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Abstract

A polynomial function that provides information about the
molecular structure of a graph is known as the M-polynomial
of a graph. This polynomial helps us to understand the
characteristics of chemical compounds and their relationships.
Very recently, in 2024, the elliptic Sombor (ESO), reduced
elliptic (RE ) and modified reduced elliptic (mRE) indices of
a graph were proposed and their values were calculated for
some standard graphs, jagged-rectangle benzenoid systems and
polycyclic aromatic hydrocarbons. In this work, we establish
closed derivation formulas for the above-mentioned elliptic-type
indices of a graph based on its M-polynomial. Moreover,
we enumerate the elliptic-type indices of the above family of
chemical graphs.

c© 2025 University of Kashan Press. All rights reserved.

1 Introduction

Chemical graph theory is a branch of mathematical chemistry that applies graph theory concepts
to investigate the properties, behaviors, and structures of chemical compounds. Topological
indices are numerical values obtained using mathematical invariants from the graphical illus-
tration of the molecular structure. They have an essential importance in quantitative structure-
property relationships (QSPR) and quantitative structure-activity relationships (QSAR) anal-
ysis [1]. Let G be a simple and connected graph having V (G) and E(G) as the set of vertices
and the set of edges of G, respectively. The degree of a vertex v ∈ V (G) is represented by d(v),
which counts the first neighbors of the vertex v [1].

In 2024, Gutman et al. [2] introduced the elliptic Sombor index of a graph G, which is
defined as:
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ESO(G) =
∑

uv∈E(G)

(d(u) + d(v))
√
d2(u) + d2(v).

Motivated by the above index, the reduced elliptic (RE ) index and the modified reduced elliptic
(mRE) index of a graph G are proposed by V.R. Kulli [3] in 2024 and are defined as

RE(G) =
∑

uv∈E(G)

{d(u)− 1 + d(v)− 1}
√

(d(u)− 1)2 + (d(v)− 1)2,

and
mRE(G) =

∑
uv∈E(G)

1

{d(u)− 1 + d(v)− 1}
√

(d(u)− 1)2 + (d(v)− 1)2
.

Topological indices are often computed independently using the corresponding mathemat-
ical formulas. The polynomial approach has drawn interest in estimating various classes of
topological indices instead of computing each separately [4–8]. One can employ the single
algebraic equation of the Hosoya polynomial [7] to compute the distance-based topological in-
dices (namely Wiener index, hyper-Wiener index, Tratch-Stankevitch-Zefirov, index and Harary
index) of a graph. The NM-polynomial [9] is used to compute the neighbourhood degree sum-
based topological indices of a graph. To find the degree-based topological indices, the idea of
M-polynomial is proposed in [6] by Deutsch and Klavžar in 2015.

Definition 1.1 ([6]). The M-polynomial of a graph G is defined as

M(G;x, y) =
∑

δ≤i≤j≤∆

mijx
iyj ,

where δ = min{d(v) : v ∈ V (G)}, ∆ = max{d(v) : v ∈ V (G)} and mij is the number of edges
uv ∈ E(G) such that d(u) = i, d(v) = j, where i, j ≥ 1.

A degree-based topological index for a simple connected graph G, as specified in [10] is denoted
as I(G) and stated as

I(G) =
∑

uv∈E(G)

f(d(u), d(v)), (1)

where f(d(u), d(v)) is a function of d(u) and d(v), which related to the corresponding topological
indices. It is possible to rewrite the Equation (1) by counting the edges which has same end
degrees of vertices as

I(G) =
∑

δ≤i≤j≤∆

mijf(i, j). (2)

There are some well-known operators mentioned in [6, 7, 10–24], which we will use to formulate
the M-polynomial of elliptic-type indices. They are

Dx(f(x, y)) = x
∂(f(x,y))

∂x
, Dy(f(x, y)) = y

∂(f(x,y))
∂y

,

D
1/2
x (f(x, y)) =

√
x

∂(f(x,y))
∂x

·
√

f(x, y), D
1/2
y (f(x, y)) =

√
y

∂(f(x,y))
∂y

·
√

f(x, y),

Sx(f(x, y)) =
∫x
0

f(t,y)
t

dt, S
1/2
x =

√∫x
0

f(t,y)
t

dt ·
√

f(x, y),

Px(f(xs, yt)) = f(xs2 , yt), Py(f(xs, yt)) = f(xs, yt2 ) where s, t ∈ N ∪ {0},

Qx(k)(f(x, y)) = xk(f(x, y)), Qy(k)(f(x, y)) = yk(f(x, y)) where k ∈ Z \ {0},

J(f(x, y)) = f(x, x).
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2 Methodology
We provide and demonstrate closed derivation formulas in Section 3, associated with the afore-
mentioned elliptic-type indices (elliptic Sombor (ESO), reduced elliptic (RE ) and modified
reduced elliptic (mRE) indices), which can be applied over the M-polynomial of a graph to
compute the indices. In Section 4, we compute the values of the above elliptic-type indices
of some well-known graphs (such as a complete graph, complete bipartite graph, star graph,
r-regular graph, cycle graph, and path graph) by using the M-polynomial-based derivation
formulas. Furthermore, we list the M-polynomial formulas for the family of benzenoid sys-
tems Bm,n and polycyclic aromatic compounds PAHn and then employ our proposed closed
derivation formulas to determine the elliptic-type indices of our interest. Furthermore, we
use MATLAB R2019a software to depict the surface representation of the elliptic-type indices
of Bm,n and PAHn for different parameters associated with them (Bm,n and PAHn). Section 5
concludes our work.

3 Closed derivation formulas over the M-polynomial for
the Elliptic-type indices

In this section, we present the closed derivation formulas for the elliptic Sombor, reduced elliptic,
and modified reduced elliptic indices. In order to do so, we construct three new operators that
are required to establish the closed derivation formulas shown below.

P x(f(xs
2

, yt)) = f(xs, yt),

P y(f(xs, yt
2

)) = f(xs, yt),

J(f(x, x)) = f(x, y),where s, t ∈ N ∪ {0}.

Theorem 3.1. Let G = (V (G), E(G)) be a graph and its elliptic Sombor index is

ESO(G) =
∑

uv∈E(G)

f(d(u), d(v)), where f(x, y) = (x+ y)
√
x2 + y2,

then
ESO(G) = D1/2

x JPyPx(Dx +Dy)(M(G;x, y))|x=1,

where M(G(x, y)) is the M-polynomial of G.

Proof. Let M(G;x, y) be the M-polynomial of G, then

D1/2
x JPyPx(Dx +Dy)(M(G;x, y))

= D1/2
x JPyPx(Dx +Dy)

{ ∑
δ≤i≤j≤∆

mijx
iyj
}

= D1/2
x JPyPxDx

{ ∑
δ≤i≤j≤∆

mijx
iyj
}

+D1/2
x JPyPxDy

{ ∑
δ≤i≤j≤∆

mijx
iyj
}

=
∑

δ≤i≤j≤∆

D1/2
x JPyPxDx{mijx

iyj}+
∑

δ≤i≤j≤∆

D1/2
x JPyPxDy){mijx

iyj}

=
∑

δ≤i≤j≤∆

D1/2
x JPyPx{imijx

iyj}+
∑

δ≤i≤j≤∆

D1/2
x JPyPx{jmijx

iyj}
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=
∑

δ≤i≤j≤∆

D1/2
x J{imijx

i2yj
2

}+
∑

δ≤i≤j≤∆

D1/2
x J{jmijx

i2yj
2

}

=
∑

δ≤i≤j≤∆

D1/2
x {imijx

i2+j2}+
∑

δ≤i≤j≤∆

D1/2
x {jmijx

i2+j2}

=
∑

δ≤i≤j≤∆

i
√
i2 + j2 mijx

i2+j2 +
∑

δ≤i≤j≤∆

j
√
i2 + j2 mijx

i2+j2

=
∑

δ≤i≤j≤∆

(i+ j)
√
i2 + j2 mijx

i2+j2 .

∴ D1/2
x JPyPx(Dx +Dy)(M(G;x, y))|x=1 =

∑
δ≤i≤j≤∆

(i+ j)
√
i2 + j2 mij

=
∑

δ≤i≤j≤∆

mij · f(i, j). (3)

From the Equations (1) and (2), we get

ESO(G) =
∑

uv∈E(G)

f(d(u), d(v)) =
∑

δ≤i≤j≤∆

mij · f(i, j). (4)

Therefore, Equations (3) and (4) give the required result. �

Theorem 3.2. Let G = (V (G), E(G)) be a graph and its reduced elliptic index is

RE(G) =
∑

uv∈E(G)

f(d(u), d(v)), where f(x, y) = (x− 1 + y − 1)
√

(x− 1)2 + (y − 1)2,

then
RE(G) = D1/2

x JPyPx(Dx +Dy)Qy(−1)Qx(−1)(M(G;x, y))|x=1,

where M(G(x, y)) is the M-polynomial of G.

Proof. Let M(G;x, y) be the M-polynomial of G, then

D1/2
x JPyPx(Dx +Dy)Qy(−1)Qx(−1)(M(G;x, y))

= D1/2
x JPyPx(Dx +Dy)Qy(−1)Qx(−1)

{ ∑
δ≤i≤j≤∆

mijx
iyj
}

=
∑

δ≤i≤j≤∆

D1/2
x JPyPx(Dx +Dy)Qy(−1)Qx(−1){mijx

iyj}

=
∑

δ≤i≤j≤∆

D1/2
x JPyPx(Dx +Dy){mijx

i−1yj−1}

=
∑

δ≤i≤j≤∆

D1/2
x JPyPxDx{mijx

i−1yj−1}+
∑

δ≤i≤j≤∆

D1/2
x JPyPxDy{mijx

i−1yj−1}

=
∑

δ≤i≤j≤∆

D1/2
x JPyPx{(i− 1)mijx

i−1yj−1}+
∑

δ≤i≤j≤∆

D1/2
x JPyPx{(j − 1)mijx

i−1yj−1}

=
∑

δ≤i≤j≤∆

D1/2
x J{(i− 1)mijx

(i−1)2y(j−1)2}+
∑

δ≤i≤j≤∆

D1/2
x J{(j − 1)mijx

(i−1)2y(j−1)2}
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=
∑

δ≤i≤j≤∆

D1/2
x {(i− 1)mijx

(i−1)2+(j−1)2}+
∑

δ≤i≤j≤∆

D1/2
x {(j − 1)mijx

(i−1)2+(j−1)2}

=
∑

δ≤i≤j≤∆

(i− 1)
√

(i− 1)2 + (j − 1)2 mijx
(i−1)2+(j−1)2

+
∑

δ≤i≤j≤∆

(j − 1)
√

(i− 1)2 + (j − 1)2 mijx
(i−1)2+(j−1)2

=
∑

δ≤i≤j≤∆

(i− 1 + j − 1)
√

(i− 1)2 + (j − 1)2 mijx
(i−1)2+(j−1)2 .

∴ D1/2
x JPyPx(Dx +Dy)Qy(−1)Qx(−1)(M(G;x, y))|x=1

=
∑

δ≤i≤j≤∆

(i− 1 + j − 1)
√

(i− 1)2 + (j − 1)2 mij =
∑

δ≤i≤j≤∆

mij · f(i, j). (5)

From the Equations (1) and (2), we get

RE(G) =
∑

uv∈E(G)

f(d(u), d(v)) =
∑

δ≤i≤j≤∆

mij · f(i, j). (6)

Therefore, Equations (5) and (6) give the required result. �

Theorem 3.3. Let G = (V (G), E(G)) be a graph and its modified reduced elliptic index is

mRE(G) =
∑

uv∈E(G)

f(d(u), d(v)), where f(x, y) =
1

(x− 1 + y − 1)
√

(x− 1)2 + (y − 1)2
,

then
mRE(G) = SxJP yP xJS

1/2
x JPyPxQy(−1)Qx(−1)(M(G;x, y))|x=1,

where M(G(x, y)) is the M-polynomial of G.

Proof. Let M(G;x, y) be the M-polynomial of G, then

SxJP yP xJS
1/2
x JPyPxQy(−1)Qx(−1)(M(G;x, y))

= SxJP yP xJS
1/2
x JPyPxQy(−1)Qx(−1)

{ ∑
δ≤i≤j≤∆

mijx
iyj
}

=
∑

δ≤i≤j≤∆

SxJP yP xJS
1/2
x JPyPxQy(−1)Qx(−1){mijx

iyj}

=
∑

δ≤i≤j≤∆

SxJP yP xJS
1/2
x JPyPx{mijx

i−1yj−1}

=
∑

δ≤i≤j≤∆

SxJP yP xJS
1/2
x J{mijx

(i−1)2y(j−1)2}

=
∑

δ≤i≤j≤∆

SxJP yP xJS
1/2
x {mijx

{(i−1)2+(j−1)2}}

=
∑

δ≤i≤j≤∆

SxJP yP xJ

{
1√

(i− 1)2 + (j − 1)2
mijx

{(i−1)2+(j−1)2}
}
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=
∑

δ≤i≤j≤∆

SxJP yP x

{
1√

(i− 1)2 + (j − 1)2
mijx

(i−1)2y(j−1)2
}

=
∑

δ≤i≤j≤∆

SxJ

{
1√

(i− 1)2 + (j − 1)2
mijx

i−1yj−1

}

=
∑

δ≤i≤j≤∆

Sx

{
1√

(i− 1)2 + (j − 1)2
mijx

(i−1+j−1)

}
=

∑
δ≤i≤j≤∆

1

(i− 1 + j − 1)
√

(i− 1)2 + (j − 1)2
mijx

(i−1+j−1),

∴ SxJP yP xJS
1/2
x JPyPxQy(−1)Qx(−1)(M(G;x, y))|x=1

=
∑

δ≤i≤j≤∆

1

(i− 1 + j − 1)
√

(i− 1)2 + (j − 1)2
mij =

∑
δ≤i≤j≤∆

mij · f(i, j). (7)

From the Equations (1) and (2), we get

mRE(G) =
∑

uv∈E(G)

f(d(u), d(v)) =
∑

δ≤i≤j≤∆

mij · f(i, j). (8)

Therefore, Equations (7) and (8) give the required result. �

4 Elliptic-type indices for some well-known graphs, Bm,n

and PAHn

This section is divided into three subsections where we calculate the elliptic indices for some
standard families of graphs, chemical families of Bm,n and chemical families of PAHn using our
closed-form derivation formulas for the indices over their respective M-polynomials. Also, we
show some of the numerical calculations and graphical representations of the elliptic-type indices
of Bm,n and PAHn for different type parameters associated with them, which are acquired
through MATLAB R2019a software.

4.1 Elliptic-type indices for some well-known graphs
Let us now find the values of the ESO, RE, and mRE indices using their derivation formulas
of some well-known graphs, such as a complete graph, complete bipartite graph, star graph,
r-regular graph, cycle graph, and path graph.

Theorem 4.1 ([13]). Let G be a complete bipartite graph Km,n having m+n vertices 1 ≤ m ≤ n
and n ≥ 2. Then the M-polynomial of the graph G is M(G;x, y) = mnxmyn.

Theorem 4.2. If G be a complete bipartite graph Km,n with 1 ≤ m ≤ n and n ≥ 2, then

(i) ESO(G) = mn(m+ n)
√
m2 + n2,

(ii) RE(G) = mn(m− 1 + n− 1)
√

(m− 1)2 + (n− 1)2,

(iii) mRE(G) =
mn

(m− 1 + n− 1)
√

(m− 1)2 + (n− 1)2
.
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Proof. The M-polynomial of the complete bipartite graph Km,n is M(G;x, y) = mnxmxn as
given in Theorem 4.1. Then
(i) For elliptic Sombor index of G = Km,n

ESO(G) = D1/2
x JPyPx(Dx +Dy)(M(G;x, y))|x=1

= D1/2
x JPyPx(Dx +Dy)(mnxmyn)|x=1

= D1/2
x JPyPxDx(mnxmyn)|x=1 +D1/2

x JPyPxDy(mnxmyn)|x=1

= m2n ·D1/2
x JPyPx{xmyn}|x=1 +mn2 ·D1/2

x JPyPx{xmyn}|x=1

= m2n ·D1/2
x J{xm

2

yn
2

}|x=1 +mn2 ·D1/2
x J{xm

2

yn
2

}|x=1

= m2n ·D1/2
x {xm

2+n2

}|x=1 +mn2 ·D1/2
x {xm

2+n2

}|x=1

= m2n
√
m2 + n2 · {xm

2+n2

}|x=1 +mn2
√
m2 + n2 · {xm

2+n2

}|x=1

= m2n
√
m2 + n2 +mn2

√
m2 + n2

= mn(m+ n)
√
m2 + n2.

(ii) For reduced elliptic index of G = Km,n

RE(G)

= D1/2
x JPyPx(Dx +Dy)Qy(−1)Qx(−1)(M(G;x, y))|x=1

= D1/2
x JPyPx(Dx +Dy)Qy(−1)Qx(−1)(mnx

myn)|x=1

= D1/2
x JPyPx(Dx +Dy)(mnxm−1yn−1)|x=1

= mn ·D1/2
x JPyPxDx(xm−1yn−1)|x=1 +mn ·D1/2

x JPyPxDy(xm−1yn−1)|x=1

= mn(m− 1) ·D1/2
x JPyPx(xm−1yn−1)|x=1 +mn(n− 1) ·D1/2

x JPyPx(xm−1yn−1)|x=1

= mn(m− 1) ·D1/2
x J(x(m−1)2y(n−1)2)|x=1 +mn(n− 1) ·D1/2

x J(x(m−1)2y(n−1)2)|x=1

= mn(m− 1) ·D1/2
x (x(m−1)2+(n−1)2)|x=1 +mn(n− 1) ·D1/2

x (x(m−1)2+(n−1)2)|x=1

= mn(m− 1)
√

(m− 1)2 + (n− 1)2 · (x(m−1)2+(n−1)2)|x=1

+mn(n− 1)
√

(m− 1)2 + (n− 1)2 · (x(m−1)2+(n−1)2)|x=1

= mn(m− 1)
√

(m− 1)2 + (n− 1)2 +mn(n− 1)
√

(m− 1)2 + (n− 1)2

= mn(m− 1 + n− 1)
√

(m− 1)2 + (n− 1)2.

(iii) For modified reduced elliptic index of G = Km,n

mRE(G) = SxJP yP xJS
1/2
x JPyPxQy(−1)Qx(−1)(M(G;x, y))|x=1

= SxJP yP xJS
1/2
x JPyPxQy(−1)Qx(−1)(mnx

myn)|x=1

= mn · SxJP yP xJS1/2
x JPyPx(xm−1yn−1)|x=1

= mn · SxJP yP xJS1/2
x J(x(m−1)2y(n−1)2)|x=1

= mn · SxJP yP xJS1/2
x (x(m−1)2+(n−1)2)|x=1

=
mn√

(m− 1)2 + (n− 1)2
· SxJP yP xJ(x(m−1)2+(n−1)2)|x=1

=
mn√

(m− 1)2 + (n− 1)2
· SxJP yP x(x(m−1)2y(n−1)2)|x=1



298 S. Das et al. / On Closed Derivation Formulas over the M-polynomial....

=
mn√

(m− 1)2 + (n− 1)2
· SxJ(xm−1yn−1)|x=1

=
mn√

(m− 1)2 + (n− 1)2
· Sx(x(m−1+n−1))|x=1

=
mn

(m− 1 + n− 1)
√

(m− 1)2 + (n− 1)2
· (x(m−1+n−1))|x=1

=
mn

(m− 1 + n− 1)
√

(m− 1)2 + (n− 1)2
.

�

Corollary 4.3 can be derived from Theorem 4.2 by putting m = n = r. Similarly, Corol-
lary 4.4 can be achieved by setting m = 1 and n = r − 1 in Theorem 4.2.

Corollary 4.3. If G be a complete bipartite graph Kr,r with r ≥ 2, then

(i) ESO(G) = 2
√

2r4,

(ii) RE(G) = 2
√

2r2(r − 1)2,

(iii) mRE(G) =
r2

2
√

2(r − 1)2
.

Corollary 4.4. If G be a star graph K1,r−1 with r ≥ 2, then

(i) ESO(G) = r(r − 1)
√
r2 − 2r + 2,

(ii) RE(G) = (r − 1)(r − 2)2,

(iii) mRE(G) =
(r − 1)

(r − 2)2
.

Theorem 4.5 ([12]). Let G be a r-regular graph having n vertices and r ≥ 2. Then, the
M-polynomial of the r-regular graph is given by M(G;x, y) = nr

2 x
ryr.

Theorem 4.6. If G be a r-regular graph having n vertices and r ≥ 2, then

(i) ESO(G) = nr3
√

2,

(ii) RE(G) = nr
√

2(r − 1)2,

(iii) mRE(G) =
nr

4(r − 1)
√
r − 1

.

Proof. The M-polynomial of the r-regular graph is M(G;x, y) = nr
2 x

ryr as given in Theo-
rem 4.5. Then
(i) For elliptic Sombor index of G = r − regular graph

ESO(G) = D1/2
x JPyPx(Dx +Dy)(M(G;x, y))|x=1

= D1/2
x JPyPx(Dx +Dy)

(
nr

2
xryr

)
|x=1

= D1/2
x JPyPxDx

(
nr

2
xryr

)
|x=1 +D1/2

x JPyPxDy

(
nr

2
xryr

)
|x=1

=

(
nr2

2

)
·D1/2

x JPyPx(xryr)|x=1 +

(
nr2

2

)
·D1/2

x JPyPx(xryr)|x=1
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=

(
nr2

2

)
·D1/2

x J(xr
2

yr
2

)|x=1 +

(
nr2

2

)
·D1/2

x J(xr
2

yr
2

)|x=1

=

(
nr2

2

)
·D1/2

x (x2r2)|x=1 +

(
nr2

2

)
·D1/2

x (x2r2)|x=1

=

(
nr2

2

)√
2r2 · (x2r2)|x=1 +

(
nr2

2

)√
2r2 · (x2r2)|x=1

=

(
nr2

2

)√
2r2 +

(
nr2

2

)√
2r2

= nr3
√

2.

(ii) For reduced elliptic index of G = r − regular graph

RE(G)

= D1/2
x JPyPx(Dx +Dy)Qy(−1)Qx(−1)(M(G;x, y))|x=1

= D1/2
x JPyPx(Dx +Dy)Qy(−1)Qx(−1)

(
nr

2
xryr

)
|x=1

= D1/2
x JPyPx(Dx +Dy)

(
nr

2
xr−1yr−1

)
|x=1

=

(
nr

2

)
D1/2
x JPyPxDx(xr−1yr−1)|x=1 +

(
nr

2

)
D1/2
x JPyPxDy(xr−1yr−1)|x=1

=

(
nr(r − 1)

2

)
D1/2
x JPyPx(xr−1yr−1)|x=1 +

(
nr(r − 1)

2

)
D1/2
x JPyPx(xr−1yr−1)|x=1

=

(
nr(r − 1)

2

)
·D1/2

x J(x(r−1)2y(r−1)2)|x=1

+

(
nr(r − 1)

2

)
·D1/2

x J(x(r−1)2y(r−1)2)|x=1

=

(
nr(r − 1)

2

)
·D1/2

x (x2(r−1)2)|x=1 +

(
nr(r − 1)

2

)
·D1/2

x (x2(r−1)2)|x=1

=

(
nr(r − 1)

2

)√
2(r − 1)2 · (x2(r−1)2)|x=1

+

(
nr(r − 1)

2

)√
2(r − 1)2 · (x2(r−1)2)|x=1

=

(
nr(r − 1)

2

)√
2(r − 1)2 +

(
nr(r − 1)

2

)√
2(r − 1)2

= nr
√

2(r − 1)2.

(iii) For modified reduced elliptic index of G = r − regular graph

mRE(G) = SxJP yP xJS
1/2
x JPyPxQy(−1)Qx(−1)(M(G;x, y))|x=1

= SxJP yP xJS
1/2
x JPyPxQy(−1)Qx(−1)

(
nr

2
xryr

)
|x=1

=
(nr

2

)
· SxJP yP xJS1/2

x JPyPx(xr−1yr−1)|x=1

=
(nr

2

)
· SxJP yP xJS1/2

x J(x(r−1)2y(r−1)2)|x=1



300 S. Das et al. / On Closed Derivation Formulas over the M-polynomial....

=
(nr

2

)
· SxJP yP xJS1/2

x (x2(r−1)2)|x=1

=
( nr

2
√

2(r − 1)2

)
· SxJP yP xJ(x2(r−1)2)|x=1

=
( nr

2
√

2(r − 1)2

)
· SxJP yP x(x(r−1)2y(r−1)2)|x=1

=
( nr

2
√

2(r − 1)2

)
· SxJ(xr−1yr−1)|x=1

=
( nr

2
√

2(r − 1)2

)
· Sx(x2(r−1))|x=1

=
( nr

4(r − 1)
√
r − 1

)
· (x2(r−1))|x=1

=
nr

4(r − 1)
√
r − 1

.

�

The proof of the following Corollaries 4.8 and 4.10 are quite evident and can be solved similarly
to Theorems 4.2 and 4.6. They are left as an exercise for the readers.

Theorem 4.7 ([13]). Let G be a cycle graph Cn with n(≥ 3) vertices, then the M-polynomial
of G is M(G;x, y) = nx2y2.

Corollary 4.8. If G be a cycle graph Cn with n(≥ 3) vertices, then

(i) ESO(G) = 8
√

2n,

(ii) RE(G) = 2
√

2n,

(iii) mRE(G) =
n

2
.

Theorem 4.9 ([13]). Consider a complete graph Kn, a (n − 1)-regular graph with n(≥ 3)

vertices. Then the M-polynomial of the graph G is M(G;x, y) = n(n−1)
2 xn−1yn−1.

Corollary 4.10. If G be a complete graph Kn with n(≥ 3) vertices, then

(i) ESO(G) = n(n− 1)3
√

2,

(ii) RE(G) =
√

2n(n− 1)(n− 2)2,

(iii) mRE(G) =
n(n− 1)

4(n− 2)
√
n− 2

.

Theorem 4.11 ([13]). Let G be a path graph Pn with n(≥ 3) vertices, then the M-polynomial
of G is M(G;x, y) = 2x1y2 + (n− 3)x2y2.

Theorem 4.12. If G be a path graph Pn with n(≥ 3) vertices, then

(i) ESO(G) = 6
√

5 + 8
√

2(n− 3),

(ii) RE(G) = 2 + 2
√

2(n− 3),

(iii) mRE(G) = 2 +
(n− 3)√

2
.
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Proof. The M-polynomial of the path graph is M(G;x, y) = 2x1y2 + (n − 3)x2y2 as given
in Theorem 4.11. Then
(i) For elliptic Sombor index of G = Pn

ESO(G)

= D1/2
x JPyPx(Dx +Dy)(M(G;x, y))|x=1

= D1/2
x JPyPx(Dx +Dy)

(
2x1y2 + (n− 3)x2y2

)
|x=1

= D1/2
x JPyPxDx

(
2x1y2 + (n− 3)x2y2

)
|x=1

+D1/2
x JPyPxDy

(
2x1y2 + (n− 3)x2y2

)
|x=1

= D1/2
x JPyPx

(
2x1y2 + 2(n− 3)x2y2

)
|x=1 +D1/2

x JPyPx

(
4x1y2 + 2(n− 3)x2y2

)
|x=1

= D1/2
x J

(
2x1y4 + 2(n− 3)x4y4

)
|x=1 +D1/2

x J
(

4x1y4 + 2(n− 3)x4y4
)
|x=1

= D1/2
x

(
2x5 + 2(n− 3)x8

)
|x=1 +D1/2

x

(
4x5 + 2(n− 3)x8

)
|x=1

=
(

2
√

5x5 + 2
√

8(n− 3)x8
)
|x=1 +

(
4
√

5x5 + 2
√

8(n− 3)x8
)
|x=1

= 2
√

5 + 2
√

8(n− 3) + 4
√

5 + 2
√

8(n− 3)

= 6
√

5 + 8
√

2(n− 3).

(ii) For reduced elliptic index of G = Pn

RE(G)

= D1/2
x JPyPx(Dx +Dy)Qy(−1)Qx(−1)(M(G;x, y))|x=1

= D1/2
x JPyPx(Dx +Dy)Qy(−1)Qx(−1)

(
2x1y2 + (n− 3)x2y2

)
|x=1

= D1/2
x JPyPx(Dx +Dy)

(
2y1 + (n− 3)x1y1

)
|x=1

= D1/2
x JPyPxDx

(
2y1 + (n− 3)x1y1

)
|x=1 +D1/2

x JPyPxDy

(
2y1 + (n− 3)x1y1

)
|x=1

= D1/2
x JPyPx

(
(n− 3)x1y1

)
|x=1 +D1/2

x JPyPx

(
2y1 + (n− 3)x1y1

)
|x=1

= D1/2
x J

(
(n− 3)x1y1

)
|x=1 +D1/2

x J
(

2y1 + (n− 3)x1y1
)
|x=1

= D1/2
x

(
(n− 3)x2

)
|x=1 +D1/2

x

(
2x1 + (n− 3)x2

)
|x=1

=
(√

2(n− 3)x2
)
|x=1 +

(
2x+

√
2(n− 3)x2

)
|x=1

=
√

2(n− 3) + 2 +
√

2(n− 3)

= 2 + 2
√

2(n− 3).

(iii) For modified reduced elliptic index of G = Pn

mRE(G) = SxJP yP xJS
1/2
x JPyPxQy(−1)Qx(−1)(M(G;x, y))|x=1

= SxJP yP xJS
1/2
x JPyPxQy(−1)Qx(−1)

(
2x1y2 + (n− 3)x2y2

)
|x=1

= SxJP yP xJS
1/2
x JPyPx

(
2y1 + (n− 3)x1y1

)
|x=1
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= SxJP yP xJS
1/2
x J

(
2y1 + (n− 3)x1y1

)
|x=1

= SxJP yP xJS
1/2
x

(
2x1 + (n− 3)x2

)
|x=1

= SxJP yP xJ
(

2x1 +
√

2(n− 3)x2
)
|x=1

= SxJP yP x

(
2y1 +

√
2(n− 3)x1y1

)
|x=1

= SxJ
(

2y1 +
√

2(n− 3)x1y1
)
|x=1

= Sx

(
2x1 +

√
2(n− 3)x2

)
|x=1

=
(

2x1 +

√
2

2
(n− 3)x2

)
|x=1

= 2 +
(n− 3)√

2
.

�

4.2 Elliptic-type indices for jagged-rectangle benzenoid system Bm,n

This subsection calculates the elliptic Sombor, reduced elliptic, and modified reduced elliptic
indices for the jagged-rectangle benzenoid system Bm,n. Note that, Bm,n contains 4mn+ 4m+
2n− 2 and 6mn+ 5m+ n− 4 number of vertices and edges, respectively, as shown in Figure 1,
while the degree of each vertex is either 2 or 3.

Theorem 4.13 ([25]). Let G be the family of jagged-rectangle benzenoid system Bm,n with
m ∈ N \ {1} and n ∈ N. Then,

M(G;x, y) = (2n+ 4)x2y2 + (4m+ 4n− 4)x2y3 + (6mn+m− 5n− 4)x3y3.

Theorem 4.14. Let G be the jagged-rectangle benzenoid system Bm,n with m ∈ N \ {1} and
n ∈ N. Then the elliptic topological indices are given by

(i) ESO(G) = 36
√

18mn+ (6
√

18 + 20
√

13)m+ (8
√

8 + 20
√

13− 30
√

18)n

+ 16
√

8− 20
√

13− 24
√

18,

(ii) RE(G) = 24
√

8mn+ (12
√

5 + 4
√

8)m+ (4
√

2 + 12
√

5− 20
√

8)n+ 8
√

2

− 12
√

5− 16
√

8,

(iii) mRE(G) =
3

4
√

2
mn+

( 4

3
√

5
+

1

8
√

2

)
m+

( 1√
2

+
4

3
√

5
− 5

8
√

2

)
n+
√

2

− 4

3
√

5
− 1

2
√

2
.

Proof. The M-polynomial of Bm,n is given by

M(G;x, y) = (2n+ 4)x2y2 + (4m+ 4n− 4)x2y3 + (6mn+m− 5n− 4)x3y3.

Then

(i) ESO(G)
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Figure 1: Chemical structure of the benzenoid system Bm,n.

= D1/2
x JPyPx(Dx +Dy)(M(G;x, y))|x=1

= D1/2
x JPyPx(Dx +Dy)

(
(2n+ 4)x2y2 + (4m+ 4n− 4)x2y3

+ (6mn+m− 5n− 4)x3y3
)
|x=1

= D1/2
x JPyPxDx

(
(2n+ 4)x2y2 + (4m+ 4n− 4)x2y3 + (6mn+m− 5n

− 4)x3y3
)
|x=1 +D1/2

x JPyPxDy

(
(2n+ 4)x2y2 + (4m+ 4n− 4)x2y3 + (6mn+m

− 5n− 4)x3y3
)
|x=1
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= D1/2
x JPyPx

(
2(2n+ 4)x2y2 + 2(4m+ 4n− 4)x2y3 + 3(6mn+m− 5n

− 4)x3y3
)
|x=1 +D1/2

x JPyPx

(
2(2n+ 4)x2y2 + 3(4m+ 4n− 4)x2y3 + 3(6mn+m

− 5n− 4)x3y3
)
|x=1

= D1/2
x J

(
2(2n+ 4)x4y4 + 2(4m+ 4n− 4)x4y9 + 3(6mn+m− 5n− 4)x9y9

)
|x=1

+D1/2
x J

(
2(2n+ 4)x4y4 + 3(4m+ 4n− 4)x4y9 + 3(6mn+m− 5n− 4)x9y9

)
|x=1

= D1/2
x

(
2(2n+ 4)x8 + 2(4m+ 4n− 4)x13 + 3(6mn+m− 5n− 4)x18

)
|x=1

+D1/2
x

(
2(2n+ 4)x8 + 3(4m+ 4n− 4)x13 + 3(6mn+m− 5n− 4)x18

)
|x=1

=
(

2
√

8(2n+ 4)x8 + 2
√

13(4m+ 4n− 4)x13 + 3
√

18(6mn+m− 5n− 4)x18
)
|x=1

+
(

2
√

8(2n+ 4)x8 + 3
√

13(4m+ 4n− 4)x13 + 3
√

18(6mn+m− 5n− 4)x18
)
|x=1

=
(

2
√

8(2n+ 4) + 2
√

13(4m+ 4n− 4) + 3
√

18(6mn+m− 5n− 4)
)

+
(

2
√

8(2n+ 4) + 3
√

13(4m+ 4n− 4) + 3
√

18(6mn+m− 5n− 4)
)

= 36
√

18mn+ (6
√

18 + 20
√

13)m+ (8
√

8 + 20
√

13− 30
√

18)n+ 16
√

8

− 20
√

13− 24
√

18.

(ii) RE(G)

= D1/2
x JPyPx(Dx +Dy)Qy(−1)Qx(−1)(M(G;x, y))|x=1

= D1/2
x JPyPx(Dx +Dy)Qy(−1)Qx(−1)

(
(2n+ 4)x2y2 + (4m+ 4n− 4)x2y3 + (6mn

+m− 5n− 4)x3y3
)
|x=1

= D1/2
x JPyPx(Dx +Dy)

(
(2n+ 4)x1y1 + (4m+ 4n− 4)x1y2 + (6mn+m− 5n

− 4)x2y2
)
|x=1

= D1/2
x JPyPxDx

(
(2n+ 4)x1y1 + (4m+ 4n− 4)x1y2 + (6mn+m− 5n

− 4)x2y2
)
|x=1 +D1/2

x JPyPxDy

(
(2n+ 4)x1y1 + (4m+ 4n− 4)x1y2 + (6mn+m

− 5n− 4)x2y2
)
|x=1

= D1/2
x JPyPx

(
(2n+ 4)x1y1 + (4m+ 4n− 4)x1y2 + 2(6mn+m− 5n− 4)x2y2

)
|x=1

+D1/2
x JPyPx

(
(2n+ 4)x1y1 + 2(4m+ 4n− 4)x1y2 + 2(6mn+m− 5n

− 4)x2y2
)
|x=1

= D1/2
x J

(
(2n+ 4)x1y1 + (4m+ 4n− 4)x1y4 + 2(6mn+m− 5n− 4)x4y4

)
|x=1

+D1/2
x J

(
(2n+ 4)x1y1 + 2(4m+ 4n− 4)x1y4 + 2(6mn+m− 5n− 4)x4y4

)
|x=1
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= D1/2
x

(
(2n+ 4)x2 + (4m+ 4n− 4)x5 + 2(6mn+m− 5n− 4)x8

)
|x=1

+D1/2
x

(
(2n+ 4)x2 + 2(4m+ 4n− 4)x5 + 2(6mn+m− 5n− 4)x8

)
|x=1

=
(√

2(2n+ 4)x2 +
√

5(4m+ 4n− 4)x5 + 2
√

8(6mn+m− 5n− 4)x8
)
|x=1

+
(√

2(2n+ 4)x2 + 2
√

5(4m+ 4n− 4)x5 + 2
√

8(6mn+m− 5n− 4)x8
)
|x=1

=
(√

2(2n+ 4) +
√

5(4m+ 4n− 4) + 2
√

8(6mn+m− 5n− 4)
)

+
(√

2(2n+ 4) + 2
√

5(4m+ 4n− 4) + 2
√

8(6mn+m− 5n− 4)
)

= 24
√

8mn+ (12
√

5 + 4
√

8)m+ (4
√

2 + 12
√

5− 20
√

8)n+ 8
√

2− 12
√

5

− 16
√

8.

(iii) mRE(G)

= SxJP yP xJS
1/2
x JPyPxQy(−1)Qx(−1)(M(G;x, y))|x=1

= SxJP yP xJS
1/2
x JPyPxQy(−1)Qx(−1)

(
(2n+ 4)x2y2 + (4m+ 4n− 4)x2y3 + (6mn+m

− 5n− 4)x3y3
)
|x=1

= SxJP yP xJS
1/2
x JPyPx

(
(2n+ 4)x1y1 + (4m+ 4n− 4)x1y2 + (6mn+m− 5n

− 4)x2y2
)
|x=1

= SxJP yP xJS
1/2
x J

(
(2n+ 4)x1y1 + (4m+ 4n− 4)x1y4 + (6mn+m− 5n

− 4)x4y4
)
|x=1

= SxJP yP xJS
1/2
x

(
(2n+ 4)x2 + (4m+ 4n− 4)x5 + (6mn+m− 5n− 4)x8

)
|x=1

= SxJP yP xJ
((2n+ 4√

2

)
(2n+ 4)x2 +

(4m+ 4n− 4√
5

)
x5

+
(6mn+m− 5n− 4√

8

)
x8
)
|x=1

= SxJP yP x

((2n+ 4√
2

)
x1y1 +

(4m+ 4n− 4√
5

)
x1y4 +

(6mn+m− 5n− 4√
8

)
x4y4

)
|x=1

= SxJ
((2n+ 4√

2

)
x1y1 +

(4m+ 4n− 4√
5

)
x1y2 +

(6mn+m− 5n− 4√
8

)
x2y2

)
|x=1

= Sx

((2n+ 4√
2

)
x2 +

(4m+ 4n− 4√
5

)
x3 +

(6mn+m− 5n− 4√
8

)
x4
)
|x=1

=
((2n+ 4

2
√

2

)
x2 +

(4m+ 4n− 4

3
√

5

)
x3 +

(6mn+m− 5n− 4

4
√

8

)
x4
)
|x=1

=
3

4
√

2
mn+

( 4

3
√

5
+

1

8
√

2

)
m+

( 1√
2

+
4

3
√

5
− 5

8
√

2

)
n+
√

2− 4

3
√

5
− 1

2
√

2
.

�

In Table 1, we list all the numerical values of ESO(G), RE(G) and mRE(G) indices of G =
Bm,n wherem = n. Similarly, Tables 2 and 3 contains the values of ESO(G), RE(G) and mRE(G)
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indices of G = Bm,n, where 2 ≤ m ≤ 10, n = 10 and m = 10, 2 ≤ n ≤ 10, respectively. More-
over, we provide the graphical interpretations of the numerical computation of ESO(G), RE(G)
and mRE(G) indices of G = Bm,n for different values of m and n using MATLAB R2019a
software. See in Figure 2.
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Figure 2: Graphical representation of (a) ESO(G), (b) RE (G), (c) mRE(G) indices of G = Bm,n
with 1 ≤ m ≤ 100 and 1 ≤ n ≤ 100.

Table 1: Numerical calculation of ESO(G), RE(G) and mRE(G) indices of G = Bm,n where
m = n.

[m,n] [2,2] [3,3] [4,4] [5,5] [6,6] [7,7] [8,8] [9,9] [10,10]

ESO(G) 612.3129 1441.0143 2575.1858 4014.8275 5759.9393 7810.5212 10166.5733 12828.0955 15795.0878

RE(G) 238.8904 592.3693 1081.6127 1706.6206 2467.3930 3363.9299 4396.2313 5564.2973 6868.1277
mRE(G) 3.2928 7.4906 12.7490 19.0681 26.4479 34.8883 44.3893 54.9511 66.5735
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Table 2: Numerical calculation of ESO(G), RE(G) and mRE(G) indices of G = Bm,n where
2 ≤ m ≤ 10 and n = 10.

[m,n] [2,10] [3,10] [4,10] [5,10] [6,10] [7,10] [8,10] [9,10] [10,10]

ESO(G) 3836.6089 5331.4187 6826.2286 8321.0385 9815.8483 11310.6582 12805.4681 14300.2780 15795.0878

RE(G) 1630.1786 2284.9222 2939.6659 3594.4095 4249.1531 4903.8968 5558.6404 6213.3840 6868.1277
mRE(G) 17.2555 23.4202 29.5850 35.7497 41.9145 48.0792 54.2440 60.4087 66.5735

Table 3: Numerical calculation of ESO(G), RE(G) and mRE(G) indices of G = Bm,n where
m = 10 and 2 ≤ n ≤ 10.

[m,n] [10,2] [10,3] [10,4] [10,5] [10,6] [10,7] [10,8] [10,9] [10,10]

ESO(G) 2795.7477 4420.6652 6045.5827 7670.5002 9295.4177 10920.3353 12545.2528 14170.1703 15795.0878

RE(G) 1132.3754 1849.3444 2566.3135 3283.2825 4000.2515 4717.2206 5434.1896 6151.1586 6868.1277
mRE(G) 18.6699 24.6577 30.6456 36.6336 42.6216 48.6096 54.5975 60.5855 66.5735

4.3 Elliptic-type indices for polycyclic aromatic hydrocarbons PAHn

This subsection calculates the elliptic Sombor, reduced elliptic, and modified reduced elliptic
indices for the polycyclic aromatic hydrocarbons PAHn. The molecular structure of the poly-
cyclic aromatic hydrocarbons PAHn contains 6n2 + 6n and 9n2 + 3n number of vertices and
edges, respectively, as shown in Figure 3.
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Figure 3: Molecular structure of the polycyclic aromatic hydrocarbons PAHn for n = 1, 2, 3.

Theorem 4.15. Consider G be the family of polycyclic aromatic hydrocarbons PAHn. Then,

M(G;x, y) = 6nx1y3 + (9n2 − 3n)x3y3.

Proof. The graph G contains two types of edges in terms of the degree of end vertices as follows:

E1,3 = {uv ∈ E(G) : d(u) = 1, d(v) = 3}, |E1,3| = 6n,
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E3,3 = {uv ∈ E(G) : d(u) = d(v) = 3}, |E3,3| = 9n2 − 3n.

Then, by applying the Definition 1.1, we get the M-polynomial of polycyclic aromatic hydro-
carbons PAHn. �

Theorem 4.16. Let G be the family of polycyclic aromatic hydrocarbons PAHn. Then, the
elliptic topological indices are given by

(i) ESO(G) = 54
√

18n2 + (24
√

10− 18
√

18)n,

(ii) RE(G) = 72
√

2n2 + (1−
√

2)24n,
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( 9

8
√

2

)
n2 +

(3

2
− 3

8
√

2

)
n.

Proof. The M-polynomial of PAHn is given by

M(G;x, y) = 6nx1y3 + (9n2 − 3n)x3y3.

Then

(i) ESO(G)

= D1/2
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(ii) RE(G)
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�

In Table 4, we lists all the numerical values of ESO(G), RE(G) and mRE(G) indices of G =
PAHn where n = 10. Additionally, we provide the graphical interpretations of the numerical
computation of ESO(G), RE(G) and mRE(G) indices of G = PAHn in Figure 4 using MATLAB
R2019a software.

5 Concluding remarks
We suggested the closed derivation formulae in this work to calculate the recently announced
elliptic Sombor index, reduced elliptic, and modified reduced elliptic indices of a graph, which
are written in terms of a graph’s M-polynomial. Additionally, we used our closed derivation
formulas to evaluate these elliptic-type indices for some standard families of graphs, Bm,n and
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Figure 4: Graphical representation of (a) ESO(G), (b) RE (G), (c) mRE(G) indices of G =
PAHn with 1 ≤ n ≤ 50.

Table 4: Numerical computation of ESO(G), RE(G) and mRE(G) indices of G = PAHn where
n = 10.

n 1 2 3 4 5 6 7 8 9 10

ESO(G) 228.6297 915.4647 2060.5048 3663.7501 5725.2006 8244.8563 11222.7172 14658.7833 18553.0546 22905.5310

RE(G) 91.8823 387.4113 886.5870 1589.4095 2495.8788 3605.9948 4919.7576 6437.1671 8158.2234 10082.9264
mRE(G) 2.0303 5.6517 10.8640 17.6673 26.0616 36.0468 47.6231 60.7904 75.5486 91.8979

PAHn, by using their respective M-polynomials. Also, we have depicted the graphical repre-
sentation of ESO, RE and mRE indices of Bm,n and PAHn within the range of 1 ≤ m,n ≤ 100
and 1 ≤ n ≤ 50, respectively. We have discovered that our proposed closed derivation formulas
for the M-polynomial approach yield identical numerical outcomes for the RE and mRE indices
of Bm,n and PAHn as those originally calculated by V.R. Kulli in [3]. Furthermore, it can be
observed that the M-polynomial technique based on the derivation formulas is simpler, quicker,
and more compact for estimating the elliptic indices.
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