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Abstract

A family of complex amplified Störmer methods is studied for
solving initial value problems of second-order differential equa-
tions with periodic or orbital solutions. The new complex ampli-
fied Störmer methods depend upon a parameter w > 0, vanish
its complex amplifier, and integrate precisely algebraic polyno-
mials. We believe that each method category (Störmer method
is one of them) has its complex amplifier. When finding the
coefficients of the Störmer methods, if the imaginary and real
parts of the complex amplifier, if necessary, their derivatives are
equal to zero, high-capability methods are obtained.

The principal local truncation errors of the new explicit
Störmer methods are addressed. Their stability regions are de-
picted in a plane where the vertical axis is the problem fre-
quency and the Horizontal axis is the method frequency. A
collection of numerical examples illustrates the success of the
new family of complex amplified Störmer methods in address-
ing the Schrödinger equation and other related problems. The
advantage of the new methods is showcased by discussing their
relevance to some issues in chemistry.
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1 Introduction
Many problems in chemistry, including quantum chemistry, physical chemistry, and more, are
mathematically modeled using second-order ordinary differential equations. Solving these mod-
eled problems has always been a challenge throughout various times. Therefore, ever since the
17th century, second-order initial-value problems as

y′′ + w2y = εf(t, y), t0 < t 6 tend, w > 0, y ∈ Rn,
y(t0) = y0, y′(t0) = y′0,

(1)

have been solved numerically in the context of chemical phenomena. Where the principal
frequency w is known and dominates the disturbance force ε (ε � 1). In this framework, we
will consider a coupled differential equations of the Schrödinger type and some IVPs of second-
order differential equations. The colse-coupling differential equations of the Schrödinger type
as follows: [

d2

dt2
+ k2i −

li (li + 1)

t2

]
yij(t) =

N∑
n=1
n 6=i

P(t)in ynj(t), i, j = 1(1)N, (2)

whose boundary value conditions are given by

yij(0) =0,

yij(t) ≈kitJli (kit) θij +

(
ki
kj

)1/2

KijkitNli (kit) ,
(3)

where Jl(x) and Nl(x) are spherical Bessel and Neumann functions, respectively (see for details
[1, 2]). Various schemes have been proposed for solving such equations.

The foremost numerical methods in the context of planetary integrations date back to
Störmer (1907) introducer of explicit methods, Cowell (1910) introducer of implicit methods,
and Jackson (1925) introducer of one-step methods. An improved Cowell’s method is inspected
by Stiefel and Bettis in [3]. An adaptive Nyström-Cowell-like method with high order is in-
vestigated by Franco and Palacian in [4]. In [5], the Störmer-Cowell method with second-sum
and the split form is introduced by Frankena. Through numerical examples, the ascendancy of
the symmetric 8, 10, and 12-step methods with high-order was presented versus the Störmer
methods [6].

Heretofore, there were only a handful of authors who have addressed Störmer methods and
specifications of Störmer methods are little known among numerical analysts, let alone the
communication with its complex amplifier as an accelerator. Another reason that increases the
motivation to address this issue is that the construction and implementation of explicit methods
are cost-effective.

The main achievements and contributions can be summarized as follows:

• We begin with a profound study of the complex amplifier corresponding to explicit k-step
Störmer methods, which is presented as a theorem.

• Now, to find the coefficients of the new methods, two equations are used: one is the
operator related to the method, and the other is the complex amplifier related to the
method, which consists of two real and imaginary parts.

• The first method is achieved by zeroing the complex amplifier’s real part and integrating
algebraic polynomials up to degree 3.
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• The second method is obtained by zeroing the real and imaginary parts and integrating
the algebraic polynomials up to degree 1.

• The third method is obtained by zeroing both the real and imaginary parts and zeroing
the first derivative of the real part, namely the phase lag.

The continuation of the article is as follows: In Section 2, we see how the complex amplifier
of the explicit k-step Störmer method is determined in the form of a theorem. In Section 3,
we address to principal local truncation error (PLTE) and stability regions of the new complex
amplified explicit 3-step Störmer method. In Section 4, we demonstrate the potential of the new
family of the amplified explicit 3-step Störmer methods by providing some examples inspired
by quantum chemistry and physical chemistry (e.g. the Schrödinger equation). Finally, in
Section 5, we mention some significant remarks and outcomes about the amplified explicit
3-step Störmer methods.

2 Derivation of the methods

Unfortunately, the literature shows that the terminology for explicit k-step Störmer methods
has been somewhat unconsolidated and loose. Some researchers considered the classical explicit
k-step Störmer methods as

y(tn + h)− 2y(tn) + y(tn − h) = h2
k∑
j=0

bj(v) y′′(tn − j h), (4)

where k represents the number of steps and h represents the step-length of the method. The
the explicit k-step Störmer method (4) is associated with the following operator

L(y(t), h) = y(tn + h)− 2y(tn) + y(tn − h)− h2
k∑
j=0

bj(v) y′′(tn − j h), (5)

where y ∈ C2 = C × C, C2 is the set of all ordered pairs of complex numbers, and bj(v) are
the coefficients of method that depend on v for all j = 0(1)k. Letting ε = 0 in (1) we get the
following scalar test equation

y′′ = −w2y, (6)

we apply the explicit k-step Störmer method (4) to the scalar test equation (6) and get the
following difference equation

y(tn + h)− 2y(tn) + y(tn − h) = v2
k∑
j=0

bj(v)y(tn − j h), (7)

where v = wh.
The characteristic equation associated to the explicit k-step Störmer method (4) is given as

Ωk(λ, v) = λ− 2 + λ−1 − v2
k∑
j=0

bj(v)λ−j . (8)
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Definition 2.1. A real analytic function θ(v)− v has the following Maclaurin series

θ(v)− v =

∞∑
j=1

Cjv
j ,

the term C1v
q+1 + O(vq+2) is called the amplification factor of order q with constant C1 and

the term C2v
q+2 +O(vq+3) is called the phase-lag of order q with constant C2 [7].

Lemma 2.2. By trigonometric expansions, the following equation is valid:

sin(jθ(v))− sin(jv) = −jvq+1 −
∞∑
l=2

Clv
q+l,

cos(jθ(v))− cos(jv) = j2vq+2 +

∞∑
l=3

Clv
q+l,

where θ(v) is theoretical function.

Proof. See [8]. �

Theorem 2.3. For an explicit k-step Störmer method, complex amplifier is given by

CAk(v) =

2− 2 cos(v)− v2
k∑
j=0

bj(v) cos(jv)2 + v2
k∑
j=0

bj(v)j2

 + I

v2
k∑
j=0

bj(v) sin(jv)

v2
k∑
j=0

bj(v)j

,

where I is imaginary unit.

Proof. We establish Ωk(eIjθ(v), v) as

Ωk(eIjθ(v), v) = eIθ(v) + e−Iθ(v) − 2 + v2
k∑
j=0

bj(v)e−Ijθ(v) = 0,

applying Euler’s theorem, we have[
cos(θ(v)) + I sin(θ(v)) + cos(−θ(v)) + I sin(−θ(v))

]
− 2

+ v2
k∑
j=0

bj(v)
[

cos(−jθ(v)) + I sin(−jθ(v))
]

= 0,

after simplifying, we obtain

2 cos(θ(v))− 2 + v2
k∑
j=0

bj(v) cos(jθ(v))− Iv2
k∑
j=0

bj(v) sin(jθ(v)) = 0,

we separate the imaginary and real parts and set them equal to zero
Real: 2 cos(θ(v))− 2 + v2

k∑
j=0

bj(v) cos(jθ(v)) = 0,

Imaginary: v2
k∑
j=0

bj(v) sin(jθ(v)) = 0.

(9)
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According to Definition 2.1, we achieve



2 cos(v) + 2
(
vq+2 +O

(
vq+3

))
− 2

+v2
k∑
j=0

bj(v)
(
cos(jv) + j2vq+2 +O

(
vq+3

))
= 0,

v2
k∑
j=0

bj(v)
(
sin(jv)− j

(
vq+1 +O

(
vq+2

)))
= 0,

by simplifying, the above equation becomes


2 cos(v)− 2 + v2

k∑
j=0

bj(v) cos(jv) = −

2 + v2
k∑
j=0

bj(v)j2

(vq+2 +O
(
vq+3

))
= 0,

v2
k∑
j=0

bj(v) sin(jv) = v2
k∑
j=0

bj(v)j
(
vq+1 +O

(
vq+2

))
= 0.

In the real part, the most effective term is the phase lag, and in the imaginary part, the
amplification factor, so we are looking for these two, and we find



phase lag = vq+2 +O
(
vq+3

)
=

2− 2 cos(v)− v2
k∑
j=0

bj(v) cos(jv)2 + v2
k∑
j=0

bj(v)j2

 ,

Amplification factor = vq+1 +O
(
vq+2

)
=

v2
k∑
j=0

bj(v) sin(jv)

v2
k∑
j=0

bj(v)j

,

both imaginary and real parts must be added together, and we have:

CAk(v) =

2− 2 cos(v)− v2
k∑
j=0

bj(v) cos(jv)2 + v2
k∑
j=0

bj(v)j2

 + I

v2
k∑
j=0

bj(v) sin(jv)

v2
k∑
j=0

bj(v)j

.

Therefore, the theorem is proven. �

Using the above theorem, the complex amplifier and its first derivative of the real part for
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the explicit 3-step Störmer method (4) are given by:

CA3(v) =
2− 2 cos (v)− v2 (b0(v) + b1(v) cos (v) + b2(v) cos (2 v))

v2b1(v) + 4 v2b2(v) + 2

+ I
(b1(v) sin (v) + b2 sin (2 v))

b1(v) + 2 b2(v)
,

<(CA3(v)) =
[

sin (v) v4b1(v)
2

+ 4 sin (v) v4b1(v)b2(v) + 2 sin (2 v) v4b1(v)b2(v)

+ 8 sin (2 v) v4b2(v)
2

+ 4 sin (v) v2b1(v) + 8 sin (v) v2b2(v)

+ 4 b2v
2 sin (2 v) + 16 cos (v) vb2(v)− 4 vb0(v)− 4 cos (2 v) vb2(v)

− 4 vb1(v)− 16 vb2(v) + 4 sin (v)
]/[ (

v2b1(v) + 4 v2b2(v) + 2
)2 ]

.

2.1 The first method

By solving the following system

{L
(
t2, h

)
= 0, L

(
t3, h

)
= 0, < (CA3 (v)) = 0},

three coefficients b0(v), b1(v), b2(v) of the first complex amplified 3-step Störmer method are
obtained as:

b0(v) =
1

2

2 v2 (cos (v))
2 − 2 cos (v) v2 − v2 − 2 cos (v) + 2

v2 cos (v) (cos (v)− 1)
,

b1(v) =
v2 + 2 cos (v)− 2

v2 cos (v) (cos (v)− 1)
,

b2(v) =
1

2

−v2 − 2 cos (v) + 2

v2 cos (v) (cos (v)− 1)
.

(10)

Figure 1 shows curves of the coefficients behavior for the first complex amplified 3-step Störmer
method for v = w h from 0 to 50.

Since the value |v| approach to zero, the coefficients (10) of first method are subject to heavy
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Figure 1: The curves of the coefficient’s behavior of the first complex amplified 3-step Störmer
method for v ∈ [0, 50].
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cancellations, we use Maclaurin series expansions of them as:

b0(v) =
13

12
+

11 v2

240
+

593 v4

30240
+

9697 v6

1209600
+

259703 v8

79833600
+

1724332931 v10

1307674368000

+
55908779 v12

104613949440
+

3950804953 v14

18240380928000
+

448493303575451 v16

5109094217170944000

+
4080494790726437 v18

114693951814041600000
+

149103204826715759 v20

10340806695553990656000

+
9898311611236134768923 v22

1693824136731743669452800000
+O(v24),

b1(v) =− 1

6
− 11 v2

120
− 593 v4

15120
− 9697 v6

604800
− 259703 v8

39916800
− 1724332931 v10

653837184000

− 55908779 v12

52306974720
− 3950804953 v14

9120190464000
− 448493303575451 v16

2554547108585472000

− 4080494790726437 v18

57346975907020800000
− 149103204826715759 v20

5170403347776995328000

− 9898311611236134768923 v22

846912068365871834726400000
+O(v24),

b2(v) =
1

12
+

11 v2

240
+

593 v4

30240
+

9697 v6

1209600
+

259703 v8

79833600
+

1724332931 v10

1307674368000

+
55908779 v12

104613949440
+

3950804953 v14

18240380928000
+

448493303575451 v16

5109094217170944000

+
4080494790726437 v18

114693951814041600000
+

149103204826715759 v20

10340806695553990656000

+
9898311611236134768923 v22

1693824136731743669452800000
+O(v24).

(11)

2.2 The second method

By solving the following system

{L
(
t2, h

)
= 0, CA3(v) = 0},

three coefficients b0(v), b1(v), b2(v) of the second complex amplified 3-step Störmer method are
obtained as:

b0(v) =
1

2

(cos (v) + 1)
(

4 (cos (v))
2

+ v2 − 6 cos (v) + 2
)

(sin (v))
2
v2

,

b1(v) =−
cos (v) (cos (v) + 1)

(
v2 + 2 cos (v)− 2

)
(sin (v))

2
v2

,

b2(v) =
1

2

(cos (v) + 1)
(
v2 + 2 cos (v)− 2

)
(sin (v))

2
v2

.

(12)

Figure 2 shows curves of the coefficient’s behavior for the second complex amplified 3-step
Störmer method for v = w h from 0 to 50. For the reasons stated earlier, we use Maclaurin
series expansions of the coefficient’s behavior for the second complex amplified 3-step Störmer



Iranian Journal of Mathematical Chemistry 16 (4) (2025) 313− 336 321

Figure 2: The curves of the coefficient’s behavior of the second complex amplified 3-step Störmer
method for v ∈ [0, 50].
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method as:

b0(v) =
13

12
− 19 v2

240
+

89 v4

30240
− 53 v6

1209600
+

59 v8

79833600
+

2141 v10

1307674368000

+
103 v12

523069747200
+

13 v14

2605768704000
+

149467 v16

1021818843434188800

+
3316949 v18

802857662698291200000
+

5981683 v20

51704033477769953280000

+
5436368633 v22

1693824136731743669452800000
+O(v24),

b1(v) =− 1

6
+

3 v2

40
− 47 v4

15120
+

23 v6

604800
− 37 v8

39916800
− 4871 v10

653837184000

− 97 v12

261534873600
− 3583 v14

355687428096000
− 67867 v16

232231555325952000

− 473897 v18

57346975907020800000
− 6173 v20

26679067841986560000

− 5436371363 v22

846912068365871834726400000
+O(v24),

b2(v) =
1

12
+

v2

240
+

v4

6048
+

v6

172800
+

v8

5322240
+

691 v10

118879488000

+
v12

5748019200
+

3617 v14

711374856192000
+

43867 v16

300534953951232000

+
174611 v18

42255666457804800000
+

77683 v20

671480954256752640000

+
236364091 v22

73644527683988855193600000
+O(v24).

(13)

2.3 The third method

By solving the following system

{CA3 (v) = 0,
d

dv
< (CA3 (v)) = 0},

three coefficient’s b0 (v) , b1 (v) , b2 (v) of the third complex amplified 3-step Störmer method
are obtained as:

b0 (v) =
[
− 2 (cos (v))

2
+
(

2 v (sin (v))
3 − 3 sin (v) v + 2

)
cos (v)

− 2 v (sin (v))
3

+ 2 sin (v) v
]/[

sin (v) (cos (v))
2
v3
]
,

b1 (v) =
2 sin (v) v + 4 cos (v)− 4

sin (v) v3
,

b2 (v) =
− sin (v) v − 2 cos (v) + 2

cos (v) sin (v) v3
.

(14)

Figure 3 shows curves of the coefficient’s behavior for the third complex amplified 3-step Störmer
method for v = w h from 0 to 50. For the reasons stated earlier, we use Maclaurin series
expansions of the coefficient’s behavior for the third complex amplified 3-step Störmer method
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Figure 3: The curves of the coefficient’s behavior of the third complex amplified 3-step Störmer
method for v ∈ [0, 50].
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as:

b0 (v) =
13

12
− 1

30
v2 +

169 v4

6720
+

1679 v6

181440
+

303059 v8

79833600
+

2423 v10

1572480

+
6535869943 v12

10461394944000
+

45035888581 v14

177843714048000
+

1664659390271 v16

16219346721177600

+
5838451733911 v18

140359731240960000
+

1743293679502451281 v20

103408066955539906560000

+
17663265262303613401 v22

2585201673888497664000000
+O

(
v24
)
,

b1 (v) =− 1

6
− v2

60
− 17 v4

10080
− 31 v6

181440
− 691 v8

39916800
− 5461 v10

3113510400

− 929569 v12

5230697472000
− 3202291 v14

177843714048000
− 221930581 v16

121645100408832000

− 4722116521 v18

25545471085854720000
− 56963745931 v20

3041413733986467840000

− 14717667114151 v22

7755605021665492992000000
+O

(
v24
)
,

b2 (v) =
1

12
+

1

20
v2 +

451 v4

20160
+

211 v6

22680
+

20201 v8

5322240
+

4797553 v10

3113510400

+
594169973 v12

951035904000
+

833997937 v14

3293402112000
+

24969890853989 v16

243290200817664000

+
151799745081689 v18

3649353012264960000
+

83013984738211957 v20

4924193664549519360000

+
1892492706675387151 v22

276985893630910464000000
+O

(
v24
)
.

(15)

3 The methods investigation

3.1 Study of the PLTEs

Here, to study the PLTEs of the three new complex amplified 3-step Störmer methods, we write
the Taylor series (TS) of the 3-step Störmer method as:

TS = (1− b0(v)− b1(v)− b2(v))h2y(2) (t) + (b1(v) + 2 b2(v))h3y(3) (t)

+

(
1

12
− 1

2
b1(v)− 2 b2(v)

)
h4y(4) (t) +

(
1

6
b1(v) +

4

3
b2(v)

)
h5y(5) (t)

+

(
1

360
− 1

24
b1(v)− 2

3
b2(v)

)
h6y(6) (t) +

(
b1(v)

120
+

4 b2(v)

15

)
h7y(7) (t)

+

(
1

20160
− b1(v)

720
− 4 b2(v)

45

)
h8y(8) (t) +

(
b1(v)

5040
+

8 b2(v)

315

)
h9y(9) (t) +O

(
h10
)
.

(16)

By placing the coefficients (11) in the above expansion, all terms up to the 4th order in h
become zero, and the PLTE for the first complex amplified 3-step Störmer method and its
classical partner are obtained as follows:

PLTEClassic = PLTEFirst =
1

12
h5y(5).
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Table 1: The periodicity interval of the new complex amplified 3-step Störmer methods.

Method Periodicity interval
Classical method 1.76
First method 1.41
Second method 2.88
Third method 1.52

By placing the coefficients (13) and (15) in the above expansion, all terms up to the 2th order
in h become zero, and the PLTE for the second, and third complex amplified 3-step Störmer
methods are obtained as follows:

PLTESecond = PLTEThird = PLTEClassic +
1

12
h5w2y(3).

3.2 Depicting of stability regions
In order to sketch the region of stability, we apply all of the new complex amplified k-step
Störmer method to the test equation

y′′ (t) = −τ2y (t) , (17)

by applying the family of phase-fitted 3-step Störmer methods to the scalar test equation in
(17), eventually, we obtain the following characteristic polynomial

Ω (v, s, ξ) =ρ (ξ)− s2σ (v, ξ) ,

ρ (ξ) =ξk−2
(
ξ2 − 2 ξ + 1

)
,

σ (v, ξ) =

k∑
j=0

bj (v) ξj ,

(18)

where v = ωh and s = τh.

Definition 3.1. An explicit k-step Störmer method (4) has a periodicity interval as
(
0, s20

)
if

all roots of the characteristic equation (18) satisfy the root-conditions given as

ξ1,2 = e±Iθ(s), |ξi| 6 1, i = 3(1)k − 1, ∀s < s0, (19)

where s = τh and I is imaginary unit (see [7]).

Letting v = s and scrolling from zero with a step length of 0.01 toward the point where the
roots of the characteristic equation (18) no longer satisfy the root-conditions (19), we obtain
the periodic interval of the new complex amplified 3-step Störmer methods. Table 1 represents
the periodicity interval of the new complex amplified 3-step Störmer methods. According to
Table 1, the stability interval for the second method has increased remarkably.

Definition 3.2. A stability region of an explicit k-step Störmer method (4) encompasses the
regions of the s-v plane that at each point like (s,v) all roots of the characteristic equation (18)
satisfy the root-conditions given (19).

Figures 4 to 6 represent the stability regions of the new complex amplified 3-step Störmer
methods are visualized using purple color, and in white colors, the new complex amplified 3-step
Störmer methods are instability regions.
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Figure 4: The stability region of the first complex amplified 3-step Störmer method.
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Figure 5: The stability region of the second complex amplified 3-step Störmer method.
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Figure 6: The stability region of the third complex amplified 3-step Störmer method.

We circumscribe the stability region of the new complex amplified 3-step Störmer methods
to the upper right quadrant. Since the coefficients of the new complex amplified 3-step Störmer
methods depend on v and the problems depend on s, we take v ∈ [0, 3] and s ∈ [0, 3]. In
Figures 4 to 6 the vertical axis is s and the horizontal axis is v.

4 Numerical specimens

Using a 6-order Runge-Kutta-Nyström schemes, computed some starting values. We assume
that all frequencies are equal. The accuracy of the methods is obtained as follows:

Accuracy = − log10 (max (Error (yi (t)))) ,

Error (yi (x)) = |yi (t)Num − yi (t)Exact| , i = 1(1)N,
(20)

where N is the dimension of the system of second-order IVPs.
All computations were performed on a PC with a 2.6 GHz processor, using Matlab version

2013a in double-precision arithmetic.

4.1 Some explicit multi-step methods

In the handful of articles that compared classical explicit k-step Störmer methods with other
methods, we selected some methods for comparison and listed them below.

• Second: The second explicit complex amplified 3-step Störmer method of fourth algebraic
order presented in the Section 3.
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• Third: The third explicit complex amplified 3-step Störmer method of fourth algebraic
order presented in the Section 3.

• First: The first explicit complex amplified 3-step Störmer method of fourth algebraic
order presented in the Section 3.

• Class: The original explicit 3-step Störmer method of fourth algebraic order presented
in the Section 3.

• Quin10: The symmetric 10-step method of fourteenth algebraic order presented in the
Section 2 of [6].

• Quin8: The symmetric 8-step method of twelfth algebraic order presented in the Section
2 of [6].

• Lamb6: The symmetric 6-step method of tenth algebraic order by taking a = 0 presented
in the Section 3 of [7].

• Lamb4: The symmetric 4-step method of eighth algebraic order by taking a = 0 presented
in the Section 3 of [7].

4.2 Some problems in the field of chemistry
In this part, we display five second-order IVPs to estimate the accuracy of the new explicit
complex amplified 3-step Störmer methods.

Example 4.1. The generalized famous Bessel’s equation is the first example as

y′′(t) = −
(
η2b2t2(b−1) +

1− 4a2b2

4t2

)
y(t), y(1) = Ja (η) , t ≥ 1, (21)

whose theoretical solution is given by

y(t) = t
1
2 Ja

(
ηtb
)
,

where Ja is the Bessel function of the first kind of order a. For this example, we select b = 1,
a = 0, and take different values for η i.e. η ∈ [10, 30].

The Equation (21) is solved when t ∈ [1, 600] and h = 1/40. The accuracy lines of the
methods versus CPU time for solving the IVP (21) are presented in Figure 7. As the frequency
of the Bessel’s equation increases and approaches 30 in Figure 7 related to Equation (21), all
methods lose their accuracy except for two methods. One of them is the third new method,
which has acceptable accuracy by increasing η up to about 17. The second new method preserves
the accuracy and almost no drop in accuracy is observed with increasing frequency.

Example 4.2. An inhomogeneous equation is the second example as

y′′(t) = −η2y(t) + (η2 − 1) sin(t), y(0) = 0, y′(0) = η + 1, (22)

whose theoretical solution is given by

y(t) = cos(η t) + sin(η t) + sin(t).

For this example, we take different values for η i.e. η ∈ [10, 30].
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Figure 7: Curves of the accuracy of the methods versus increasing the frequency of the problem
in Example 4.1.

0

3

6

9

10 15 20 25 30

A
cc

u
ra

cy
 (

in
 d

ig
it

s)
 

Frequency of the Inhomogeneous problem (𝜂)  

Example 2: The Inhomogeneous problem. 

 Second
 Third
 First
 Class
 Quin10
 Quin8
 Lamb6
 Lamb4

 

Figure 8: Curves of the accuracy of the methods versus increasing the frequency of the problem
in Example 4.2.
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Figure 9: Curves of the accuracy of the methods versus increasing the frequency of the problem
in Example 4.3.

The Equation (22) is solved when t ∈ [0, 300] and h = 1/30. The accuracy lines of the
methods versus CPU time for solving the IVP (22) are presented in Figure 8. In Figure 8,
the accuracy of all methods has a significant slowdown with increasing frequency. The third
new method presented here is as accurate as the second method up to the frequency of 20, but
approaching 30, the third method has meaningful accuracy.

Example 4.3. We consider generalized stiff second-order linear system investigated by Franco
et al. [9]:

y′′1 (t) = −
(
η2

2
+ r

)
y1 (t) +

(
η2

2
− r
)
y2 (t) , y1 (0) = −1, y′1(0) = −η,

y′′2 (t) = +

(
η2

2
− r
)
y1 (t)−

(
η2

2
+ r

)
y2 (t) , y2 (0) = +1, y′2(0) = +η,

(23)

whose theoretical solution is

y1(t) = − (cos (η t) + sin (η t)) ,

y2(t) = cos (η t) + sin (η t) .

For this example, we select r = π and take different values for η i.e. η ∈ [0, 30].

The system of IVPs (23) is solved when t ∈ [0, 200] when h = 1/35. The accuracy lines of
the methods versus CPU time for solving the IVPs (23) are presented in Figure 9. In Figure 9,
it is widely seen that no method is accurate with increasing frequency, except for our second
new method, although we see a slight drop in the accuracy curve with increasing frequency.

Example 4.4. A second-order linear system of IVPs studied by Lambert and Watson [7]:

y′′1 (t) = −η2y1 (t) + g′′ (t) + η2g (t) , y1 (0) = α+ g (0) , y′1 (0) = g′ (0) ,

y′′2 (t) = −η2y2 (t) + g′′ (t) + η2g (t) , y2 (0) = g (0) , y′2 (0) = η α+ g′ (0) ,
(24)
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Figure 10: Curves of the accuracy of the methods versus increasing the frequency of the problem
in Example 4.4.

whose theoretical solution is given by

y1 (t) = α cos (η t) + g (t) ,

y2 (t) = α sin (η t) + g (t) ,

where g(t) = e−t/20. In this example, we select α = 0.1 and take different values for η i.e.
η ∈ [0, 30].

The Equation (24) is solved over t ∈ [0, 200] when h = 1/35. The accuracy lines of the
methods versus CPU time for solving the IVPs (24) are presented in Figure 10. In Figure 10,
again, this is the second method of the methods presented in this article, which has maintained
its accuracy with increasing frequency of the problem.

Example 4.5. The fifth our problem is a generalized second-order linear system studied by
Kramarz as [10]:

y′′1 (t) =
(
r − 2 η2

)
y1 (t) +

(
2 r − 2 η2

)
y2 (t) , y1 (0) = 2, y′1 (0) = −η,

y′′2 (t) =
(
η2 − r

)
y1 (t) +

(
η2 − 2 r

)
y2 (t) , y2 (0) = −1, y′2 (0) = +η,

(25)

whose theoretical solution is given by

y1(t) = 2 cos(η t),

y2(t) = − cos(η t).

We select r = 100 and take different values for η i.e. η ∈ [0, 30].

The Equation (25) is solved over t ∈ [0, 200] when h = 1/35. The accuracy lines of the
methods versus CPU time for solving the IVPs (25) are presented in Figure 11. In Figure 10,
according to the previous examples, the second method is more accurate with increasing fre-
quency.
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Figure 11: Curves of the accuracy of the methods versus increasing the frequency of the problem
in Example 4.5.

Example 4.6. We consider an unperturbed harmonic oscillator system as:

y′′1 (t) = −η2y1(t), y1(0) = 1, y′1(0) = −η,
y′′2 (t) = −η2y2(t), y2(0) = 0, y′2(0) = +η,

(26)

whose theoretical solution is given by

y1(t) = 2 cos(η t),

y2(t) = − cos(η t).

We take different values for η i.e. η ∈ [5, 30].

The Equation (26) is solved over t ∈ [0, 400] when h = 1/35. The accuracy lines of the
methods versus CPU time for solving the IVPs (26) are presented in Figure 12. Figure 12
shows that the accuracy curve of all methods drops rapidly with increasing frequency. The
second new method presented is more accurate despite increasing the problem frequency.

Example 4.7. We consider high-frequency nonlinear system studied by Franco [11]:

y′′1 (t) =− η2y1 (t) +
2y1 (t) y2 (t)− sin (2 η t)(

y1 (t)
2

+ y2 (t)
2
) 3

2

, y1(0) = 1, y′1(0) = 0,

y′′2 (t) =− η2y2 (t) +
y1 (t)

2 − y2 (t)
2 − cos (2 η t)(

y1 (t)
2

+ y2 (t)
2
) 3

2

, y2(0) = 0, y′2(0) = η,

(27)

whose theoretical solution is given
y1(t) = cos (η t) ,

y2(t) = sin (η t) .

We take different values for η i.e. η ∈ [5, 30].
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Example 6: The unperturbed harmonic problem. 
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Figure 12: Curves of the accuracy of the methods versus increasing the frequency of the problem
in Example 4.6.

The Equation (27) is solved over t ∈ [0, 200] when h = 1/35. The accuracy lines of the
methods versus CPU time for solving the IVPs (27) are presented in Figure 13. Figure 13
also shows that, except for the second new method, all methods are declining with increasing
frequency.

Example 4.8. Rotational excitation of a diatomic molecule by neutral particle impact is one
problem in quantum chemistry that may be described in terms of coupled differential equations.
We assume that the entrance channel is indicated by the quantum numbers (j, l), the exit
channels are indicated by (j′, l′), and the total angular momentum is indicated by J = j + l =
j′ + l′. In this case, we achieve[

d2

dt2
+ k2j′j −

l′ (l′ + 1)

t2

]
yJjlj′l′(t) =

2v

~2
∑
j′′

∑
l′′

〈j′l′; J | P(t) | j′′l′′; J〉yJjlj′′l′′(t), (28)

with

kj′j =
2ν

~2

[
E +

~2

2I
{j(j + 1)− j′ (j′ + 1)}

]
,

where E is the kinetic energy of the incident particle in the center-of-mass system, P(t) is
potential which can be expressed as a combination of two potential functions V0(t) and V2(t),
I is the moment of inertia of rotator, 〈j′l′; J | P(t) | j′′l′′; J〉 is coupling matrix, kj′j is the wave
vector, and ν is the reduced mass of the system (see for details [1, 2]). To present numerical
results, we consider the following parameters

2ν

~2
= 1000.0,

ν

I
= 2.351, E = η,

V0(t) =
1

t12
− 2

1

t6
, V2(t) = 0.2283V0(t).

(29)

We assume J = 6 and consider excitation of the rotator from the j = 0 state to levels up to
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Example 7: The high-frequency nonlinear problem. 

 Second
 Third
 First
 Class
 Quin10
 Quin8
 Lamb6
 Lamb4

 

Figure 13: Curves of the accuracy of the methods versus increasing the frequency of the problem
in Example 4.7.

j′ = 2, 4, 6 giving rise to sets of 4, 9, and 16 coupled equations, respectively. We take different
values for η i.e. η ∈ [5, 25].

The Equation (28) is solved over t ∈ [0, 50]. The accuracy lines of the methods versus CPU
time for solving the IVPs (28) are presented in Figure 14.

5 Conclusion
The explicit k-step Stormer methods were out of the spotlight, and since we believe every
method category has a complex/real boost to overcome high-frequency problems [12, 13]. We
found complex amplifiers for these methods. Using this amplifier, we presented three new meth-
ods. The final result is that we will have a low-cost method if the real and imaginary parts are
zero when finding the coefficients.
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