynomials evidence the ability of the Wiener index (1) to assume lower 

values in correspondence to the most compact topological structure. Then, the Wiener 

index values of the lattices in Table 1 should, by structural reason, respect the sequences 

WLIN> WC
LIN and WLIN>WCOMB>WRAIL and this is indeed the case as one may verify by the 

polynomial closed forms reported in the same table. For example, with N=64 one has as 

expected WLIN=43680, WC
LIN = 32768, WCOMB= 23840, WRAIL= 22848 being the railway 

lattice the topological most compact ones,.  

More generally, above sequences suggest that the Wiener index (1) of a graph with 

a given number of nodes N diminishes by increasing graph connectivity or, equivalently, by 
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augmenting the number of bonds in the graph, a topological operation that may be obtained 

by increasing the dimensionality dT of the graph itself. 

 
Table 1: The Wiener index cubic polynomials W(N) for some open-ends dT=1 
lattices. Unit cells are framed by the dotted rectangle and their n0 nodes are 
depicted in black.  

 
 

        Lattice                        Unit cell                      

 

n0 

 

Wiener Index 

Linear lattice 1 W(N) = (N3 – N)/6 

Comb lattice 2 W(N) = (N3 + 6N2 – 10N)/12 

Railway lattice 
2 W(N) = (N3 + 3N2 – 4N)/12 

 
This mechanism becomes evident by studying the Wiener index of lattices with 

different dimensionalities. Figure 2 shows in fact the decreasing values of the Wiener index 

(1) for the dT=1 linear chain (W=43680), the dT=2 square lattice (W=10752) and the dT=3 

cubic lattice (W=7680) keeping fixed the number of nodes N (N=64 in this example). The 

plotted descent of W at augmenting lattice dimensionality dT basically arises from the 

increasing number of bonds of each node, from 2 bonds (in the case of dT=1), to 4 (dT=2) 

and finally to 6 in the case cubic lattice, the most compact structure of these three lattices. 

In the case of higher dimensionality dT→∞ one may expect that each nodes is 

bounded to the remaining N-1 ones, the Wiener index [6] assuming values proportional to 

N2 as in the case of the complete graphs KN in Figure 3: 
 

W(N) = (N2 – N)/2   for KN lattices        (3) 
 

This structure represents indeed a very compact graph. Numerically, the K64 case 

has a value of W=2016 that is much lower than the W=7680 value of the cubic lattice with 

N=64 vertices previously computed.  

Above heuristic considerations imply that Wiener index polynomial (2) of an 

infinite lattices with dimensionality dT≥1 should asymptotically follow the W(N) ≈ Ns law 

with the leading exponent s constrained between two integers:  
 

3 ≥ s ≥ 2    for any values of dT≥1        (4) 
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In the inequality (4) the upper limit s=3 corresponds to the case of infinite 

monodimensional lattices (2) whereas the lower boundary value s=2 holds for infinite 

lattices with dimensionality dT→∞. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Wiener index values decrease for dT=1 linear chain (W=43680), dT=2  
                square lattice (W=10752) and dT=3 cubic lattice (W=7680) with fixed 
                number of nodes, being in this example N=64. 

 

Next paragraph is devoted to the generalization of the Wiener index formula (2) to 

chemical structures with dimensions larger than one. A general expression for the leading 

exponent s in W(N) ≈ Ns in term of  dT values will be in fact introduced together with a new, 

general definition of lattice dimensionality dT  that show an intimate relationship with the 

topological compactness of the lattice.  

Some cases confirming the validity of the new method will be given for different 

lattices with dT =2, also fractal. 
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Figure 3. Complete graphs KN for N=2, 3, 4, 5, 6, 7 nodes; their Wiener index  
                values show the N2 dependency. 
  

 

2 WIENER INDEX AND DIMENSIONALITY CONJECTURED 

RELATIONSHIP 
 
The attempt to generalize the Wiener index polynomial rule (2) to chemical structures with 

higher dimensions dT (as graphene, diamond or zeolites) has been undertaken by the 

authors, leading to the following conjecture applicable to transitionally invariant 

dTdimensional lattices (e.g. lattices generated by a unit cell with n0 atoms  in Euclidean 

spaces with dT dimensions): 

 

 Given a dTdimensional lattice, being L the number of unit cells along each edges 

(e.g. the lattice is made of LdT cells), the Wiener index of the lattice is polynomial in 

L thus W(L)≈Lk with the leading exponent k given by: 

k = (2dT +1)    for any values of dT≥1   (5) 
 

Consequently, being N=n0L
dT, the Wiener index has a polynomial-like form W(N) ≈ Ns 

where s is given in terms of dT : 

s = k /dT =2 +1/dT  for any values of dT≥1   (6) 
 

It is easy to verify that formula (6) for s agrees with previously proposed limits (4) 

on the leading exponent for the Wiener index closed form W(N)≈Ns, ranging from s=3 

when dT =1 to s=2 for dT→∞. Finally, expression (6) may be inverted to derive the new, 

searched general definition of dimensionality dW : 
 

dW =(s-2)-1            (7) 
 

Formula (7) represents the conjectured bridge between lattice topological 

compactness, expressed by topological invariant W(N)≈Ns and the lattice dimensionality 
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L=5 

dW. This new definition of dW is supposed to have broad applicability as the next paragraph 

will show; being related to the asymptotic values of the Wiener index topological invariant, 

dW is called Wiener dimensionality. 

 
 

Table 2 The polynomiallike forms W(L) and W(N) for some openends infinite 
dT=2 lattices. The unit cell, when present, is framed. 
 

Lattice                               Unit cell n0 Wiener Index 
Square lattice 
 
 
 
 
 
 

1 

W(L) = (L5 – L3)/3 
W(N) = (N5/2 – N3/2)/3 
 
being N = L2 

Graphene lattice  
 
                   L=3 
 
 
 
 
                                                   L=3 

4 

W(L)=(192L5 –40L3–2L)/15 
W(N)=(6N5/2 –5N3/2 – N1/2)/15 
 
being N=4L2 

Pentagonal nanocone f ≥0 
 
 
 
 
 
 
 
 
 
 
 
 
 

Na 

W(f) = (124f5+620f4+1205f3+ 
             1135f2+516f+90)/6 
 
W(N)≈N5/2 

 
being N=5f2+10f+5 

 
 

Before presenting some examples about the general validity of the conjectured 

formulae (5,6,7), a couple of comments should be given. First of all, equations (5,6) 

0 
12

34
56

L=5 
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describe the Wiener index as a grade k polynomial-like of N–dT; computationally, the 

Wiener index assumes therefore the following general closed forms, with k=(2dT +1): 

 

W(L) = bkL
k + b(k-1)L

(k-1) +…+ b1L
  + b0  for any dT≥1 lattices    (8a) 

 

W(N) = akN
k/dT + a(k-1)N

(k-1)/dT +…+ a1N
1/dT + a0 for any dT≥1 lattices    (8b) 

 

It is worth noticing that Equations (7,8) work also for infinite lattices without unit 

cell; for example, the W(N)≈N5/2 leading term applies to the translationally invariant dT=2 

lattices of the graphene as well to nanocones. The Table 2 presents the polynomial-like 

forms W(L) and W(N) for some open-ends dT=2 lattices with leading exponent k=5 and 

s=5/2 respectively. The graph nodes in the lattice unit cell n0 are framed when present. The 

last graph represents a pentagonal nanocone with f=6 concentric rings, a relevant case of an 

infinite lattice without unit cell for which equations (7,8) are still valid. 

 

3 RESULTS AND DISCUSSION 

Mono-dimensional graphs show the direct proportionality N≈L, thus the polynomials in 

Table 1 may be easily converted in terms of L, for example WLIN(L)= (L3-L)/6, confirming 

the general applicability of Equations (8) to infinite graphs with dT =1, k=s=3. 

In case of bidimensional lattices dT=2, k=5, s=5/2, the Wiener index expressions 

(8) become:   
 

W(L) = b5L
5 + b4L

4 + b3L
3 + b2L

2+ b1L
  + b0              for any dT =2 lattices  (9a) 

 

W(N) = a5N
5/2 + a4N

2 + a3N
3/2 + a2N + a1N

1/2 + a0  for any dT =2 lattices   (9b) 

 

being N=n0L
2.  

 

The Table 2 provides some applications of the Equations (9) to square lattice and 

graphene, whose unit cells are shown surrounded by dotted rectangles. Present calculations 

on translationally invariants bidimensional lattices are coherent with the proposed 

Equations (9) for the Wiener index, being s=5/2 the leading exponent of W(N) in the 

asymptotic limit N→∞. 

The first remarkable extension of the present model is the prediction of the 

asymptotic W(N)≈N5/2 behavior of the Wiener index of the pentagonal nanocone (Table 2). 

Its lattice that in fact does not possess any unit cell, being made of f concentric circles of 

hexagons placed around the central pentagon. The case f=0 corresponds to the graph made 

by the sole pentagon and the nanocone with six complete concentric rings f=6 of hexagons 

is shown at the bottom of Table 2. This infinite nanocone is in effect a bidimensional 
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structure and its Wiener index should then comply with Equation (9b) W(N)≈N5/2 as present 

topological calculations in effect confirm. Therefore Equation (9b) holds for fullerenic 

pentagonal nanocone; article [7,8] provide detailed features of the Wiener index of this 

structure.  

Heptagonal nanocones have a similar Wiener index closed form W(f )=(1428f 5 

175f3 +7f)/30 as is derivable from the numerical values published in the recent paper [9]. 

Above detailed studies on infinite surfaces, confirm the conjectured Equations (5,6,7) with 

k=5, s=5/2 and the asymptotic behavior W(N)≈N5/2 for any dT=2 structure studied so far.  

A more challenging test about Equations (6,7) it has been carried out to derive the 

correct Wiener dW dimensionality of the Sierpinski gasket (SG) starting from the asymptotic 

values of the Wiener index of its lattice (Figure 4). This fractal triangle has a Hausdorff 

dimension dH= log3/log2 intermediate between a line and a surface. Figure 4 shows the 

appealing, self-similar structure of SG after a few growing t steps, the seed of this fractal 

being a simple equilateral triangle (step t=1). This triangle at the second iteration t=2 splits 

itself in four, with one empty part; the fractal dimension of SG originates from this void 

space left in the lattice. Iteratively, this fractal grows until the whole plane is covered. Table 

3 gives the topological descriptors of the SG graph, including its Wiener index W(N). In the 

list, T is the number of elementary triangles in the structure, B is the number of chemical 

bonds on the graph, M is the maximum distance or graph diameter. M equals in this case 

the number of bonds along the triangle edge. The number of lattice nodes N exponentially 

grows with t like all the other graph invariants in Table 3, with the noticeable exception of 

W(N). 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. View of the fractal lattice SG after t=7 growing steps. 
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Focusing on Wiener index, the task of computing the fractal dimensionality dH from 

the leading term of the Wiener index (1) in the limit N→∞ is a non-trivial application of the 

proposed model. If Equations (6,7) are valid, exponent s will then converge to 

s=2+1/dW=2+ln(2)/ln(3). This result has been in fact achieved starting from the computed 

W(N) values of Table 3 by assuming that: 

 
s

N
NaNW 


)(lim        (10) 

 

Exponent s has to be equal to s=2+ln(2)/ln(3) in order to confirm its correlation 

from the Wiener dimensionality dW, Equations (6,7). In (10) both quantities a and s can be 

numerically interpolated from the adjacent pairs (W,N) given in Table 3, as N tends to 

infinity. The logarithmic diagram of ln(W) vs. ln(N) shows linear relationship and the 

intercepts of the segments joining adjacent points quickly converge to the conjectured 

values s=2+ln(2)/ln(3). 

The value of a is determined by taking s=2+ln(2)/ln(3) for any (W,N) pairs, and 

then calculating the appropriate value for a from every (W,N) pair. This method fastly 

converge to the limiting value of a: 

 
)()/(

a
3ln2ln

3

2

885

233








        (11) 

 

The asymptoic leading term of W(N) has then the expected general form (8b) 

W(N)≈aNs, with s=2+1/dT=2+1/dW: 

 

  
)3ln(/)2ln(2

3

2

2885

466
)(lim 











N

N
NW

N
    (12) 

 

Equation (12) has been numerically derived, but the fully analytical demonstration 

of the following relationships has been derived by one of the author [10] for both fractals:  
  

3ln

2ln
2)(lnlim 


NWN

N
  for dT =2 Sierpinski gasket (13a) 

8ln

3ln
2)(lnlim 


NWN

N
  for dT =2 Sierpinski carpet (13a) 

 

Equation (12,13) successful testifies the existence of the conjectured bridge (6,7) 

between lattice topological intrinsic compactness (expressed by the lattice Wiener index) 
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and its dimensionality. This new connection between lattice connectivity and the Wiener 

dimensionality may be written in several intriguing computational ways as the following: 
 

1

2

)(
lnlim 


 WN

N
d

N

NW
       (14) 

generally applicable to any dT-dimensional infinite graphs. 

 

Table 3. Graph invariants for SG graphs: T, B, M, N, W are, respectively, number 
of elementary triangles, number of chemical bonds, graph diameter, number of 
nodes, Wiener index.  
 

t T= 3(t-1) B= 3t M=2(t-1) N = (3t+3)/2 W 

1 1 3 1 3 3 

2 3 9 2 6 21 

3 9 27 4 15 246 

4 27 81 8 42 3.765 

5 81 243 16 123 64.032 

6 243 729 32 366 1.130.463 

7 729 2.187 64 1.095 20.215.254 

8 2.187 6.561 128 3.282 363.069.729 

9 6.561 19.683 256 9.843 6.530.385.420 

10 19.683 59.049 512 29.526 117.517.503.027 

11 59.049 177.147 1.024 88.575 2.115.137.375.634 

12 177.147 531.441 2.048 265.722 38.071.401.560.949 

13 531.441 1.594.323 4.096 797.163 685.278.776.820.264 

14 1.594.323 4.782.969 8.192 2.391.486 12.334.979.163.295.719 

15 4.782.969 14.348.907 16.384 7.174.455 222.029.391.506.636.622 

16 14.348.907 43.046.721 32.768 21.523.362 3.996.527.644.152.854.793 

17 43.046.721 129.140.163 65.536 64.570.083   71.937.489.166.087.238.532 

18 129.140.163 387.420.489 131.072 193.710.246  1.294.874.754.367.873.060.443 

 

 

4 CONCLUSIONS 

A detailed discussion of the polynomial asymptotic behavior of Wiener index on infinite 

lattices has been presented; in all dT≥1 cases studied so far the conjectured polynomial-like 

dependence W≈Ns with s=2+1/dT has been demonstrated valid also for bi-dimensional 

fractal structures. We moreover conjectured the intimate connection between the Wiener 

index of an infinite lattice and its Wiener dimensionality dW=(s-2)-1. This graphtheoretical 
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definition of dimensionality, deeply embedded in the topological compactness of the 

structures, applies to all bidimensional infinite lattices included in the present research. 

Further investigations will be conducted on other fractal structures, like the Koch 

snowflake, the Penrose tiling or the tridimensional SG, to better understand the validity 

range and the limitations of the Wiener way to define lattice dimensionality presented in 

this article. 
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