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Abstract

A family of complex amplified Stérmer methods is studied for
solving initial value problems of second-order differential equa-
tions with periodic or orbital solutions. The new complex ampli-
fied Stormer methods depend upon a parameter w > 0, vanish
its complex amplifier, and integrate precisely algebraic polyno-
mials. We believe that each method category (Stormer method
is one of them) has its complex amplifier. When finding the
coefficients of the Stormer methods, if the imaginary and real
parts of the complex amplifier, if necessary, their derivatives are
equal to zero, high-capability methods are obtained.

The principal local truncation errors of the new explicit
Stormer methods are addressed. Their stability regions are de-
picted in a plane where the vertical axis is the problem fre-
quency and the Horizontal axis is the method frequency. A
collection of numerical examples illustrates the success of the
new family of complex amplified Stormer methods in address-
ing the Schrodinger equation and other related problems. The
advantage of the new methods is showcased by discussing their
relevance to some issues in chemistry.
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1 Introduction

Many problems in chemistry, including quantum chemistry, physical chemistry, and more, are
mathematically modeled using second-order ordinary differential equations. Solving these mod-
eled problems has always been a challenge throughout various times. Therefore, ever since the
17th century, second-order initial-value problems as

y//+w2y:€f(t7y)a to <t <tenda w >Oa yERna
y(tO) = Yo, y/(tO) = yéa

(1)

have been solved numerically in the context of chemical phenomena. Where the principal

frequency w is known and dominates the disturbance force € (¢ < 1). In this framework, we

will consider a coupled differential equations of the Schrédinger type and some IVPs of second-

order differential equations. The colse-coupling differential equations of the Schrodinger type

as follows:

d? L+ 1)]
5 | Yij

N
i (£) =D~ P()inyng (1) 3§ = 11N, 2)

=1
i

33

whose boundary value conditions are given by

vi3(0) =0,

k; (3)

1/2
Yij (t) r’?ﬁkzt\jll (k,t) Qij + (k) Kmkzt./\/h (kzt) ,

J

where J;(z) and N (z) are spherical Bessel and Neumann functions, respectively (see for details
[1, 2]). Various schemes have been proposed for solving such equations.

The foremost numerical methods in the context of planetary integrations date back to
Stormer (1907) introducer of explicit methods, Cowell (1910) introducer of implicit methods,
and Jackson (1925) introducer of one-step methods. An improved Cowell’s method is inspected
by Stiefel and Bettis in [3]. An adaptive Nystrom-Cowell-like method with high order is in-
vestigated by Franco and Palacian in [4]. In [5], the Stormer-Cowell method with second-sum
and the split form is introduced by Frankena. Through numerical examples, the ascendancy of
the symmetric 8, 10, and 12-step methods with high-order was presented versus the Stérmer
methods [6].

Heretofore, there were only a handful of authors who have addressed Stérmer methods and
specifications of Stérmer methods are little known among numerical analysts, let alone the
communication with its complex amplifier as an accelerator. Another reason that increases the
motivation to address this issue is that the construction and implementation of explicit methods
are cost-effective.

The main achievements and contributions can be summarized as follows:

e We begin with a profound study of the complex amplifier corresponding to explicit k-step
Stormer methods, which is presented as a theorem.

e Now, to find the coefficients of the new methods, two equations are used: one is the
operator related to the method, and the other is the complex amplifier related to the
method, which consists of two real and imaginary parts.

e The first method is achieved by zeroing the complex amplifier’s real part and integrating
algebraic polynomials up to degree 3.
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e The second method is obtained by zeroing the real and imaginary parts and integrating
the algebraic polynomials up to degree 1.

e The third method is obtained by zeroing both the real and imaginary parts and zeroing
the first derivative of the real part, namely the phase lag.

The continuation of the article is as follows: In Section 2, we see how the complex amplifier
of the explicit k-step Stormer method is determined in the form of a theorem. In Section 3,
we address to principal local truncation error (PLTE) and stability regions of the new complex
amplified explicit 3-step Stormer method. In Section 4, we demonstrate the potential of the new
family of the amplified explicit 3-step Stormer methods by providing some examples inspired
by quantum chemistry and physical chemistry (e.g. the Schrodinger equation). Finally, in
Section 5, we mention some significant remarks and outcomes about the amplified explicit
3-step Stérmer methods.

2 Derivation of the methods

Unfortunately, the literature shows that the terminology for explicit k-step Stérmer methods
has been somewhat unconsolidated and loose. Some researchers considered the classical explicit
k-step Stormer methods as

k
Y(tn +h) = 2y(tn) +y(ta —h) = h* Y b;(v) y" (tn — i h), (4)

Jj=0

where k represents the number of steps and h represents the step-length of the method. The
the explicit k-step Stormer method (4) is associated with the following operator

k
L(y(t),h) = y(tn + ) = 2y(tn) + y(tn — h) = B> bj(v) y" (ta — G h), ()

=0

where y € C2 = C x C, C? is the set of all ordered pairs of complex numbers, and b;(v) are
the coefficients of method that depend on v for all j = 0(1)k. Letting € = 0 in (1) we get the

following scalar test equation
11

y' = —wy, (6)

we apply the explicit k-step Stormer method (4) to the scalar test equation (6) and get the
following difference equation

k
Y(tn +h) = 2y(tn) + y(tn — h) =v> > b;(v)y(ts — jh), (7)

=0

where v = wh.
The characteristic equation associated to the explicit k-step Stormer method (4) is given as

k
QA v) =2 =24 21" =07 bi(0)A . (8)
j=0



316 S. H. Hassan Kiyadeh et al. / A Family of Amplified 3-Step Stormer Methods for....

Definition 2.1. A real analytic function 6(v) — v has the following Maclaurin series

o0
v) —v= g Civ?,
Jj=1

the term Cyv9T + O(v?+2) is called the amplification factor of order ¢ with constant C; and
the term Cov?™2 + O(v9+3) is called the phase-lag of order ¢ with constant Cy [7].

Lemma 2.2. By trigonometric expansions, the following equation is valid:

sin(j0(v)) — sin(jv) = —ju?™t — Z Cr?tt
1=2

(oo}
cos(jB(v)) — cos(jv) = j2v9t2 + Z Crit,
1=3
where O(v) is theoretical function.

Proof. See [§]. [ ]

Theorem 2.3. For an explicit k-step Stormer method, complex amplifier is given by

2 —2cos(v —’U2Zb cos(jv) QZb sin(jv)
CAk(U) = +1 ,

2+’022bj(1))j2 UQij(U)j
§=0

where I is imaginary unit.

Proof. We establish Q,(e79(") v) as
k
Qk(elje(v), v) = ™) 4 e 10(0) 9 4 42 ij(v)e—lje(v) =0,

applying Euler’s theorem, we have

[005(9(0)) + I'sin(f(v)) + cos(—0(v)) + Isin(—@(v))} -2
k

02 Y b (v)] cos(—j6(v)) + Tsin(—j0(v))] =0,

Jj=0

after simplifying, we obtain
2 cos(f(v 72+v226 cos(j6(v I’U2Zb sin(j6(v)) = 0,

we separate the imaginary and real parts and set them equal to zero

Real: 2cos(0(v)) — 2 + v? Z b;(v) cos(j(v)) =0,
k 9)

Imaginary:  v? Z b;(v)sin(j6(v)) = 0.
§=0
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According to Definition 2.1, we achieve
2cos(v) +2 (vIT? + O (v1?)) — 2

k
+v? Zb] cos (jv) + 72012 4+ O (U’HS)) =0,

P
v2 Zb] sm (ju)—3j (vq“ + O (v‘”z))) =0,
j=

by simplifying, the above equation becomes

k
2 cos(v —2+U2Zb cos(jv) = — 2+v22bj(v)j2 (U‘I+2_|_@(Uq+3)) -0,
k k
v? Z b;(v) sin(jv) = v? Z b;(v)j (v + O (v91?)) = 0.
j=0 =0

In the real part, the most effective term is the phase lag, and in the imaginary part, the
amplification factor, so we are looking for these two, and we find

k
2 — 2cos(v) — v? Z b;(v) cos(jv)

phase lag = vit2 L O (vq+3) _ kj:o ’

2+ 02 ij(v)j2
ZZb ) sin(jv)

Amplification factor = vt + O (v9+2) =

both imaginary and real parts must be added together, and we have:

k k
2 — 2cos(v) — v? Z bj(v)cos(jv)  v? Z b;(v)sin(jv)
CA(v) = kj:O 10
24023 b (v)52 v? Y by(v)j
j=0 J=0
Therefore, the theorem is proven. |

Using the above theorem, the complex amplifier and its first derivative of the real part for
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the explicit 3-step Stérmer method (4) are given by:

2 —2cos (v) — v* (by(v) + by (v) cos (v) + ba(v) cos (20))
CAz(v) = y%f(v) + 4v2bo(v) + 2
(b1 (v) sin (v) + by sin (2v))

bl (’U) + 2 bg (U) ’

R(CA3(v)) = [sin (v) vby (v)* 4 4 sin (v) V201 (V)b (v) + 2 sin (2v) v*b1 (v) by (v)

+1

+ 8 sin (20) v1by(v)? + 4 sin (v) v2by (v) + 8 sin (v) v2by (v)
+ 4 byv? sin (20) + 16 cos (v) vba(v) — 4 vby(v) — 4 cos (2v) vby(v)

—4vby(v) — 16 vba(v) + 4 sin (v)]/[(v%l(v) + 40%by (v) + 2)2 ]

2.1 The first method

By solving the following system
{£(t,h) =0, L(t*,h) =0, R(CA;3 (v)) = 0},

three coefficients by (v), by (v), ba(v) of the first complex amplified 3-step Stormer method are
obtained as:

bo(v) :1 202 (cos (v))2 — 2 cos (v) v? — v? — 2 cos (v) + 2
’ 2 v2 cos (v) (cos (v) — 1) ’
v+ 2cos(v) -2
bi(v) ~v2cos (v) (cos (v) — 1)’ (10)
ba(v) 1 —v*—2cos(v)+2

~2 v2cos (v) (cos (v) —1)°

Figure 1 shows curves of the coefficients behavior for the first complex amplified 3-step Stormer
method for v = wh from 0 to 50.

Since the value |v| approach to zero, the coefficients (10) of first method are subject to heavy
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Figure 1: The curves of the coefficient’s behavior of the first complex amplified 3-step Stormer

method for v € [0, 50].
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cancellations, we use Maclaurin series expansions of them as:

13 1102 593v* 969745 25970308 1724332931010
bo(v) = + + + + +
12 240 30240 1209600 79833600 1307674368000
55908779 v'2 3050804953011 | 4484933085754510'0
104613949440 = 18240380928000 = 5109094217170944000
4080494790726487 v'™  149103204826715750 v™
114693951814041600000 = 10340806695553990656000
9898311611236134768923 v22
4 O(u*),

1693824136731743669452800000
1 1102 593v%  9697v8 25970308 1724332931 v10
6 120 15120 604800 39916800 653837184000
55908779012 3950804953 v'4  448493303575451 v16
52306974720 9120190464000  2554547108585472000 (11)

4080494790726437 v'8  149103204826715759 120
 57346975907020800000  5170403347776995328000

22
9898311611236134768923 v ),

 846912068365871834726400000
1 1102 5930  96970° 25970308 1724332931 v'°

%2(v) =13+ 520 T 30020 T 1209600 T 79833600 T 1307674368000
5500877902 3950804953 v 448493303575451 v16
104613940440 | 18240380928000 ' 5109094217170944000
4080494790726437 v'8 149103204826715759 v2°
114693951814041600000  10340806695553990656000
9898311611236134768923 v ) (™)
1693824136731743669452800000

bl(’l}) = —

2.2 The second method

By solving the following system
{‘C (t27 h) = Oa CAS(U) = 0}7

three coefficients by (v), b1 (v), ba(v) of the second complex amplified 3-step Stormer method are
obtained as:

bo(0) 1 (cos (v) 4 1) (4 (cos (v))* + v — 6 cos (v) + 2)

e (sin (v))* 02

by(v) = — cos (v) (cos (v) + 1) (Uz —&—22 cos (v) — 2) 7 (12)
(sin (v))" v

(cos (v) + 1) (v2 + 2 cos (v) — 2) .

(sin (v))? v2

)

balv) =3

Figure 2 shows curves of the coefficient’s behavior for the second complex amplified 3-step
Stormer method for v = wh from 0 to 50. For the reasons stated earlier, we use Maclaurin
series expansions of the coefficient’s behavior for the second complex amplified 3-step Stormer
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Figure 2: The curves of the coefficient’s behavior of the second complex amplified 3-step Stormer
method for v € [0, 50].
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method as:

13 1902  89v? 5306 59 v8 2141 v10
T2~ 240 T 30240 1200600 © 79833600 | 1307674363000
103 v12 13014 149467 16
523069747200 | 2605768704000 | 1021818843434183800
3316949 '8 5981683 120
802857662698291200000 | 51704033477769953280000
N 5436368633 v22 Lo
1693824136731743669452800000 :
1 302 47 vt 230 3708 4871 vt
6 40 15120 T 604800 39916800 653837184000
97 v12 3583 vl4 67867 v16
261534873600  355687428096000  232231555325952000 (13)
473807 v18 6173 v2°
 57346975907020800000  26679067841986560000
~ 5436371363 v22 Lo,
846912068365871834726400000
by (v) iJrv—2+ A N R &
240 ' 6048 ' 172800 ' 5322240 ' 118879488000
N 12 N 3617 vl N 43867 16
5748019200 ' 711374856192000 ' 300534953951232000
174611 '8 77683 v20
12255666457804800000 | 671480954256752640000
236364091 v22 04
+ T3611527683088855193600000 T O )

bo(’()) =

bl(’U) = —

2.3 The third method

By solving the following system
d
{CA3 (v) = 0, - R (CAs (v)) = 0},

three coefficient’s by (v), b1 (v), bz (v) of the third complex amplified 3-step Stormer method
are obtained as:

bo (v) =| — 2 (cos (v))? + (2v(sm(v))3—3sm( )u+2) cos (v)

— 20 (sin (v))* + 2 sin ( U} [sm (cos ))%3},
. (v)zgsm(v);;:( ;L)i(;s(v) + (14)
bQ(U):—sin(v)v—Zcos(v)+2

cos (v) sin (v) v3

Figure 3 shows curves of the coefficient’s behavior for the third complex amplified 3-step Stérmer
method for v = wh from 0 to 50. For the reasons stated earlier, we use Maclaurin series
expansions of the coefficient’s behavior for the third complex amplified 3-step Stérmer method
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as:

13 1 5, 169v* 167905  3030590% 242310
bo(v) =— — —wv + + +
12 30 6720 181440 ~ 79833600 = 1572480
6535869943 v12 N 45035888581 v'4 n 1664659390271 v'6
10461394944000 = 177843714048000 = 16219346721177600
5838451733911 v'8 n 1743293679502451281 v2°
140359731240960000  103408066955539906560000
17663265262303613401 v

24
5535201673888497664000000  © (™)
bl(v)——l—vj— 170 310%  6910% 54610
6 60 10080 181440 39916800 3113510400
929569 v12 3202291 v 221930581 v'6
5230697472000  177843714048000  121645100408832000 (15)
4722116521 '8 56963745931 v2°
 25545471085854720000  3041413733986467840000
22
14717667114151 v L0 @),

 7755605021665492992000000
bo(o) =L+ Loy 4510'  2110°  202010° 479755300
12 20 20160 ' 22680 ' 5322240 ' 3113510400
594169973012 8339979370 24969890853989 v
051035904000 ' 3203402112000 ' 243290200817664000
151799745081689 08 83013984738211957 v2°
3649353012264960000 | 4924193664549519360000
22
1892492706675387151 v ) ().

276985893630910464000000

3 The methods investigation

3.1 Study of the PLTEs

Here, to study the PLTESs of the three new complex amplified 3-step Stormer methods, we write
the Taylor series (TS) of the 3-step Stérmer method as:

TS = (1 — bo(v) — by (v) — ba(v)) K2y @ (&) + (b (v) + 2b2(v)) K3y (2)

+ < L1y w)- 2b2(v)> By (1) + <é bi(v) + gbg(v)) B3y (1)

12 2
1(v 2 (v 16
+ <3)é() - ibl(v) ~ gbg(v)) RSy©® (1) + <b1;0) N 4b15( )) By () (16)
1 b1 (v 4ba(v bi(v 8ba(v L
* (20160 - ;;0) - 55( )) Wy () + (510(43 * 321(5)) By (£) + O (h'7) .

By placing the coefficients (11) in the above expansion, all terms up to the 4th order in h
become zero, and the PLTE for the first complex amplified 3-step Stormer method and its
classical partner are obtained as follows:

1
PLTEClassic = PLTEFirst = Eh5y(5)
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Table 1: The periodicity interval of the new complex amplified 3-step Stérmer methods.

Method Periodicity interval
Classical method 1.76
First method 1.41
Second method 2.88
Third method 1.52

By placing the coefficients (13) and (15) in the above expansion, all terms up to the 2th order
in h become zero, and the PLTE for the second, and third complex amplified 3-step Stormer
methods are obtained as follows:

1
PLTESecond = PLTEThird = PLTEClassic + Eh5w2y(3)'

3.2 Depicting of stability regions

In order to sketch the region of stability, we apply all of the new complex amplified k-step
Stormer method to the test equation

y' () =~y (1), (17)

by applying the family of phase-fitted 3-step Stérmer methods to the scalar test equation in
(17), eventually, we obtain the following characteristic polynomial

Q (U7 S,f) =p (5) - 820 ('U,f) )
p(&) =" (2 -26+1),

k (18)
o (’U,f) = Zb] (’U) Eja
=0

where v = wh and s = Th.

Definition 3.1. An explicit k-step Stormer method (4) has a periodicity interval as (0, s3) if
all roots of the characteristic equation (18) satisfy the root-conditions given as

Gr2=e100) g1 <1, i=3(1)k—1, Vs<so, (19)
where s = 7h and I is imaginary unit (see [7]).

Letting v = s and scrolling from zero with a step length of 0.01 toward the point where the
roots of the characteristic equation (18) no longer satisfy the root-conditions (19), we obtain
the periodic interval of the new complex amplified 3-step Stérmer methods. Table 1 represents
the periodicity interval of the new complex amplified 3-step Stormer methods. According to
Table 1, the stability interval for the second method has increased remarkably.

Definition 3.2. A stability region of an explicit k-step Stérmer method (4) encompasses the
regions of the s-v plane that at each point like (s, v) all roots of the characteristic equation (18)
satisfy the root-conditions given (19).

Figures 4 to 6 represent the stability regions of the new complex amplified 3-step Stérmer
methods are visualized using purple color, and in white colors, the new complex amplified 3-step
Stormer methods are instability regions.
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Stability region for the first method.

Vv

Figure 4: The stability region of the first complex amplified 3-step Stormer method.

Stability region for the second method.

\Y

Figure 5: The stability region of the second complex amplified 3-step Stérmer method.
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Stability region for the third method.

\Y

Figure 6: The stability region of the third complex amplified 3-step Stérmer method.

We circumscribe the stability region of the new complex amplified 3-step Stérmer methods
to the upper right quadrant. Since the coefficients of the new complex amplified 3-step Stérmer
methods depend on v and the problems depend on s, we take v € [0,3] and s € [0,3]. In
Figures 4 to 6 the vertical axis is s and the horizontal axis is v.

4 Numerical specimens

Using a 6-order Runge-Kutta-Nystrom schemes, computed some starting values. We assume
that all frequencies are equal. The accuracy of the methods is obtained as follows:

Accuracy = — log; (max (Error (y; (t)))),

Error (3 (2)) = Iy (D — % Ot § = LA, (20)

where N is the dimension of the system of second-order IVPs.
All computations were performed on a PC with a 2.6 GHz processor, using Matlab version
2013a in double-precision arithmetic.

4.1 Some explicit multi-step methods

In the handful of articles that compared classical explicit k-step Stormer methods with other
methods, we selected some methods for comparison and listed them below.

e Second: The second explicit complex amplified 3-step Stérmer method of fourth algebraic
order presented in the Section 3.
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e Third: The third explicit complex amplified 3-step Stérmer method of fourth algebraic
order presented in the Section 3.

e First: The first explicit complex amplified 3-step Stormer method of fourth algebraic
order presented in the Section 3.

e Class: The original explicit 3-step Stormer method of fourth algebraic order presented
in the Section 3.

e Quinl0: The symmetric 10-step method of fourteenth algebraic order presented in the
Section 2 of [6].

e Quin8&: The symmetric 8-step method of twelfth algebraic order presented in the Section
2 of [6].

e Lamb6: The symmetric 6-step method of tenth algebraic order by taking a = 0 presented
in the Section 3 of [7].

e Lamb4: The symmetric 4-step method of eighth algebraic order by taking a = 0 presented
in the Section 3 of [7].
4.2 Some problems in the field of chemistry

In this part, we display five second-order IVPs to estimate the accuracy of the new explicit
complex amplified 3-step Stérmer methods.

Example 4.1. The generalized famous Bessel’s equation is the first example as

1 — 4a%b?

") = — 2b2t2(b—1)
vy =- (v e

Voo w) =), e 1 (1)
whose theoretical solution is given by

y(t) = t2J, (nt),

where J, is the Bessel function of the first kind of order a. For this example, we select b = 1,
a = 0, and take different values for n i.e. n € [10,30].

The Equation (21) is solved when ¢t € [1,600] and h = 1/40. The accuracy lines of the
methods versus CPU time for solving the IVP (21) are presented in Figure 7. As the frequency
of the Bessel’s equation increases and approaches 30 in Figure 7 related to Equation (21), all
methods lose their accuracy except for two methods. One of them is the third new method,
which has acceptable accuracy by increasing 1 up to about 17. The second new method preserves
the accuracy and almost no drop in accuracy is observed with increasing frequency.

Example 4.2. An inhomogeneous equation is the second example as
y'(t) = —nPy() + (i — Dsin(t),  y(0) =0, y'(0) = n+1, (22)
whose theoretical solution is given by
y(t) = cos(nt) + sin(nt) + sin(t).

For this example, we take different values for n i.e. n € [10,30].
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Example 1: The Bessel's problem.

-e- Second
-e- Third
-e- First
-o- Class
-~ Quinl0
- Quin8
-# Lamb6
2Xe —+ Lamb4

Accuracy (in digits)

Frequency of the Bessel's problem (1)

Figure 7: Curves of the accuracy of the methods versus increasing the frequency of the problem
in Example 4.1.

Example 2: The Inhomogeneous problem.

6 "/\, A\ A, - Second

= X
= , oo - Third
LT % - First
o 'S X
£ A ) oo - Class
,;=\« BNy -+ Quin10
3 S AL Rk : - Quin8
b —a AN R - -& Lamb6
~ ¥ W ‘ ._ <+ Lamb4
! & \ \ A I B P . I\ n
0 / ‘/\\ \i ': R _ m
10 15 20 25 30

Frequency of the Inhomogeneous problem ()

Figure 8: Curves of the accuracy of the methods versus increasing the frequency of the problem
in Example 4.2.
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Example 3: The linear system.

16
14
12
= -e- Second
5,10 -e- Third
= o -e- First
i -~ Class
2 6 - Quinl10
= -+ Quin8
g4 -+ Lamb6
2 ~+ Lamb4
0

Frequency of the linear system (1)

Figure 9: Curves of the accuracy of the methods versus increasing the frequency of the problem
in Example 4.3.

The Equation (22) is solved when ¢ € [0,300] and h = 1/30. The accuracy lines of the
methods versus CPU time for solving the IVP (22) are presented in Figure 8. In Figure 8,
the accuracy of all methods has a significant slowdown with increasing frequency. The third
new method presented here is as accurate as the second method up to the frequency of 20, but
approaching 30, the third method has meaningful accuracy.

Example 4.3. We consider generalized stiff second-order linear system investigated by Franco
et al. [9]:

d0=- () n0+ (T -r)no. nO=-1 fO=-n

(23)

st =+(T =) (L+r)m@. 2O=+1 %o =+

whose theoretical solution is

y1(t) = — (cos (nt) +sin(nt)),
y2(t) = cos (nt) +sin (nt).

For this example, we select » = 7 and take different values for n i.e. n € [0, 30].

The system of IVPs (23) is solved when ¢ € [0,200] when h = 1/35. The accuracy lines of
the methods versus CPU time for solving the IVPs (23) are presented in Figure 9. In Figure 9,
it is widely seen that no method is accurate with increasing frequency, except for our second
new method, although we see a slight drop in the accuracy curve with increasing frequency.

Example 4.4. A second-order linear system of IVPs studied by Lambert and Watson [7]:

y{ (1) =y )+ g" () +n°g (t), 1 (0) = a+g(0), ¥ (0) =g (0),

ys (1) = —ny2 (t) + " (t) + 179 (), y2(0) = g (0), y5(0) =na+g (0), (@)
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Example 4: The Lambert and Watson's problem.

-e- Second
-e- Third
-e- First
-e- Class
-~ Quin10
- Quin8
-+ Lamb6
~+ Lamb4

Accuracy (in digits)

Frequency of the Lambert and Watson's problem (1)

Figure 10: Curves of the accuracy of the methods versus increasing the frequency of the problem
in Example 4.4.

whose theoretical solution is given by

y1 (t) = acos (nt) + g (1),
Y2 (1) = asin (nt) + g (1),

where g(t) = e~%/?0. In this example, we select o = 0.1 and take different values for 7 i.e.

n € [0,30].

The Equation (24) is solved over ¢ € [0,200] when h = 1/35. The accuracy lines of the
methods versus CPU time for solving the IVPs (24) are presented in Figure 10. In Figure 10,
again, this is the second method of the methods presented in this article, which has maintained
its accuracy with increasing frequency of the problem.

Example 4.5. The fifth our problem is a generalized second-order linear system studied by
Kramarz as [10]:

W)= =20) )+ 2r-20") ), 1n0)=2
ys (8) = (" = 1)y () + (n* = 27) 2 (8) . 92(0) = ~1, w3 (0) =+,
whose theoretical solution is given by
y1(t) = 2cos(nt),
y2(t) = —cos(nt).
We select » = 100 and take different values for n i.e. n € [0, 30].

The Equation (25) is solved over ¢t € [0,200] when A = 1/35. The accuracy lines of the
methods versus CPU time for solving the IVPs (25) are presented in Figure 11. In Figure 10,
according to the previous examples, the second method is more accurate with increasing fre-
quency.
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5 Example 5: The Kramarz's problem.

-e- Second
-e- Third
-o- First
-o- Class
-+ Quin10
- Quin8
-# Lamb6
~+ Lamb4

Accuracy (in digits)

Frequency of the Kramarz's problem ()

Figure 11: Curves of the accuracy of the methods versus increasing the frequency of the problem
in Example 4.5.

Example 4.6. We consider an unperturbed harmonic oscillator system as:
v (t) = —n"ui(t), vi(0) =1, yi(0)=—n,
Y5 (t) = =n°ya(t),  42(0) =0, y5(0) =+,
whose theoretical solution is given by

y1(t) = 2cos(nt),
() = — cos(i1).

(26)

We take different values for n i.e. n € [5,30].

The Equation (26) is solved over ¢t € [0,400] when h = 1/35. The accuracy lines of the
methods versus CPU time for solving the IVPs (26) are presented in Figure 12. Figure 12
shows that the accuracy curve of all methods drops rapidly with increasing frequency. The
second new method presented is more accurate despite increasing the problem frequency.

Example 4.7. We consider high-frequency nonlinear system studied by Franco [11]:

2y1 (t) y2 (t) — sin (2nt)

Y () = =Py () + 5= () =1 (0 =0,
(2 @0 +12®°) o
(1) = oy (1) ¢ LU 20RO Z e @OD) ) o a0y =,
(1 0" +120)*)

whose theoretical solution is given
yi(t) = cos(nt),
y2(t) = sin (nt).
We take different values for n i.e. n € [5,30].
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Example 6: The unperturbed harmonic problem.

-e- Second
-e- Third
- First
-e- Class
-~ Quinl0
- Quin8
- Lamb6
-+ Lamb4

Frequency of the harmonic problem (1)

Figure 12: Curves of the accuracy of the methods versus increasing the frequency of the problem
in Example 4.6.

The Equation (27) is solved over ¢t € [0,200] when h = 1/35. The accuracy lines of the
methods versus CPU time for solving the IVPs (27) are presented in Figure 13. Figure 13
also shows that, except for the second new method, all methods are declining with increasing
frequency.

Example 4.8. Rotational excitation of a diatomic molecule by neutral particle impact is one
problem in quantum chemistry that may be described in terms of coupled differential equations.
We assume that the entrance channel is indicated by the quantum numbers (j,1), the exit
channels are indicated by (j’,1’), and the total angular momentum is indicated by J = j +1 =
4"+ 1. In this case, we achieve

d? U] g ' .
et } () hz 2 2 2 G IIPO) L Dy, (@)
J// l//
with 2
_ 2v .
kji =12 [E+21{ G+1)—35"0 +1)}},

where E is the kinetic energy of the incident particle in the center-of-mass system, P(t) is
potential which can be expressed as a combination of two potential functions Vy(¢) and Va(t),
I is the moment of inertia of rotator, (j'l'; J| P(t) | j”1"; J) is coupling matrix, k;/; is the wave
vector, and v is the reduced mass of the system (see for details [1, 2]). To present numerical
results, we consider the following parameters

2 10000, ¥ = 2.351, E =
h2_ '71'_ . ) =1,
1 1

Volt) = 35 — 255, Va(t) = 0.2283V0(t).

(29)

We assume J = 6 and consider excitation of the rotator from the j = 0 state to levels up to
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Example 7: The high-frequency nonlinear problem.

16

14

12
2 -e- Second
210 -e- Third
© .
k= - First
E 8 e Class
S 6 ~- Quinl0
> -
8 -4 Quin8
< 4 -+ Lamb6

— Lamb4

Frequency of the high-frequency nonlinear problem (n)

Figure 13: Curves of the accuracy of the methods versus increasing the frequency of the problem
in Example 4.7.

j' = 2,4,6 giving rise to sets of 4, 9, and 16 coupled equations, respectively. We take different
values for n i.e. n € [5,25].

The Equation (28) is solved over ¢ € [0,50]. The accuracy lines of the methods versus CPU
time for solving the IVPs (28) are presented in Figure 14.

5 Conclusion

The explicit k-step Stormer methods were out of the spotlight, and since we believe every
method category has a complex/real boost to overcome high-frequency problems [12, 13]. We
found complex amplifiers for these methods. Using this amplifier, we presented three new meth-
ods. The final result is that we will have a low-cost method if the real and imaginary parts are
zero when finding the coefficients.
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Accuracy (in digits)

Example 8: the Schrodinger Equation

12
10
-e- Second
8 -e- Third
-0~ First
6 -e- Class
- Quinl0
4 -A- Quin8
& Lamb6
2 —+— Lamb4
0
5 10 15 20 25
problem frequency ()

Figure 14: Curves of the accuracy of the methods versus increasing the frequency of the problem
in Example 4.8.
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