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Abstract

A fullerene graph is a 3-connected, planar cubic graph
where each face is either pentagonal or hexagonal. This paper
investigates the symmetric division eccentric index (SDE) of
fullerenes, particularly focusing on two infinite classes Fig, and
F15,. We establish several bounds for fullerene graphs. We also
explore the automorphism group actions on the vertices and

edges of these fullerene graphs, establishing a relation between
edge orbits and their eccentricities. General formulas for
calculating SDE-indices are derived for Fg,, when n > 8 and
Fia,, when n > 10. Furthermore, we present a new approach
to compute the SDE-index and then implement the method to
obtain general formulas for the SDFE-index of the given classes
of fullerenes.
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1 Introduction

Complex systems analysis has gained prominence across physics, chemistry, and biology, de-
manding tools beyond traditional methods. Graph theory offers a powerful framework, rep-
resenting these systems as networks where nodes signify entities and edges represent their
interactions. This paper introduces the symmetric division eccentric (SDFE) index, a novel
graph invariant that extends the symmetric division degree index by using vertex eccentricities
instead of degrees. We analyze the S D E-index for two infinite families of fullerene graphs, Fig,
(n > 8) and Fya, (n > 10). This work contributes to understanding graph structural properties
and suggests further research into the SDFE-index and its applications.

Fullerene graphs are mathematical paradigms of fullerene molecules. Conventionally, a fullerene
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graph is a three-connected plane cubic graph in which every face is a pentagon or a hexagon.
These structures depict a unique class of carbon-cage molecules, where carbon atoms are ar-
ranged in a nearly spherical layout. These structures exhibit remarkable chemical and physical
properties, making them of significant interest in fields such as nanotechnology, materials sci-
ence, and medicinal chemistry. Many authors have studied various indices of different families
of fullerenes [1, 2.

Icosahedral arrangements of carbon atoms have also been observed since the 1980s, collec-
tively known as fullerenes. The most prominent icosahedral fullerene is the buckyball Cgq [3],
which in mathematical nomenclature is called a truncated icosahedron and has the shape of
a football. All these cages share the property that carbon atoms each have three bonds to
other carbon atoms of roughly the same length and angle, namely, fullerene cages are three-
connected, see [4]. Although the fullerene molecules were theoretically predicted and discussed
[3], it was nevertheless a surprise for the largest part of the scientific community when Kroto
et al. published a paper announcing their experimental discovery. Yet, the basic geometry and
symmetry behind such structures was known at least since 1937 when Goldberg discussed a class
of polyhedra, now often called Goldberg polyhedra, consisting only pentagonal and hexagonal
faces [5].

Fullerenes, such as Cgg (Buckminsterfullerene), are known for their high symmetry and
stability. They consist of 12 pentagonal and (% — 10) hexagonal faces, where n is the number
of carbon atoms and n # 22 is a natural number equal to or greater than 20.

The study of fullerenes extends beyond their chemical properties to their topological charac-
teristics, which can be analyzed using various graph theoretical indices. The symmetric division
eccentric (SDE) index is one such measure that captures the distribution of eccentricities among
the vertices of a graph.

Throughout this paper, our terminology and notations, in general, will be standard; for
other definitions, we refer the reader to texts on Graph Theory, such as [6-9].

2 Main results

In theoretical chemistry, topological indices are major tools for computing the properties of
molecular compounds. Throughout this paper, we consider only simple connected graphs. The
vertex and edge sets of a graph G are denoted by V(G) and E(G), respectively. The distance
between two vertices u and v in V(G), denoted by d(u, v), is defined as the length of the shortest
path connecting v and v.

The symmetric division eccentric index is a newly defined graph invariant given by the
following formula [10-12]

e2(u) + €%(v)
e(u)e(v)

SDE(G)= Y _

wek

)

and (u) denotes the eccentricity of vertex u.

In [13, 14], the general form of the SDD, known as the generalized symmetric division degree
is defined by replacing the degree of vertices with a function f of vertex properties, denoted by
GSDD as

GSDD(G) =

uveE

f) | f(w)
f@) " Fw)’

where f(u) and f(v) denote the values of function f at vertices u and v, respectively.
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Following, the SDD-index and putting f(u) = e(u) and f(v) = e(v), for every edge e = uv, in
generalized form of SD D-index, the symmetric division eccentric index is defined as follows:

_ 2w) | =)
SPEG)= 2. (565 20):

uvEE(

where £(u) denotes the eccentricity of vertex u, see [15].

For the edge e = wv € E(G), we define the eccentricity of the edge e, denoted by e(e), as the
ordered pair e(e) = [e(u),e(v)], where ||e(e)]| = e(u)e(v).

In following, for shorting, the eccentricity of a vertex u is also denoted by &,,.

Lemma 2.1. ([11]). Suppose G is a graph, and Ay, As, ..., A are the edge-orbits of Aut(Q)
under its action on E(G). Let e; = uv; € A; (1 <1i<t). Then

t
Euy v,
SDE(G) =Y _ |A;] (E + 5> .
j:1 Uj Uj

In particular, if G is edge-transitive, then

2 | 2
SDE(G)=2m or SDE(G)= <a cj;)b )m,

for some a and b.

3 The symmetric division eccentric index of two classes of
fullerenes

A bijection o on the vertex set of graph G is named an automorphism of the graph if it preserves
the edge set. In other words, o is an automorphism if e = wv is an edge, then o(e) = o(u)o(v)
is an edge of E. Let Aut(G) ={a:V — V, aisbijection}, then Aut(G) under the composition
of mappings forms a group. Aut(G) acts transitively on V if for any vertices v and v in V
there is « € Aut(G) such that a(u) = v.

The goal of this section is to compute the symmetric division eccentric index of two infinite
classes of fullerenes, namely Fig, and Fis,, where n > 8 and n > 10, respectively. We begin by
considering the infinite class of fullerenes with exactly 10n vertices and 15n edges, depicted in
Figure 1. The symmetric division eccentric index of Fig,, for 2 < n < 7 is presented in Table 11.
For n > 8, a general formula for the symmetric division eccentric index of Fjg, will be derived
in this section.

Next, we present a new approach for calculating the symmetric division eccentric index of
graphs. We then implement this method to obtain general formulas for the sde-index of two
infinite classes of fullerenes.

For an edge e = uv of a graph G, the sde of an edge e is denoted by sde(e). Hence,

~—

e(u _’_iv)

o) = oy ¥ ey

and then
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Figure 1: The molecular graph of the fullerene graph Fig,, where n = 6.

SDE(G)= Y sde(e).

ecE(G)

We define a relation R on the set of edges of a graph G as follows: for e, f € E(G), we say that e
is related to f, denoted by eR f, if and only if sde(e) = sde(f). It is not difficult to verify that R
is an equivalence relation on F(G). Consequently, R induces a partition of E(G) into r disjoint
equivalence classes £1,&s,...,&, . For e € E(G), the equivalence class [e]g = {f € E(G) | eRf}
is denoted by &;, for i = 1,2,...,r. Therefore, we have E(G) = J,_, &;.

Fact 1. For any two edges e and f in the same edge orbit E of a graph G, we have sde(e) =
sde(f). However, the converse does not hold. This means that if sde(e) = sde(f), it does not
necessarily follow that e and f belong to the same edge orbit E.

Fact 2. Let G be a self-centered graph. Then the eccentricities of all vertices of G are the
same and G has only one R-class. This implies that sde(e) = 2 for all edges e of G. Therefore,

SDE(G) = Y sde(e) =2|E|.
e€E(G)
Example 3.1. The Petersen graph P, is a graph with 10 vertices, 15 edges, and 3-regular. Since

the radius and diameter of the Petersen graph P, are equal, then the graph is self-centered.
Therefor, by using Fact 2 we get

SDE(P,) = 2|E| = 2(15) = 30.

Fact 3. If G is an edge-transitive or a bi-centered graph, then the contribution of all edges is
the same, and we have only one edge orbit. Consequently, sde(e) = sde(f) for any e and f of
G. This implies that

SDE(G) = Z sde(e) = |E| sde(e),
e€E(G)
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for an arbitrary edge e.

Example 3.2. The Gray graph, denoted by G.., is the smallest trivalent semi-symmetric graph.
It is 3-regular and edge-transitive but not vertex-transitive [16]. It is a bipartite graph with 54
vertices and 81 edges. Then,

SDE(G,) = Z sde(e) = |E| - sde(e),
ecE(Gy)

for an arbitrary edge e of G,..
Since e(u) = 6 for any vertex u in G, the value of sde(e) for any edge e € E(G.,.) is

sde(e) = 2.
Therefore, the symmetric division eccentric index for the Gray graph is given by
SDE(G,) =2 x 81 = 162.

Fact 4. If G is a vertex-transitive graph then for any edge e = wv in E(G), we have

and thus
SDE(G) = 2|E(G)|.

Lemma 3.3. Let £,&;,...,E, be the classes of a graph G under the relation R on the set of
edges E(G), and let e; = u;v; € &;, for 1 <i <r. Then

- (i) + e(v:)?
SDE(G) = &) (ST EW)T Y )
;e; ( l[e(ed)l >

Proof. Let & for i = 1,2,...,r be the equivalence classes of the graph G under the relation
R on the set F(G). Since, for any two edges e and f in the same R-classes of G, we have
sde(e) = sde(f), it follows that E(G) = |J._, &. Therefore, the result follows. ]

Now, given that the fullerene F),, with order n and size m, is a 3-regular graph, it follows
immediately that 2m = 3n. Therefore

SDE(F,) = Y. e(w? +e(v)® _ 3 ((5(“)—5(U))2+2€(u)6(v)>

wweE(Fy) 8(11,)5('0 wweE(Fy)
o (ew) — =)
= +UU§FH) @I .

By combining Equations (1), (2) and utilizing the fact that |e(u) —e(v)| < 1 for any two adjacent
vertices u and v in V(F,), we derive the following useful formula.

Corollary 3.4. For the fullerene graph F,, on n vertices, we have
SDE(F,) =3n+ Y

wwEE(Fy,)
c(u)#e(v)

lle(e)ll”
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Based on the findings outlined above, we arrive at the following definition.

Definition 3.5. The generalized second eccentric Zagreb index of the molecular graph G,
EM3$(G), is a new topological index defined as

EMg(G)= Y (e(uwe(v))®, fora€eR.
weE(G)
Thus, we can conclude that

SDE(F,) = 3n + EM; '(F,).

We know that for any graph G, r < e(u) < d, where r and d are the radius and diameter of G,
respectively.
Now, for the fullerene F),, on n vertices and for any edge e = uv, we have

1 S 1 d 1 < 1
~ an il
e(u)e(v) — d? e(u)e(v) — r?
Therefore
1 t
SDE(F,)>3n+ =30+,
weE(G)
e(u)e(v)
and
1 t
SDE(F,) <3n+ =3+
w€EE(G)
e(u)e(v)

in which ¢ is the number of edges e = uv satisfying (u) # £(v).
Hence, we arrive at the following result.

Corollary 3.6. For the fullerene graph F,, on n vertices, we have

t t

in which t is the number of edges e = uv of F, satisfying c(u) # £(v).

In [17], Ghorbani and Rahmani demonstrated that the fullerene graph Fig,, as depicted in
Figure 2, for even n (odd n), has n orbits under the action of the automorphism group on the
set of vertices, and they computed the n members of each orbit. They also showed that Fig,,
for even n (odd n), has n + 1 orbits under the action of the automorphism group on the set
of edges. It is known that the automorphism group Aut(G) acting on the vertex set V(G) is
closely related to its action on the edge set E(G). Following the approach in [17], we obtain the
n + 1 orbits of Fig,, for even and odd n under the action of the automorphism group on the
set of edges. The n + 1 orbits of Fig, as depicted in Figure 3, for even n, are shown in Table 1.
The first § orbits correspond to edges within layers, while the remaining % + 1 orbits consist

2
of the vertical edges.

The n + 1 orbits of Fig,, for odd n under the action of the automorphism group on the set of
edges, are given in Table 2. The first % orbits correspond to edges within layers while the

remaining "7“ orbits consist of the vertical edges.
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Figure 2: The planar graph of Fig,, where n is even (n = 6).

Figure 3: The planar graph Fig,, where n is odd (n = 7).
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Table 1: Members of the edge orbits of Fig,, for even n.

Orbit Edge orbit members Number
E, 6},6%,63,64,65,6(17'+1) gn+1)’e:(3n+l)7ez(in-&-l)’eén—i-l) 10
Eo e? e2,e3 ..., elo,el,e%,eg,..l.,e?o i : 20
By ciedich.clpel e ey 20
En/Q egn 2Jr1)7 egn 2+1), eén 2+1)) o g'g 2+1) 10
]En 241 alvbl,clvdlaelvanvbnacn,dna " 10
E, 242 a27 bQ7 027 d2, 62, a(n—l)’ b(n—l)7 C(n—l)’ d(n—l)’ e(n—l) 10
E, 243 (7,37 b3, 03’ dS, 637 a(nf2)’ b(an)7 c(nf2)7 d(nf2)7 6(7172) 10
]En—i-l a(n 2)’b(n 2),c(n 2)’d(n 2)’6(77, 2)’a(n 2+1)7b(n 2+1)’ 10

/241 g(n/241) o(n/2+1)
Table 2: Members of the edge orbits of Fg,, for odd n.

Orbit Edge orbit members Number
Eq 6%, 657 637 64, 657 6§n+1) g’H_l)a e:(3n+1)7 6A(Ln+1)a eg’H_” 10
Eo e3,e3,e3,...,e50, et el el ... el 20
By  dheded.. o T e 20

n 2 n 2 n 2 n+1)/2 n+3)/2
E(n+1)/2 ( +1) ( +1) ( +1) 504’ ) ’eg +3) , 20
(n+3)/2 (rL+3)/2 (n+3)/2

]E(n+3)/2 a 7b1,C 7dlae 7an7bn> 7L7dn7 " 10
E(n+5) 5 CL2, b2, 027 d2’ 62, a(nfl)’ b(nfl), c(nfl)’ d(nfl)’ e(nfl) 10
E(n+7)/2 a37 b3, 037 d3, 83, a(n—Z)’ b(n—2)) C(n—z)7 d(n_Q), e(n—2) 10
]En—i-l a(nJrl) Q’b(n+1) 27c(n+1) Z’d(nJrl) 2,6(n+1) 2 5

Since any two edges e and f of E(Fyg,) in the same edge orbit E; satisfy sde(e) = sde(f), it
follows that the relation R induces a partition of E(Fig,) into n disjoint equivalence classes

1,E,...,&En.

It is clear that

n

E(an) = U gi-

i=1

We classify the n classes under the relation R on the set of edges, and the corresponding number
of elements for each class of Fig,, for even n > 8, are obtained and given in Table 3. The first
5 classes correspond to edges within cycle layers, while the remaining 7 classes consist of the

Vertlcal edges.
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Table 3: Members of the edge classes of Fig,, for even n > 8.

artition -classes members umber
Partit R-cl b Numb
1 1 1 1 1 n+l1 n+l n+l n+l1 n+1l
& €1,€3,€3,€5, 65,61 ey ,es ey el 20
n/2+1 n/2+1 n/2+1 n/2+1
€1 ) » €3 »- 5610
2 .2 2 2
& ef,e5,e35,...,e70,€er,e5,e5, ..., el 20
3 .3 .3 3 n—1 n—-1 n-—1 n—1
& €1,63,€3,...,€00,e] ,es T es T, ...,elp 20
n/2 n/2 n/2 n/2 n/2+2 n/2+2 n/2+2
Eny2 N N N e €10 20
Enjas1 a',bl, ct dt el a™, b, ¢, d, e 10
gn/2+2 a2, b2, 62, d27 62, an717 bnfl’ Cn717 dn717 enfl 10
gn/2+3 a3, b37 037 d3, 63, an—?7 bn—27 Cn—27 dn—Z7 en—2 10
gn an/27bn/Z’cn/27dn/2’en/Q’CLn/2—|—1,bn/2-{-1’cn/2+17 10

241 241
d"/"",e”/"'

The n classes under the relation R on the set of edges of Fig,, for odd n > 9, are given in
Table 4. The first "7“ classes correspond to edges within cycle layers, while the remaining 251
classes consist of the vertical edges.

Table 4: Members of the edge classes of Fig,, for odd n > 9.

Partition R-classes members Number
61 6%,6%,6376411,el,ef-‘rl,€g+l,€g+1762+1,€g+1, 15
am /2 pntD)/2 (ntD)/2 glnt1)/2 ((nt1)/2
) )
2
& 61,62,63,... elo,el,eg,eg,.. €% 20
3 .3 .3 3 1 1 1 1
&3 €], €5, €5, ...,€5,€e] ,en T es L ...,elp 20
(n+1)/2 (n+1)/2 (n+1)/2 (n+1)/2
5(n+1)/2 €1 ) €9 ) €3 -1 €10 ) 20
(n+3)/2 (n+3)/2 (n+3)/2
€] , €5 yeis €
En+3)/2 al,bl,cl,dl,el,a”,b”,c ,d"e” 10
8(n+5)/2 CL2, b27 CQ, d2, 62, an—l’ bn—l, 671—17 dn—l’ en—l 10
5(71+7)/2 a37 b37 037 dS7 63, an—27 bn—2’ cn—27 dn—27 671—2 10
—1)/2 —1)/2 —1)/2 —1)/2 —1)/2
En a(n=1/2 p(n=1)/2 ((n=1)/2 g(n=1)/2 o(n-1)/2 10

a(n+3)/2’ b(n-l—?;)/Q7 c(n+3)/2’ d(n+3)/27 e(n+3)/2

Some exceptional cases of the R-classes of Fig, for 2 < n < 7 are presented in Table 5, detailing
the number of edges in each partition. Additionally, the sde(e) for an arbitrary edge e in each
partition is presented.
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Table 5: Some exceptional cases of the edge partitions of Fig,, for 2 <n < 7.

Fullerenes # Edge Partitions |€; ] sde(e) e € &
Fyo 1 30 2
Fio 1 45 2
Fuo 3 40, 10, 10 2, 2.018, 2.024
Fso 3 55, 10, 10 2, 2.014, 2.018
Feo 5 40, 20, 10, 10, 10 2, 2.011, 2.009, 2.014, 2.018
Fro 6 35, 20, 20, 10, 10, 102, 2.007, 2.011, 2.006, 2.009, 2.014

We illustrate these ideas in the following example.

Example 3.7. Consider the fullerene Fy, as depicted in Figure 4. It is clear that |V (Fyg)| = 40
and |E(Fyp)| = 60. The classes of Fyp under the relation R on the set of edges, the number of
elements of each class, and for an arbitrary edge e in each class, the corresponding eccentricities
of their end vertices are given in Table 6.

Figure 4: The planar graph of fullerene Fig,, where n = 4.

Now, by applying Corollary 3.4, we obtain

10 1
SDE(Fyo) = 3(40) + 7—(; + % = 120 4 0.238095 + 0.1785714 ~ 120.41667.

The following result follows from the preceding discussion, Lemma 3.3 and Corollary 3.6.
Theorem 3.8. The SDE-index of the fullerene graph Fioy, for n > 8 is given as

n/2
1 2
(CL) SDE(Flon) = 30n + 10 (n - om — 1) + 10;.]013
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Table 6: Edge partitions of the fullerene Fjyq.

Partition Class members Number e(u),e(v)
& e1,es, el el el el el €3, €], es, 40 8,8
ei, eé, eé, - eio, el ed e ... el
€1,€2,€3,---,€1p
& al, bl el dl, el ot b2, t, dt, et 10 7,8
Es a’,b%,c2,d?, e?, a3, b3, 3, d3, €3 10 6,7
where
ho[ 1 1 2
2n—4)  2n—di)+1 2(mn—i)+2]’
and n is even.
(n—1)/2
(b)SDE(Fion) =30n+10 > fi,
i=1
where
fim 2 1 1
l2n—i)—1 2(n—i) 2n-—d)+1]’

and n is odd.

Proof. Let £1,&,,...,&, be all R-classes of the fullerene Fig,, n > 8, given in Tables 3 and 4
under the relation R on the set of edges E(F),,), and e; = u;v; € &;, satisfying e(u;) # (v;), for
1 <4 <n. Then we have

=1 wu;v;,€E;
e(ui)7#e(vq)

3)

a) If n is even, then we classify the edges of Fig, into two main types:

1) Ring edges (see Table 7): These consist of edges in the i-th layer, where 1 <i < n+1. Each
layer forms a cycle, and the vertices within each cycle are connected via ring edges.

2) Vertical edges(see Table 8): These include the vertical edges that connect a vertex u in
the i-th layer to a vertex v in the (i + 1)-th layer, where 1 < ¢ < n — 1. The vertical edges
connect vertices between adjacent layers, maintaining the structure of the fullerene graph. The
eccentricities of vertices u and v for both types of edges (ring and vertical) are provided in the
Tables 7 and 8.

Due to the symmetry of the fullerene graph Fig, and for even m, we observe that the
eccentricities of the ring edges in the first layer are identical to those corresponding edges in
the (n 4+ 1)th layer, the eccentricities of the ring edges in the second layer are identical to those
corresponding edges in the n-th layer, and this pattern continues, with the eccentricities of
the ring edges in the 5th layer being identical to those corresponding edges in the (% + 2) th
layer. The same symmetry holds for the vertical edges. Now, using Tables 3, 7 and 8 and
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Table 7: Ring edges of the fullerene Fig,, with even n > 8.

i e(u) e(v) # Edges
1 2n —1 2n -1 5)
2<i< 3 2(n—i)+2 2(n—1u)+1 5(n—2)
i=5+1 n n n
Ty2<i<n 210-2)+2 2i-2)+1 5n-2)
n+1 2n —1 2n—1 )

Table 8: Vertical edges of the fullerene Fig,, with even n > 8.

i e(u) e(v) # Edges
1§z§% 2n—i)+1 2(n—1) >
24+1<i<n 20i—-1)+1 2(i—1) °n

Corollary 3.6, we arrive at

SDE(Fio,) 30n+z Z £

e O]

E(uz)s‘ée(vz)
n/2 1
= 2
=30+ OZ 2(n — 1)+ 2][2(n — 1) + 1]

n/2

+1OZ (n —1) +1][2(n—z’)]'

Finally, by simplifying the above formula, we get SDE(Fio,) as given in the statement of the
theorem part (a).

b) If n is odd, then again we classify the edges of Fig, into two main types:
1)Ring edges (see Table 9), which consist of edges in the i-th layer, for 1 <i <mn+ 1.
2) Vertical edges (see Table 10), which include the vertical edges connecting a vertex w in the
i-th layer to vertex v in the (i + 1)-th layer, for 1 <i <n — 1. The eccentricities of u and v for
both types are given in the Tables 9 and 10.

Table 9: Ring edges of the fullerene Fig,, with odd n > 9.

i e(u) e(v) # Edges

1 2n -1 2n -1 )
2<i< 22 2n—49)+2 2n—i)+1 5n-1)
2R g 20—2)+2 2(i—2)+1 5(n-—1)

n+1 2n—1 2n—1 )

Similar to the last case, agian symmetry of the fullerene graph Fig, yields that for odd n
the eccentricities of the ring edges in the first layer are identical to those corresponding edges
in the (n + 1)th layer, the eccentricities of the ring edges in the second layer are identical to
those corresponding edges in the nth layer, and this pattern continues, with the eccentricities of
the ring edges in the wth layer being identical to those corresponding edges in the @th
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Table 10: Vertical edges of the fullerene Fig,, with odd n > 9.

i e(u) e(v) # Edges
1<i<™ 2n—-4)+1 2(n—i) 2(n—1)
oil n n 5
B <i<n 2-1)+1 206-1 3n-1)

layer. The same symmetry holds for the vertical edges. Now, using Tables 4, 9 and 10, and
Corollary 3.6, we arrive at

SDE(Fiop) =30n + zn: >

= LSZe letell
e(uq)7#e(vs)

(n+1)/2

=30n + 20 Z

=2

(n-1)/2 .
10 ; 20— ) + 20—

[2(n —1i)+2][2(n — i) + 1]

Finally, by simplifying the above formula, we get SDFE(Fp,) as given in the statement of the
theorem part (b). Some exceptional cases of Theorem 3.8 are presented in the Table 11.

Table 11: Some exceptional cases of Theorem 3.8

Fullerenes Some exceptional symmetric division eccentric index for 2 < n <7

Fy 60
F3p 90
Fiyo 120.4166667
Fxo 150.3174603
Feo 180.6305916
Fro 210.6676379

Consider now an infinite class of fullerenes with exactly 12n vertices and 18n edges, depicted
in Figure 5. By applying similar techniques and methods as in the proof of Theorem 3.8, we
obtain the symmetric division eccentric index of the fullerene F}s,, as given below.

Theorem 3.9. The SDE-index of the fullerene graph Fis, for n > 10 is given by
n/2

1 2
(a) SDE(Fy,) = 36n + 12 (n — 5 1) + 12;fi,

where
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Figure 5: The planar graph of fullerene F}, where n = 7.

and n s even.
(n—1)/2

(b) SDE(Fi2,) =36n+12 Y fi,
=1

where
f— 2 B 1 B 1 }
l2n—i)—1 2(n—i) 2n-—d)+1]’
and n is odd.
Proof. The proof is straightforward. The exeptional cases are given in Table 12. |

Table 12: Some exceptional symmetric division eccentric index for 2 < n < 9.

Fullerenes Some exceptional symmetric division eccentric index for 2 <n <9

Foy 72

Fae 108

Fus 144.2142857
Foo 180.3
Forg 216.4090909
Fas 252.5011655
Fos 288.6901765
Fros 324.7009608

Theorem 3.10. For a fullerene graph Fio, with n > 8 wvertices, the SDE-index satisfies the
following inequalities:
15n(8n? — 12n + 5)

15(2n% +2n + 1)
220 —1)n—-1) = '

< SDE(Fion) < ]
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Proof. By [18, Theorem 3] , the radius and diameter of Fjq, are given by n and 2n — 2,
respectively. Using the fact that r < e(u) < d, where r is the radius and d is the diameter, we
obtain:

r r+1
SDE(F; <
(mn)_(r—i—l_'— r )m

Substituting r = n, we get:

2
SDE(Fi,) < ( z n—i—l) m = 15(2n +2n+1)'

n—|—1+ n n+1

On the other hand, since

d d+1
DE(F > —— 4 ——
S (lOn)_(d+1+ d)m’

substituting d = 2n — 2, we get:

2n—2 2n-—1 1 2_12
SDE(Fion) > ( n n > _ 5n(8n n+5)

2n—1+2n—2 22n —1)(n—1)
This completes the proof. |

By a similar way, using [18, Theorem 2|, we find that rad(Fi2,) = n and diam(Fia,) = 2n—1
and thus we conclude the following result.

Theorem 3.11. For a fullerene Fyo, with n > 10 vertices, the SDE-index satisfies the following
inequalities:

18(2n? + 2n + 1)
n+1

9(8n? —4n +1)
2n—1

< SDE(Fiap) <

4 Conclusion

The link between the calculated SDE index and boiling points is examined in this section using
regression models. Table 13 lists 30 different fullerenes, each with a unique identifier, their
corresponding SDE values, and their boiling points. The SDE value and boiling points are
provided in numerical form, allowing for a quantitative analysis.

The relationship between the SDE index and the boiling point of fullerenes was systemati-
cally examined using several regression models. The dataset of 30 fullerenes (Table 13) provided
a reliable basis for evaluating the predictive capacity of the SDE index. Regression analyses
were performed in SPSS, and the results are presented in Table 14.

The statistical outputs indicate that all regression models tested (linear, quadratic, cubic,
logarithmic, and exponential) are highly significant, with P-values less than 0.05, see Figure 6.
This demonstrates that the SDE index is strongly correlated with the boiling point of fullerenes.
However, the strength of association, measured by the coefficient of determination (R?), varied
across models.

The quadratic and cubic models achieved the highest R? values (0.998), confirming their
excellent ability to describe the nonlinear relationship between SDE and boiling point. The
linear regression model also performed very well (R2=0.978), suggesting that even a simple
linear equation captures most of the variability in the data. The logarithmic model (R?=0.971)
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Table 13: SDE index and boiling point data for fullerenes.

Z
o

O 00| | O U x| W DN —
o
S

ZF SDE Bp No. #F SDE  Bp

oo 60 381.6 16 Iy 150  753.8
oy 72 4435 17 F5, 15043 753.8
Fhe 782 4724 18 [y  156.32 773.6
s 852 5001 19 Fyy  162.46 793.0
90.6  526.8 20 Fg 180 849

3 90.333 5264 21  Fr  216.67 952.9
F3  96.14 552.6 22  Frq 22271 969.2
Fy 1021 5775 23  Fso 240 1017
F3 10810 6017 24 Fioo 300.15 1296

10 Fig 114 625.1 25 Fipo 360.18 1417
11 Fyp 120 6479 26 Fiuuo 420.37 1530
12 Fy 120 6479 27 Figo 480.39 1635
13 Fy 138.48 691.8 28 Figg 540.53 1735
14 Fy 126 670.1 29  Fyp 600.52 1829
156 Fus 14421 733.6 30 Fyp 660.66 1933

Table 14: Model summary and parameter estimates.

Equation R Square F Sig.  Constant bl b2 b3
Linear 978 1230.972 .000  329.137 2.656

Logarithmic 971 949.360  .000 -2498.150 662.097

Quadratic .998 7381.019 .000  148.883 4.389  -.003

Cubic 998 4929.912 .000  130.058 4.654  -.004 9.232E-7

Exponential .892 232.125 .000  465.867 .003

showed slightly weaker performance, while the exponential model (R?=0.892) was the least
accurate.

Despite the superior fit of the quadratic and cubic models, the linear regression was chosen
as the most appropriate model for interpretation and prediction. This preference is justified by
its simplicity, reduced risk of overfitting, and ease of application in practical settings. Moreover,
the small difference in predictive power between the linear and higher-order models indicates
that the added complexity of polynomial equations does not yield substantial improvement.

The findings highlight a strong quantitative relationship between the SDE index and the
boiling point of fullerenes. The consistency across different regression models reinforces the ro-
bustness of the SDE index as a reliable topological descriptor. In particular, the high predictive
ability of the linear model underscores its value in correlating structural features of fullerenes
with their physicochemical properties.

Beyond fullerenes, these results contribute to the broader understanding of how topological
indices can serve as powerful descriptors for physicochemical and thermodynamic properties in
diverse chemical systems. Previous studies have shown that indices such as Wiener, Zagreb,
and Randi¢ provide useful correlations in alkanes, benzenoids, and other molecular classes. The
present findings extend this utility to the SDE index, suggesting its potential for application in
predicting stability, reactivity, and phase behavior across a wider range of nanostructures and
molecular frameworks. Consequently, the SDE index may play an important role in computa-
tional chemistry, materials science, and the rational design of novel carbon-based nanomaterials.
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Figure 6: The scatter plot of correlation between SDE index and boiling points of fullerenes.
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