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Abstract

A fullerene graph is a 3-connected, planar cubic graph
where each face is either pentagonal or hexagonal. This paper
investigates the symmetric division eccentric index (SDE ) of
fullerenes, particularly focusing on two infinite classes F10n and
F12n. We establish several bounds for fullerene graphs. We also
explore the automorphism group actions on the vertices and
edges of these fullerene graphs, establishing a relation between
edge orbits and their eccentricities. General formulas for
calculating SDE -indices are derived for F10n, when n ≥ 8 and
F12n, when n ≥ 10. Furthermore, we present a new approach
to compute the SDE -index and then implement the method to
obtain general formulas for the SDE -index of the given classes
of fullerenes.

c© 2025 University of Kashan Press. All rights reserved.

1 Introduction
Complex systems analysis has gained prominence across physics, chemistry, and biology, de-
manding tools beyond traditional methods. Graph theory offers a powerful framework, rep-
resenting these systems as networks where nodes signify entities and edges represent their
interactions. This paper introduces the symmetric division eccentric (SDE) index, a novel
graph invariant that extends the symmetric division degree index by using vertex eccentricities
instead of degrees. We analyze the SDE-index for two infinite families of fullerene graphs, F10n

(n ≥ 8) and F12n (n ≥ 10). This work contributes to understanding graph structural properties
and suggests further research into the SDE-index and its applications.
Fullerene graphs are mathematical paradigms of fullerene molecules. Conventionally, a fullerene
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graph is a three-connected plane cubic graph in which every face is a pentagon or a hexagon.
These structures depict a unique class of carbon-cage molecules, where carbon atoms are ar-
ranged in a nearly spherical layout. These structures exhibit remarkable chemical and physical
properties, making them of significant interest in fields such as nanotechnology, materials sci-
ence, and medicinal chemistry. Many authors have studied various indices of different families
of fullerenes [1, 2].

Icosahedral arrangements of carbon atoms have also been observed since the 1980s, collec-
tively known as fullerenes. The most prominent icosahedral fullerene is the buckyball C60 [3],
which in mathematical nomenclature is called a truncated icosahedron and has the shape of
a football. All these cages share the property that carbon atoms each have three bonds to
other carbon atoms of roughly the same length and angle, namely, fullerene cages are three-
connected, see [4]. Although the fullerene molecules were theoretically predicted and discussed
[3], it was nevertheless a surprise for the largest part of the scientific community when Kroto
et al. published a paper announcing their experimental discovery. Yet, the basic geometry and
symmetry behind such structures was known at least since 1937 when Goldberg discussed a class
of polyhedra, now often called Goldberg polyhedra, consisting only pentagonal and hexagonal
faces [5].

Fullerenes, such as C60 (Buckminsterfullerene), are known for their high symmetry and
stability. They consist of 12 pentagonal and

(
n
2 − 10

)
hexagonal faces, where n is the number

of carbon atoms and n 6= 22 is a natural number equal to or greater than 20.
The study of fullerenes extends beyond their chemical properties to their topological charac-

teristics, which can be analyzed using various graph theoretical indices. The symmetric division
eccentric (SDE ) index is one such measure that captures the distribution of eccentricities among
the vertices of a graph.

Throughout this paper, our terminology and notations, in general, will be standard; for
other definitions, we refer the reader to texts on Graph Theory, such as [6–9].

2 Main results
In theoretical chemistry, topological indices are major tools for computing the properties of
molecular compounds. Throughout this paper, we consider only simple connected graphs. The
vertex and edge sets of a graph G are denoted by V (G) and E(G), respectively. The distance
between two vertices u and v in V (G), denoted by d(u, v), is defined as the length of the shortest
path connecting u and v.

The symmetric division eccentric index is a newly defined graph invariant given by the
following formula [10–12]

SDE(G) =
∑
uv∈E

ε2(u) + ε2(v)

ε(u)ε(v)
,

and ε(u) denotes the eccentricity of vertex u.
In [13, 14], the general form of the SDD, known as the generalized symmetric division degree

is defined by replacing the degree of vertices with a function f of vertex properties, denoted by
GSDD as

GSDD(G) =
∑
uv∈E

f(u)

f(v)
+
f(v)

f(u)
,

where f(u) and f(v) denote the values of function f at vertices u and v, respectively.
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Following, the SDD-index and putting f(u) = ε(u) and f(v) = ε(v), for every edge e = uv, in
generalized form of SDD-index, the symmetric division eccentric index is defined as follows:

SDE(G) =
∑

uv∈E(G)

(
ε(u)

ε(v)
+
ε(v)

ε(u)

)
,

where ε(u) denotes the eccentricity of vertex u, see [15].
For the edge e = uv ∈ E(G), we define the eccentricity of the edge e, denoted by ε(e), as the
ordered pair ε(e) = [ε(u), ε(v)], where ‖ε(e)‖ = ε(u)ε(v).
In following, for shorting, the eccentricity of a vertex u is also denoted by εu.

Lemma 2.1. ([11]). Suppose G is a graph, and A1, A2, . . . , At are the edge-orbits of Aut(G)
under its action on E(G). Let ei = uivi ∈ Ai (1 ≤ i ≤ t). Then

SDE(G) =

t∑
j=1

|Aj |
(
εuj

εvj
+
εvj
εuj

)
.

In particular, if G is edge-transitive, then

SDE(G) = 2m or SDE(G) =

(
a2 + b2

ab

)
m,

for some a and b.

3 The symmetric division eccentric index of two classes of
fullerenes

A bijection σ on the vertex set of graph G is named an automorphism of the graph if it preserves
the edge set. In other words, σ is an automorphism if e = uv is an edge, then σ(e) = σ(u)σ(v)
is an edge of E. Let Aut(G) = {α : V → V, α is bijection}, then Aut(G) under the composition
of mappings forms a group. Aut(G) acts transitively on V if for any vertices u and v in V
there is α ∈ Aut(G) such that α(u) = v.

The goal of this section is to compute the symmetric division eccentric index of two infinite
classes of fullerenes, namely F10n and F12n, where n ≥ 8 and n ≥ 10, respectively. We begin by
considering the infinite class of fullerenes with exactly 10n vertices and 15n edges, depicted in
Figure 1. The symmetric division eccentric index of F10n for 2 ≤ n ≤ 7 is presented in Table 11.
For n ≥ 8, a general formula for the symmetric division eccentric index of F10n will be derived
in this section.

Next, we present a new approach for calculating the symmetric division eccentric index of
graphs. We then implement this method to obtain general formulas for the sde-index of two
infinite classes of fullerenes.
For an edge e = uv of a graph G, the sde of an edge e is denoted by sde(e). Hence,

sde(e) =
ε(u)

ε(v)
+
ε(v)

ε(u)
,

and then
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Figure 1: The molecular graph of the fullerene graph F10n, where n = 6.

SDE(G) =
∑

e∈E(G)

sde(e).

We define a relation R on the set of edges of a graph G as follows: for e, f ∈ E(G), we say that e
is related to f , denoted by eRf , if and only if sde(e) = sde(f). It is not difficult to verify that R
is an equivalence relation on E(G). Consequently, R induces a partition of E(G) into r disjoint
equivalence classes E1, E2, . . . , Er . For e ∈ E(G), the equivalence class [e]R = {f ∈ E(G) | eRf}
is denoted by Ei, for i = 1, 2, . . . , r. Therefore, we have E(G) =

⋃r
i=1 Ei.

Fact 1. For any two edges e and f in the same edge orbit E of a graph G, we have sde(e) =
sde(f). However, the converse does not hold. This means that if sde(e) = sde(f), it does not
necessarily follow that e and f belong to the same edge orbit E.
Fact 2. Let G be a self-centered graph. Then the eccentricities of all vertices of G are the
same and G has only one R-class. This implies that sde(e) = 2 for all edges e of G. Therefore,

SDE(G) =
∑

e∈E(G)

sde(e) = 2|E|.

Example 3.1. The Petersen graph Pe is a graph with 10 vertices, 15 edges, and 3-regular. Since
the radius and diameter of the Petersen graph Pe are equal, then the graph is self-centered.
Therefor, by using Fact 2 we get

SDE(Pe) = 2|E| = 2(15) = 30.

Fact 3. If G is an edge-transitive or a bi-centered graph, then the contribution of all edges is
the same, and we have only one edge orbit. Consequently, sde(e) = sde(f) for any e and f of
G. This implies that

SDE(G) =
∑

e∈E(G)

sde(e) = |E| sde(e),
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for an arbitrary edge e.

Example 3.2. The Gray graph, denoted by Gr, is the smallest trivalent semi-symmetric graph.
It is 3-regular and edge-transitive but not vertex-transitive [16]. It is a bipartite graph with 54
vertices and 81 edges. Then,

SDE(Gr) =
∑

e∈E(Gr)

sde(e) = |E| · sde(e),

for an arbitrary edge e of Gr.
Since ε(u) = 6 for any vertex u in Gr, the value of sde(e) for any edge e ∈ E(Gr) is

sde(e) = 2.

Therefore, the symmetric division eccentric index for the Gray graph is given by

SDE(Gr) = 2× 81 = 162.

Fact 4. If G is a vertex-transitive graph then for any edge e = uv in E(G), we have

ε(u) = ε(v),

and thus

SDE(G) = 2|E(G)|.

Lemma 3.3. Let E1, E2, . . . , Er be the classes of a graph G under the relation R on the set of
edges E(G), and let ei = uivi ∈ Ei, for 1 ≤ i ≤ r. Then

SDE(G) =
r∑
i=1

∑
ei∈Ei

|Ei|
(
ε(ui)

2 + ε(vi)
2

‖ε(ei)‖

)
. (1)

Proof. Let Ei for i = 1, 2, . . . , r be the equivalence classes of the graph G under the relation
R on the set E(G). Since, for any two edges e and f in the same R-classes of G, we have
sde(e) = sde(f), it follows that E(G) =

⋃r
i=1 Ei. Therefore, the result follows. �

Now, given that the fullerene Fn, with order n and size m, is a 3-regular graph, it follows
immediately that 2m = 3n. Therefore

SDE(Fn) =
∑

uv∈E(Fn)

ε(u)2 + ε(v)2

ε(u)ε(v)
=

∑
uv∈E(Fn)

(
(ε(u)− ε(v))2 + 2ε(u)ε(v)

ε(u)ε(v)

)

= 3n+
∑

uv∈E(Fn)

(ε(u)− ε(v))2

‖ε(e)‖
. (2)

By combining Equations (1), (2) and utilizing the fact that |ε(u)−ε(v)| ≤ 1 for any two adjacent
vertices u and v in V (Fn), we derive the following useful formula.

Corollary 3.4. For the fullerene graph Fn on n vertices, we have

SDE(Fn) = 3n+
∑

uv∈E(Fn)
ε(u) 6=ε(v)

1

‖ε(e)‖
.
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Based on the findings outlined above, we arrive at the following definition.

Definition 3.5. The generalized second eccentric Zagreb index of the molecular graph G,
EMα

2 (G), is a new topological index defined as

EMα
2 (G) =

∑
uv∈E(G)

(ε(u)ε(v))α, for α ∈ R.

Thus, we can conclude that

SDE(Fn) = 3n+ EM−12 (Fn).

We know that for any graph G, r ≤ ε(u) ≤ d, where r and d are the radius and diameter of G,
respectively.
Now, for the fullerene Fn on n vertices and for any edge e = uv, we have

1

ε(u)ε(v)
≥ 1

d2
and

1

ε(u)ε(v)
≤ 1

r2
.

Therefore

SDE(Fn) ≥ 3n+
∑

uv∈E(G)
ε(u)6=ε(v)

1

d2
= 3n+

t

d2
,

and

SDE(Fn) ≤ 3n+
∑

uv∈E(G)
ε(u)6=ε(v)

1

r2
= 3n+

t

r2
,

in which t is the number of edges e = uv satisfying ε(u) 6= ε(v).
Hence, we arrive at the following result.

Corollary 3.6. For the fullerene graph Fn on n vertices, we have

3n+
t

d2
≤ SDE(Fn) ≤ 3n+

t

r2
,

in which t is the number of edges e = uv of Fn satisfying ε(u) 6= ε(v).

In [17], Ghorbani and Rahmani demonstrated that the fullerene graph F10n as depicted in
Figure 2, for even n (odd n), has n orbits under the action of the automorphism group on the
set of vertices, and they computed the n members of each orbit. They also showed that F10n,
for even n (odd n), has n + 1 orbits under the action of the automorphism group on the set
of edges. It is known that the automorphism group Aut(G) acting on the vertex set V (G) is
closely related to its action on the edge set E(G). Following the approach in [17], we obtain the
n + 1 orbits of F10n, for even and odd n under the action of the automorphism group on the
set of edges. The n+1 orbits of F10n as depicted in Figure 3, for even n, are shown in Table 1.
The first n

2 orbits correspond to edges within layers, while the remaining n
2 + 1 orbits consist

of the vertical edges.

The n+ 1 orbits of F10n, for odd n under the action of the automorphism group on the set of
edges, are given in Table 2. The first n+1

2 orbits correspond to edges within layers while the
remaining n+1

2 orbits consist of the vertical edges.
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Figure 2: The planar graph of F10n, where n is even (n = 6).

Figure 3: The planar graph F10n, where n is odd (n = 7).
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Table 1: Members of the edge orbits of F10n, for even n.

Orbit Edge orbit members Number
E1 e11, e

1
2, e

1
3, e

1
4, e

1
5, e

(n+1)
1 , e

(n+1)
2 , e

(n+1)
3 , e

(n+1)
4 , e

(n+1)
5 10

E2 e21, e
2
2, e

2
3, . . . , e

2
10, e

n
1 , e

n
2 , e

n
3 , . . . , e

n
10 20

E3 e31, e
3
2, e

3
3, . . . , e

3
10, e

(n−1)
1 , e

(n−1)
2 , e

(n−1)
3 , . . . , e

(n−1)
10 20

...
...

...
En/2 e

(n/2+1)
1 , e

(n/2+1)
2 , e

(n/2+1)
3 , . . . , e

(n/2+1)
10 10

En/2+1 a1, b1, c1, d1, e1, an, bn, cn, dn, en 10
En/2+2 a2, b2, c2, d2, e2, a(n−1), b(n−1), c(n−1), d(n−1), e(n−1) 10
En/2+3 a3, b3, c3, d3, e3, a(n−2), b(n−2), c(n−2), d(n−2), e(n−2) 10

...
...

...
En+1 a(n/2), b(n/2), c(n/2), d(n/2), e(n/2), a(n/2+1), b(n/2+1),

c(n/2+1), d(n/2+1), e(n/2+1)
10

Table 2: Members of the edge orbits of F10n, for odd n.

Orbit Edge orbit members Number
E1 e11, e

1
2, e

1
3, e

1
4, e

1
5, e

(n+1)
1 , e

(n+1)
2 , e

(n+1)
3 , e

(n+1)
4 , e

(n+1)
5 10

E2 e21, e
2
2, e

2
3, . . . , e

2
10, e

n
1 , e

n
2 , e

n
3 , . . . , e

n
10 20

E3 e31, e
3
2, e

3
3, . . . , e

3
10, e

(n−1)
1 , e

(n−1)
2 , e

(n−1)
3 , . . . , e

(n−1)
10 20

...
...

...
E(n+1)/2 e

(n+1)/2
1 , e

(n+1)/2
2 , e

(n+1)/2
3 , . . . , e

(n+1)/2
10 , e

(n+3)/2
1 ,

e
(n+3)/2
2 , e

(n+3)/2
3 , . . . , e

(n+3)/2
10

20

E(n+3)/2 a1, b1, c1, d1, e1, an, bn, cn, dn, en 10
E(n+5)/2 a2, b2, c2, d2, e2, a(n−1), b(n−1), c(n−1), d(n−1), e(n−1) 10
E(n+7)/2 a3, b3, c3, d3, e3, a(n−2), b(n−2), c(n−2), d(n−2), e(n−2) 10

...
...

...
En+1 a(n+1)/2, b(n+1)/2, c(n+1)/2, d(n+1)/2, e(n+1)/2 5

Since any two edges e and f of E(F10n) in the same edge orbit Ei satisfy sde(e) = sde(f), it
follows that the relation R induces a partition of E(F10n) into n disjoint equivalence classes
E1, E2, . . . , En. It is clear that

E(F10n) =

n⋃
i=1

Ei.

We classify the n classes under the relation R on the set of edges, and the corresponding number
of elements for each class of F10n, for even n ≥ 8, are obtained and given in Table 3. The first
n
2 classes correspond to edges within cycle layers, while the remaining n

2 classes consist of the
vertical edges.
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Table 3: Members of the edge classes of F10n, for even n ≥ 8.

Partition R-classes members Number

E1 e11, e
1
2, e

1
3, e

1
4, e

1
5, e

n+1
1 , en+1

2 , en+1
3 , en+1

4 , en+1
5 ,

e
n/2+1
1 , e

n/2+1
2 , e

n/2+1
3 , . . . , e

n/2+1
10

20

E2 e21, e
2
2, e

2
3, . . . , e

2
10, e

n
1 , e

n
2 , e

n
3 , . . . , e

n
10 20

E3 e31, e
3
2, e

3
3, . . . , e

3
10, e

n−1
1 , en−12 , en−13 , . . . , en−110 20

...
...

...

En/2 e
n/2
1 , e

n/2
2 , e

n/2
3 , . . . , e

n/2
10 , e

n/2+2
1 , e

n/2+2
2 , . . . , e

n/2+2
10 20

En/2+1 a1, b1, c1, d1, e1, an, bn, cn, dn, en 10

En/2+2 a2, b2, c2, d2, e2, an−1, bn−1, cn−1, dn−1, en−1 10

En/2+3 a3, b3, c3, d3, e3, an−2, bn−2, cn−2, dn−2, en−2 10
...

...
...

En an/2, bn/2, cn/2, dn/2, en/2, an/2+1, bn/2+1, cn/2+1,
dn/2+1, en/2+1

10

The n classes under the relation R on the set of edges of F10n, for odd n ≥ 9, are given in
Table 4. The first n+1

2 classes correspond to edges within cycle layers, while the remaining n−1
2

classes consist of the vertical edges.

Table 4: Members of the edge classes of F10n, for odd n ≥ 9.

Partition R-classes members Number

E1 e11, e
1
2, e

1
3, e

1
4, e

1
5, e

n+1
1 , en+1

2 , en+1
3 , en+1

4 , en+1
5 ,

a(n+1)/2, b(n+1)/2, c(n+1)/2, d(n+1)/2, e(n+1)/2
15

E2 e21, e
2
2, e

2
3, . . . , e

2
10, e

n
1 , e

n
2 , e

n
3 , . . . , e

n
10 20

E3 e31, e
3
2, e

3
3, . . . , e

3
10, e

n−1
1 , en−12 , en−13 , . . . , en−110 20

...
...

...

E(n+1)/2 e
(n+1)/2
1 , e

(n+1)/2
2 , e

(n+1)/2
3 , . . . , e

(n+1)/2
10 ,

e
(n+3)/2
1 , e

(n+3)/2
2 , . . . , e

(n+3)/2
10

20

E(n+3)/2 a1, b1, c1, d1, e1, an, bn, cn, dn, en 10

E(n+5)/2 a2, b2, c2, d2, e2, an−1, bn−1, cn−1, dn−1, en−1 10

E(n+7)/2 a3, b3, c3, d3, e3, an−2, bn−2, cn−2, dn−2, en−2 10
...

...
...

En a(n−1)/2, b(n−1)/2, c(n−1)/2, d(n−1)/2, e(n−1)/2,
a(n+3)/2, b(n+3)/2, c(n+3)/2, d(n+3)/2, e(n+3)/2

10

Some exceptional cases of the R-classes of F10n for 2 ≤ n ≤ 7 are presented in Table 5, detailing
the number of edges in each partition. Additionally, the sde(e) for an arbitrary edge e in each
partition is presented.
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Table 5: Some exceptional cases of the edge partitions of F10n, for 2 ≤ n ≤ 7.

Fullerenes # Edge Partitions |Ei| sde(e) e ∈ Ei
F20 1 30 2

F30 1 45 2

F40 3 40, 10, 10 2, 2.018, 2.024

F50 3 55, 10, 10 2, 2.014, 2.018

F60 5 40, 20, 10, 10, 10 2, 2.011, 2.009, 2.014, 2.018

F70 6 35, 20, 20, 10, 10, 10 2, 2.007, 2.011, 2.006, 2.009, 2.014

We illustrate these ideas in the following example.

Example 3.7. Consider the fullerene F40, as depicted in Figure 4. It is clear that |V (F40)| = 40
and |E(F40)| = 60. The classes of F40 under the relation R on the set of edges, the number of
elements of each class, and for an arbitrary edge e in each class, the corresponding eccentricities
of their end vertices are given in Table 6.

Figure 4: The planar graph of fullerene F10n, where n = 4.

Now, by applying Corollary 3.4, we obtain

SDE(F40) = 3(40) +
10

7.8
+

10

6.7
= 120 + 0.238095 + 0.1785714 ≈ 120.41667.

The following result follows from the preceding discussion, Lemma 3.3 and Corollary 3.6.

Theorem 3.8. The SDE-index of the fullerene graph F10n for n ≥ 8 is given as

(a) SDE(F10n) = 30n+ 10

(
1

n
− 2

2n− 1

)
+ 10

n/2∑
i=1

fi,
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Table 6: Edge partitions of the fullerene F40.

Partition Class members Number ε(u), ε(v)
E1 e11, e

1
2, e

1
3, e

1
4, e

1
5, e

5
1, e

5
2, e

5
3, e

5
4, e

5
5,

e21, e
2
2, e

2
3, . . . , e

2
10, e

4
1, e

4
2, e

4
3, . . . , e

4
10,

e31, e
3
2, e

3
3, . . . , e

3
10

40 8, 8

E2 a1, b1, c1, d1, e1, a4, b4, c4, d4, e4 10 7, 8
E3 a2, b2, c2, d2, e2, a3, b3, c3, d3, e3 10 6, 7

where

fi =

[
1

2(n− i)
+

1

2(n− i) + 1
− 2

2(n− i) + 2

]
,

and n is even.

(b)SDE(F10n) = 30n+ 10

(n−1)/2∑
i=1

fi,

where

fi =

[
2

2(n− i)− 1
− 1

2(n− i)
− 1

2(n− i) + 1

]
,

and n is odd.

Proof. Let E1, E2, . . . , En be all R-classes of the fullerene F10n, n ≥ 8, given in Tables 3 and 4
under the relation R on the set of edges E(Fn), and ei = uivi ∈ Ei, satisfying ε(ui) 6= ε(vi), for
1 ≤ i ≤ n. Then we have

SDE(F10n) = 30n+

n∑
i=1

∑
uivi∈Ei

ε(ui) 6=ε(vi)

|Ei|
‖ε(ei)‖

. (3)

a) If n is even, then we classify the edges of F10n into two main types:
1) Ring edges (see Table 7): These consist of edges in the i-th layer, where 1 ≤ i ≤ n+1. Each
layer forms a cycle, and the vertices within each cycle are connected via ring edges.
2) Vertical edges(see Table 8): These include the vertical edges that connect a vertex u in
the i-th layer to a vertex v in the (i + 1)-th layer, where 1 ≤ i ≤ n − 1. The vertical edges
connect vertices between adjacent layers, maintaining the structure of the fullerene graph. The
eccentricities of vertices u and v for both types of edges (ring and vertical) are provided in the
Tables 7 and 8.

Due to the symmetry of the fullerene graph F10n and for even n, we observe that the
eccentricities of the ring edges in the first layer are identical to those corresponding edges in
the (n+1)th layer, the eccentricities of the ring edges in the second layer are identical to those
corresponding edges in the n-th layer, and this pattern continues, with the eccentricities of
the ring edges in the n

2 th layer being identical to those corresponding edges in the
(
n
2 + 2

)
th

layer. The same symmetry holds for the vertical edges. Now, using Tables 3, 7 and 8 and
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Table 7: Ring edges of the fullerene F10n, with even n ≥ 8.

i ε(u) ε(v) # Edges
1 2n− 1 2n− 1 5

2 ≤ i ≤ n
2 2(n− i) + 2 2(n− i) + 1 5(n− 2)

i = n
2 + 1 n n n

n
2 + 2 ≤ i ≤ n 2(i− 2) + 2 2(i− 2) + 1 5(n− 2)

n+ 1 2n− 1 2n− 1 5

Table 8: Vertical edges of the fullerene F10n, with even n ≥ 8.

i ε(u) ε(v) # Edges
1 ≤ i ≤ n

2 2(n− i) + 1 2(n− i) 5
2n

n
2 + 1 ≤ i ≤ n 2(i− 1) + 1 2(i− 1) 5

2n

Corollary 3.6, we arrive at

SDE(F10n) =30n+
n∑
i=1

∑
uivi∈Ei

ε(ui)6=ε(vi)

|Ei|
‖ε(ei)‖

=30n+ 20

n/2∑
i=2

1

[2(n− i) + 2][2(n− i) + 1]

+ 10

n/2∑
i=1

1

[2(n− i) + 1][2(n− i)]
.

Finally, by simplifying the above formula, we get SDE(F10n) as given in the statement of the
theorem part (a).

b) If n is odd, then again we classify the edges of F10n into two main types:
1)Ring edges (see Table 9), which consist of edges in the i-th layer, for 1 ≤ i ≤ n+ 1.
2) Vertical edges (see Table 10), which include the vertical edges connecting a vertex u in the
i-th layer to vertex v in the (i+ 1)-th layer, for 1 ≤ i ≤ n− 1. The eccentricities of u and v for
both types are given in the Tables 9 and 10.

Table 9: Ring edges of the fullerene F10n, with odd n ≥ 9.

i ε(u) ε(v) # Edges
1 2n− 1 2n− 1 5

2 ≤ i ≤ n+1
2 2(n− i) + 2 2(n− i) + 1 5(n− 1)

n+3
2 ≤ i ≤ n 2(i− 2) + 2 2(i− 2) + 1 5(n− 1)
n+ 1 2n− 1 2n− 1 5

Similar to the last case, agian symmetry of the fullerene graph F10n yields that for odd n
the eccentricities of the ring edges in the first layer are identical to those corresponding edges
in the (n + 1)th layer, the eccentricities of the ring edges in the second layer are identical to
those corresponding edges in the nth layer, and this pattern continues, with the eccentricities of
the ring edges in the (n+1)

2 th layer being identical to those corresponding edges in the (n+3)
2 th
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Table 10: Vertical edges of the fullerene F10n, with odd n ≥ 9.

i ε(u) ε(v) # Edges
1 ≤ i ≤ n−1

2 2(n− i) + 1 2(n− i) 5
2 (n− 1)

n+1
2 n n 5

n+3
2 ≤ i ≤ n 2(i− 1) + 1 2(i− 1) 5

2 (n− 1)

layer. The same symmetry holds for the vertical edges. Now, using Tables 4, 9 and 10, and
Corollary 3.6, we arrive at

SDE(F10n) =30n+

n∑
i=1

∑
uivi∈Ei

ε(ui) 6=ε(vi)

|Ei|
‖ε(ei)‖

=30n+ 20

(n+1)/2∑
i=2

1

[2(n− i) + 2][2(n− i) + 1]

+ 10

(n−1)/2∑
i=1

1

[2(n− i) + 1][2(n− i)]
.

Finally, by simplifying the above formula, we get SDE(F10n) as given in the statement of the
theorem part (b). Some exceptional cases of Theorem 3.8 are presented in the Table 11.

Table 11: Some exceptional cases of Theorem 3.8

Fullerenes Some exceptional symmetric division eccentric index for 2 ≤ n ≤ 7
F20 60
F30 90
F40 120.4166667
F50 150.3174603
F60 180.6305916
F70 210.6676379

�

Consider now an infinite class of fullerenes with exactly 12n vertices and 18n edges, depicted
in Figure 5. By applying similar techniques and methods as in the proof of Theorem 3.8, we
obtain the symmetric division eccentric index of the fullerene F12n, as given below.

Theorem 3.9. The SDE-index of the fullerene graph F12n for n ≥ 10 is given by

(a) SDE(F12n) = 36n+ 12

(
1

n
− 2

2n− 1

)
+ 12

n/2∑
i=1

fi,

where

fi =

[
1

2(n− i)
+

1

2(n− i) + 1
− 2

2(n− i) + 2

]
,
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Figure 5: The planar graph of fullerene F12n where n = 7.

and n is even.

(b) SDE(F12n) = 36n+ 12

(n−1)/2∑
i=1

fi,

where

fi =

[
2

2(n− i)− 1
− 1

2(n− i)
− 1

2(n− i) + 1

]
,

and n is odd.

Proof. The proof is straightforward. The exeptional cases are given in Table 12. �

Table 12: Some exceptional symmetric division eccentric index for 2 ≤ n ≤ 9.

Fullerenes Some exceptional symmetric division eccentric index for 2 ≤ n ≤ 9
F24 72
F36 108
F48 144.2142857
F60 180.3
F72 216.4090909
F84 252.5011655
F96 288.6901765
F108 324.7009608

Theorem 3.10. For a fullerene graph F10n with n ≥ 8 vertices, the SDE-index satisfies the
following inequalities:

15n(8n2 − 12n+ 5)

2(2n− 1)(n− 1)
≤ SDE(F10n) ≤

15(2n2 + 2n+ 1)

n+ 1
.
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Proof. By [18, Theorem 3] , the radius and diameter of F10n are given by n and 2n − 2,
respectively. Using the fact that r ≤ ε(u) ≤ d, where r is the radius and d is the diameter, we
obtain:

SDE(F10n) ≤
(

r

r + 1
+
r + 1

r

)
m.

Substituting r = n, we get:

SDE(F10n) ≤
(

n

n+ 1
+
n+ 1

n

)
m =

15(2n2 + 2n+ 1)

n+ 1
.

On the other hand, since

SDE(F10n) ≥
(

d

d+ 1
+
d+ 1

d

)
m,

substituting d = 2n− 2, we get:

SDE(F10n) ≥
(
2n− 2

2n− 1
+

2n− 1

2n− 2

)
m =

15n(8n2 − 12n+ 5)

2(2n− 1)(n− 1)
.

This completes the proof. �

By a similar way, using [18, Theorem 2], we find that rad(F12n) = n and diam(F12n) = 2n−1
and thus we conclude the following result.

Theorem 3.11. For a fullerene F12n with n ≥ 10 vertices, the SDE-index satisfies the following
inequalities:

18(2n2 + 2n+ 1)

n+ 1
≤ SDE(F12n) ≤

9(8n2 − 4n+ 1)

2n− 1
.

4 Conclusion
The link between the calculated SDE index and boiling points is examined in this section using
regression models. Table 13 lists 30 different fullerenes, each with a unique identifier, their
corresponding SDE values, and their boiling points. The SDE value and boiling points are
provided in numerical form, allowing for a quantitative analysis.

The relationship between the SDE index and the boiling point of fullerenes was systemati-
cally examined using several regression models. The dataset of 30 fullerenes (Table 13) provided
a reliable basis for evaluating the predictive capacity of the SDE index. Regression analyses
were performed in SPSS, and the results are presented in Table 14.

The statistical outputs indicate that all regression models tested (linear, quadratic, cubic,
logarithmic, and exponential) are highly significant, with P-values less than 0.05, see Figure 6.
This demonstrates that the SDE index is strongly correlated with the boiling point of fullerenes.
However, the strength of association, measured by the coefficient of determination (R2), varied
across models.

The quadratic and cubic models achieved the highest R2 values (0.998), confirming their
excellent ability to describe the nonlinear relationship between SDE and boiling point. The
linear regression model also performed very well (R2=0.978), suggesting that even a simple
linear equation captures most of the variability in the data. The logarithmic model (R2=0.971)



370 I. Dler Ali et al./ The Symmetric Division Eccentric Index of Two....

Table 13: SDE index and boiling point data for fullerenes.

No. # F SDE Bp No. # F SDE Bp
1 F20 60 381.6 16 F50 150 753.8
2 F24 72 443.5 17 F50 150.43 753.8
3 F26 78.2 472.4 18 F52 156.32 773.6
4 F28 85.2 500.1 19 F54 162.46 793.0
5 F30 90.6 526.8 20 F60 180 849
6 F30 90.333 526.4 21 F72 216.67 952.9
7 F32 96.14 552.6 22 F74 222.71 969.2
8 F34 102.1 577.5 23 F80 240 1017
9 F36 108.19 601.7 24 F100 300.15 1296
10 F38 114 625.1 25 F120 360.18 1417
11 F40 120 647.9 26 F140 420.37 1530
12 F40 120 647.9 27 F160 480.39 1635
13 F40 138.48 691.8 28 F180 540.53 1735
14 F42 126 670.1 29 F200 600.52 1829
15 F48 144.21 733.6 30 F220 660.66 1933

Table 14: Model summary and parameter estimates.

Equation R Square F Sig. Constant b1 b2 b3
Linear .978 1230.972 .000 329.137 2.656
Logarithmic .971 949.360 .000 -2498.150 662.097
Quadratic .998 7381.019 .000 148.883 4.389 -.003
Cubic .998 4929.912 .000 130.058 4.654 -.004 9.232E-7
Exponential .892 232.125 .000 465.867 .003

showed slightly weaker performance, while the exponential model (R2=0.892) was the least
accurate.

Despite the superior fit of the quadratic and cubic models, the linear regression was chosen
as the most appropriate model for interpretation and prediction. This preference is justified by
its simplicity, reduced risk of overfitting, and ease of application in practical settings. Moreover,
the small difference in predictive power between the linear and higher-order models indicates
that the added complexity of polynomial equations does not yield substantial improvement.

The findings highlight a strong quantitative relationship between the SDE index and the
boiling point of fullerenes. The consistency across different regression models reinforces the ro-
bustness of the SDE index as a reliable topological descriptor. In particular, the high predictive
ability of the linear model underscores its value in correlating structural features of fullerenes
with their physicochemical properties.

Beyond fullerenes, these results contribute to the broader understanding of how topological
indices can serve as powerful descriptors for physicochemical and thermodynamic properties in
diverse chemical systems. Previous studies have shown that indices such as Wiener, Zagreb,
and Randić provide useful correlations in alkanes, benzenoids, and other molecular classes. The
present findings extend this utility to the SDE index, suggesting its potential for application in
predicting stability, reactivity, and phase behavior across a wider range of nanostructures and
molecular frameworks. Consequently, the SDE index may play an important role in computa-
tional chemistry, materials science, and the rational design of novel carbon-based nanomaterials.
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Figure 6: The scatter plot of correlation between SDE index and boiling points of fullerenes.
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