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ABSTRACT Integrally skinned asymmetric membranes based on nanocomposite 
polyethersulfone were prepared by the phase separation process using the supercritical CO2 
as a nonsolvent for the polymer solution. In present study, the effects of temperature and 
nanoparticle on selectivity performance and permeability of gases has been investigated. It 
is shown that the presence of silica nanoparticles not only disrupts the original polymer 
chain packing but also alters the chemical affinities of penetrants in polyethersulfone 
matrices. Because, in the presence of hydrophilic silica, CO2 affinity filler, hydrogen-bond 
interactions between the oxygen atoms of carbon dioxide and the hydrogen atoms of 
hydroxyl group on the nanosilica surface would take place at the interface and thus 
solubility and consequently permeability towards CO2 are higher in comparison with CH4 
for the membranes. Furthermore, in present study, a novel mathematical approach has been 
proposed to develop a model for permeation flux and selectivity performance of the 
membrane using Support Vector Machine. 
       SVM is employed to develop model to estimate process output variables of a 
nanocomposite membrane including permeation flux and selectivity performance. Model 
development that consists of training, optimization and test was performed using randomly 
selected 80%, 10%, and 10% of available data respectively. Test results from the SVM 
based model showed to be in better agreement with operating experimental data compared 
to other developed mathematical model. The minimum calculated squared correlation 
coefficient for estimated process variables is 0.99. Based on the results of this case study 
SVM proved that it can be a reliable accurate estimation method. 
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1. INTRODUCTION 

Support Vector Machine introduced first by Vapnik, is a supervised learning method with 
associated learning algorithm that analyzes data and recognizes patterns of input/output 
data. In recent years, ANN has been demonstrated to be a substitute for deterministic 
modeling and estimation methods with good potentials to be explored. 
 SVM is based on the structural risk minimization principle from computational 
learning theory. It is one of the most sophisticated non-parametric supervised classifiers 
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available today, with many different configurations depending on kernel function used to 
generate transform function that maps input space into output space. Commonly, several 
functions including linear, polynomial, Radial Basis Function (RBF) and multilayer 
perceptron are used as the kernel function in SVM. By the use of kernels necessary 
computations are performed directly in the input space .Although, it is mostly considered 
as a linear algorithm in a high dimensional feature space, it does not necessitate the 
practical input/output mapping problem to be a high dimensional space problem. A brief 
discussion on mathematical basis of SVM is presented here that helps understanding the 
way SVM works and the features that render it superiority over other learning algorithms. 
 

2. MATHEMATICAL MODEL 

Pattern recognition or classification can be performed by SVM in a data set consisting of 
N data point {ݔ௞, ݇ {௞ݕ = 1,2, … , ܰ where ݔ௞ is a p-dimensional vector and ݕ௞  can take 
one of the two values, either +1 or -1 (i.e., ݕ௞߳{+1, −1} indicating the class to which the 
point ݔ௞ belongs. In their basic form, they learn a linear hyperplane that separates a set of 
positive samples from a set of negative samples with maximum margin. Consider Figure 
1 which shows two possible separating hyperplanes and their associated margins. Both 
hyperplanes can correctly classify all the given data. However, we expect the hyperplane 
with the larger margin to be more accurate in classifying new data than the hyperplane 
with the smaller margin. This is the reason that SVM searches for the hyperplane with the 
largest margin. 
 

 
Figure 1. Support Vector Machine Classifier. 

 

 A separating hyperplane can be written as ݓ. ݔ − ܾ = 0 [1, 2], where w is the 
normal vector to the hyperplane and b represents the offset of the hyperplane from origin 
that is referred to as bias. The offset along the vector w from the origin can be determined 
by  ܾ

ൗ||ݓ|| . As shown in Figure 2, for the cases that the training data are linearly 
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separable, two hyperplanes can separate the data in a way that there are no data points 
between them. Obviously these hyperplanes can be described as: 
 

.ݓ ݔ − ܾ = 1 (2) 

.ݓ ݔ − ܾ = −1 (3) 

 

 
Figure 2. Hyperplane Definition. 

 

 By using geometry, one can show that distance between these two hyperplanes is 
2

ൗ||ݓ|| , so the problem of ||w|| minimization is required to maximize hyperplane margin. 

It is also required to prevent data points from falling into the margin, and other necessary 
constraints are imposed as: 
 

w.ݔ௞b ≥ 1 For ݔ௞ of the first class (4) 
w.ݔ௞b ≤ 1 For ݔ௞ of the second class             (5) 
 
That can be rewritten as: 

.ݓ)௜ݕ ௞ݔ − ܾ) ≥ 1 For ݈݈ܽ   1 ≤ ݇ ≤ ܰ                                      (6) 
 
 Constraint minimization of ||w|| is thus required to develop an ideal classifier. 
Such minimization problem is difficult to solve, however it is possible to substitute 0.5 
 ଶ  instead of ||w|| in problem. It was shown that, minimization problem can be||ݓ||
formulated as: 

min
௪,௕

max
௔ஹ଴

൝
1
2

ห|ݓ|หଶ
− ෍ ܽ௜

ே

௜ୀଵ

ݔݓ)௜ݕ) − ܾ) − 1)ൡ                         (7) 

where i  is Lagrangian multiplier that helps in finding the local minimum or maximum 
of a function. The problem of Eq. 7 can be solved by standard quadratic 
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programming techniques that results in finding normal vector to the hyperplane as 
presented in Eq. 8:  

ݓ = ෍ ܽ௜

௡

௞ୀଵ

௜ݕ  ௜                                            (8)ݔ

 Input/output support vector machine model with the general form of ݕ =  (ݔ)݂
takes the form of Eq.9 in feature space: 
 

(ݔ)݂ = ෍ ܽ௜

ே

௞ୀଵ

. ,ݔ)ܭ (௞ݔ + ܾ                        (9) 

where ݂(ݔ) represents output vector and ݔ)ܭ,  ௞) is the kernel function calculated fromݔ
the inner product of the two vectors x and xk in the feasible region built by the inner 
product of the vectors Ф(x) and Ф(xk) as follows: 

,ݔ)ܭ ௥ (ݔ)௞)=Фݔ . Ф(xk)                         (10) 
 Among choices for Kernel function the Radial Basis Function (RBF) Kernel that 
is used extensively has been applied in this work that is presented in Eq. 11, 

,ݔ)ܭ ௞)=expቀି||௫ೖି୶||మݔ

ఙమ ቁ                               (11) 
where σ is kernel parameter to be determined by an external optimization algorithm 
during the internal SVM calculations. Bias, b, is usually determined by using primal 
constraints as: 
 

b = ቀଵ
ଶ
ቁ ൣmax{௜,௬೔ୀିଵ}൫∑ ௜ܽ௜ݕ

௠
௝ఢ{ௌ௏} ௜ݔ)ܭ , ௝)൯൧ݔ + min{௜,௬೔ୀିଵ}൫∑ ௜ܽ௜ݕ

௠
௝ఢ{ௌ௏} ௜ݔ)ܭ ,  ௝)൯          (12)ݔ

 
 Lagrangian multipliers, ܽ௜, can be calculated by solving following quadratic 
programming problem: 

ω(ܽ) = ∑ ܽ௜
ே
௜ୀଵ − ଵ

ଶ
∑ ܽ௜ ௝ܽݕ௜ ,௜ݔ)ܭ௝ݕ ௝)ேݔ

௜,௝ୀଵ                                (13) 
Subject to constraints 0≤ ܽ௜ ≤γ, i = 1,…, N, where γ is regularization parameter and 
controls the tradeoff between complexity of the support vector machine model and the 
number of non-separable points. This compact formulation of quadratic optimization has 
been proved to have a unique solution. In conclusion, the SVM takes the form of the 
constrained optimization problem of Eq. 14 in order to obtain the optimum value of γ  

minఠ,ఉ,క೔క೔
∗

ଵ
ଶ

||߱||ଶ + ∑.ߛ ௜ߦ) , ௜ߦ
∗)ே

௜ୀଵ                                         (14) 
Subject to 

௜ݕ − ௜ݔ்߱ − ܾ ≤ ߝ + ݐ                    ௜ߦ = 1, … , ܰ 
௜ݔ்߱ + ܾ − ௜ݕ ≤ ߝ + ௜ߦ

ݐ                    ∗ = 1, … , ܰ 
ߦ ≥ ݐ                                                      0 = 1, … , ܰ 
௜ߦ ≥ ݐ                                                      0 = 1, … , ܰ 
 
where  is the precision threshold and ߦ௜, ߦ௜

∗  represent the slack variables with 
nonnegative values to ensure feasible constraints. The first term in Eq. 14 represents 
model complexity while the second term represents the model accuracy or error 
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tolerance. The Mean Square Error (MSE) and Mean Absolute Error (MAE) as defined by 
Eqs. 15 and 16 are used to calculate prediction error of the developed SVM model. 

MSE = ∑ (ை೔ି்೔)మ೙
೔సభ

௡
                                              (15) 

MAE = ଵ
௡

∑ |ܱ௜ − ௜ܶ|௡
௜ୀଵ                                       (16) 

where  Oi is the simulation results of SVM model, Ti represents real time plant data of the 
natural gas sweetening plant and n denotes the number of the data used for model 
evaluation. 
 

3. RESULTS AND DISCUSSION 

The Figurs 3, 4 show the effect of nanoparticle on the CO2 permeation of an integrally 
skinned asymmetric polyethersulfone membrane formed at T=45˚C, P=100 bar, 
DMAc/PES mass ratio of 2.5 and the depressurization rate of 1.83 bar/min. The 
incorporation of silica nanoparticle in the membranes results in further increase in 
permeability towards CO2 compared to CH4 and thus increases the membrane selectivity. 
It is believed that the presence of silica nanoparticles not only disrupts the original 
polymer chain packing but also alters the chemical affinities of penetrants in 
polyethersulfone matrices. Because, in the presence of hydrophilic silica, CO2 affinity 
filler, hydrogen-bond interactions between the oxygen atoms of carbon dioxide and the 
hydrogen atoms of hydroxyl group on the nanosilica surface would take place at the 
interface and thus solubility and consequently permeability towards CO2 are higher in 
comparison with CH4 for the membranes. 
 

 
Figure 3. Effect of silica nanoparticle on the CO2 permeation of the 
integrally skinned polyethersulfone membrane. 
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Figure 4. Effect of silica nanoparticle on membrane selectivity of the 
integrally skinned polyethersulfone membrane. 

 
 The operating plant data collected over the span of one year is used in this case 
study. The data has been normalized between -1 and +1 to prevent truncation error due to 
wide ranges of numerical values for input/output variables to be included in the SVM 
model. Since the model development is based on normalizing data, it is necessary to map 
input data to normalized space accordingly. Normalized model output should also be 
mapped into the space of real values for output variable to be compared to operating plant 
data. To develop input/output model the calculation procedure of section 3 that is 
programmed in Matlab environment is executed on an Intel dualcore2.40 GHz processor 
accompanied by 4G RAM that it took around 12 hours to get convergence. Convergence 
indicates that optimum model is achieved; however, it does not guarantee accuracy of 
model predictions. To ensure model reliability the input variables of test data subset are 
entered to the developed model and model predictions are validated against experimental 
data and are also compared with ANN model prediction where available. The ANN based 
model is of feed-forward back propagation type and was developed using the same 
training data that is used in this research work.  

 

4. CONCLUSION 

The effects of experimental operating conditions such as the temperature and the 
presence of silica nanoparticles in the structure of dense nanocomposite layers were 
investigated. It was found that, it is possible to induce a very-controlled asymmetry in a 
dense film and pore sizes by changing the temperature and pressure. Also, presence of 
silica nanoparticle proved to increase the permeability of CO2 and thus the membrane 
selectivity. Also this study demonstrates the applicability of SVM to develop accurate 
input/output model of the operational variables of ananocomposite membrane. The kernel 
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parameters for developed model are determined and model predictions are compared with 
those obtained from another mathematical model. Beside the general advantages that are 
cited for SVM over ANN as an input/output modeling tool, the predicted data in this 
study showed better performance of support vector machine over artificial neural 
networks in terms of accuracy. The numerical values of AAD% calculated showed a 
minimum 12% improvement gained by SVM over ANN that is of great importance if the 
predicted data are to be used for monitoring and/or control purposes. This study reveals 
some the application potentials of SVM as a modeling tool in oil and gas industries that 
requires much more attention to be fully understood. 
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