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Abstract

This paper presents a numerical method for solving a class of
nonlinear multi-order fractional differential equations using the
first-kind Chebyshev polynomials. The proposed approach is
based on a collocation framework that incorporates operational
matrices of derivatives specifically tailored to the spectral prop-
erties of the Chebyshev polynomials on the interval [0, 1]. Two
cases of interest are considered: the classical case with ν = 2
and λ = 1, and the fractional-order case with 1 < ν ≤ 2 and
0 < λ ≤ 1. To ensure high accuracy, an appropriate set of
the shifted Chebyshev basis functions that satisfy the bound-
ary conditions is utilized. The Caputo definition of fractional
derivatives is adopted to handle the fractional operators. The
resulting nonlinear algebraic system is solved efficiently using
Newton’s method. Numerical experiments confirm the proposed
method’s efficiency, stability, and accuracy in comparison with
existing techniques.

c© 2025 University of Kashan Press. All rights reserved.

1 Introduction
Fractional-order differential equations (FDEs) [1] have emerged as powerful tools for modeling
complex systems with memory and hereditary characteristics, commonly observed in viscoelas-
tic materials, anomalous diffusion, and chemical kinetics. These models are particularly useful
when involving multi-order derivatives, capturing intricate temporal and spatial dynamics. Ap-
plications often arise in chemical reactors, thermal explosions, and porous media, extending
classical models such as those in [2] to incorporate fractional-order dynamics [3].

Various numerical and analytical methods have been developed to address nonlinear frac-
tional boundary value problems (BVPs). These include fixed-point techniques [4], Chebyshev
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finite difference methods [5], and homotopy-based approaches [6]. Spectral methods based on
operational matrices and orthogonal polynomial bases, such as Jacobi, Laguerre, and Cheby-
shev, have gained wide attention due to their ability to achieve high accuracy within the collo-
cation framework [7–12].

The mathematical foundations of fractional calculus are well established in references like
[13], and recent work has extended their application to chemical and biological models, including
fractional Michaelis–Menten kinetics [14], CO2 absorption [15], and vibrational dynamics in
NMR systems [16]. In optimization and variational settings, Caputo-type derivatives have
been successfully applied [17, 18]. Orthogonal polynomial approximations using Jacobi and
Chebyshev polynomials have been employed in a range of scientific and engineering applications
[19–22].

Spectral methods [23–27] are particularly favored for their exponential convergence when
applied to smooth problems. These approaches rely on global orthogonal basis functions, espe-
cially Chebyshev polynomials, to convert differential operators into algebraic systems that are
highly efficient to solve [28, 29]. Consequently, they are well-suited for high-precision problems.

Recent developments have significantly expanded the use of spectral techniques in frac-
tional problems. For example, modified shifted Chebyshev–Galerkin methods have been used
for even-order PDEs [30]. Other studies extended the method to fractional models in fluid
mechanics, biomechanics, and structural analysis using the Chebyshev collocation approach
[31–33]. The Chebyshev-based tau method has been applied to Bagley–Torvik equations [34],
while Petrov–Galerkin schemes have been adapted to singular-kernel problems [35]. Further ad-
vancements include third-kind Chebyshev methods for hyperbolic equations [36] and fractional
diffusion models via Lucas polynomials [37]. Additionally, fixed-point approaches using G-
metrics have been successfully integrated with spectral methods for fractal and chaotic models
[38].

Emerging approaches using Bernoulli and Hahn polynomials [39, 40], along with improve-
ments to nonlinear fractional models in mathematical chemistry [41–45], illustrate the versatility
and effectiveness of polynomial-based techniques.

In this study, we introduce a novel Chebyshev spectral collocation method for solving nonlin-
ear multi-order fractional BVPs, focusing on models from mathematical chemistry. The method
employs newly constructed operational matrices for both integer and Caputo derivatives and
utilizes the shifted Chebyshev polynomials to enhance both accuracy and computational effi-
ciency.

Key contributions of this work:

• Accurate numerical solutions are achieved with a minimal number of basis functions.

• The method efficiently handles both linear and nonlinear systems.

• New operational matrices for multi-order Caputo derivatives are derived and embedded
into the spectral collocation formulation.

Paper organization: Section 2 introduces properties of the first-kind Chebyshev polynomi-
als. Section 3 outlines the development of the proposed numerical scheme. Section 4 provides
an estimate of the truncation error. Section 5 provides numerical examples. Final remarks are
discussed in Section 6.
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2 Key properties of shifted Chebyshev polynomials of the
first kind

The family of shifted Chebyshev polynomials of the first kind, denoted by T ∗` (x), can be gen-
erated recursively using the following three-term relation:

T ∗`+1(x) = 2(2x− 1)T ∗` (x)− T ∗`−1(x), (1)

with the initial values T ∗0 (x) = 1 and T ∗1 (x) = 2x− 1.
These polynomials satisfy an orthogonality condition over the interval [0, 1] with respect to

the weight function ŵ(x) = 1√
x(1−x)

, as shown below [11, 12]:

∫ 1

0

T ∗` (x)T ∗n(x) ŵ(x) dx = h` δ`,n, (2)

where

h` =

{
π, if ` = 0,
π
2 , if ` > 0,

(3)

and δ`,n is the Kronecker delta function:

δ`,n =

{
1, if ` = n,

0, if ` 6= n.
(4)

Moreover, the shifted Chebyshev polynomials admit a power series representation [11, 12]:

T ∗` (x) =
∑̀
k=0

Ak,` x
k, ` > 0, (5)

where the coefficients Ak,` are given by

Ak,` =
` (−1)`−k 22k (`+ k − 1)!

(`− k)! (2k)!
. (6)

An inversion formula expresses powers of x in terms of Chebyshev polynomials:

x` = 21−2` (2`)!
∑̀
p=0

εp
(`− p)!(`+ p)!

T ∗p (x), ` ≥ 0, (7)

where εp is defined as

εp =

{
1
2 , if p = 0,

1, if p > 0.
(8)

Remark 1. The inversion identity in (7) can also be written in the following compact form:

xr =
4−r(2r)!

(r!)2
+

r∑
p=1

Bp,r T
∗
p (x), r ≥ 0, (9)

where the coefficients Bp,r are given by

Bp,r =
21−2r (2r)!

(r − p)!(r + p)!
. (10)
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Corollary 2.1. ([10]). For any positive integer q, the qth-order derivative of T ∗` (x) can be
expressed as a linear combination of the polynomials themselves:

Dq T ∗` (x) =

`−q∑
p=0

`+p+q even

ς`,p,q T
∗
p (x), (11)

where the coefficients ς`,p,q are defined by

ς`,p,q =
` 22q εp (q) 1

2 (`−p−q)(
1
2 (`− p− q)

)
!
(

1
2 (`+ p+ q)

)
1−q

,

and εp is given in Equation (8).

3 Collocation algorithm for the nonlinear multi-order frac-
tional version

We consider the nonlinear multi-order fractional version

Dν u(x)− αDλ u(x) + αη
(
χ− u(x)

)
eu(x) = 0, 0 < x < 1, (12)

subject to
u′(0) = αu(0), u′(1) = 0, (13)

where ν ∈ (1, 2], λ ∈ (0, 1]. Also, η stands for the Damkohler number, γ stands for adiabatic
temperature rise, and α stands for the Peclet number.

3.1 Choice of the basis functions

Assuming the following basis functions

ρi(x) = T ∗i+2(x)− 2(i+ 2)2

(
(−1)i + 1

α
+ x

)
− (−1)i.

Utilizing the derivative formula for Chebyshev polynomials given in Equation (11), we derive
the following two important results.

Theorem 3.1. The following formula holds

Dρi(x) =

i+1∑
p=0

Zi,p T ∗p (x), (14)

where

Zi,p = (2 i+ 4)

{
−(1 + i+ ηi), if p = 0,

2(1− ηi+p), otherwise,
(15)

and

ηi =

{
1, if i is even,
0, otherwise.

(16)
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Proof. By setting q = 1, ` = i+2 in Equation (11) and rearranging the terms on the right-hand
side, we obtain the desired result. �

Theorem 3.2. The following formula holds

D2 ρi(x) =

i∑
p=0

θp,i T
∗
p (x), (17)

where
θp,i = (4 i+ 8) ·

(
(i+ 2)2 − p2

)
εp ηi+p, (18)

and

εi =

{
1
2 , if i = 0,

1, otherwise.
(19)

Proof. By setting q = 2, ` = i+2 in Equation (11) and rearranging the terms on the right-hand
side, we obtain the desired result. �

Remark 2. Let us consider the vector ρ(x) defined as

ρ(x) = [ρ0(x), ρ1(x), . . . , ρM (x)]T , (20)

then the matrix form of Theorems 3.1 and 3.2 can be written as

D ρ(x) = Hρ(x), (21)

D2 ρ(x) = F ρ(x), (22)

where H = (Zi,p) and F = (θp,i) are operational matrices of derivatives of order (M + 1)2.

3.2 Derivation of the collocation technique for ν = 2 and λ = 1

To handle Equation (12), we approximate u(x) by ρ(x) as

uM (x) =

M∑
i=0

ci ρi(x) = CT ρ(x), (23)

where CT = [c0, c1, c2, . . . , cN ] and ρ(x) is given in (20). Based on Remark 2 and (23), the
residual of Equation (12) after putting ν = 2 and λ = 1 can be written as

R(x) = D2 uM − αDuM + αη (χ− uM ) euM

= CT F ρ(x)− αCT Hρ(x) + αη (χ−CT ρ(x)) eC
T ρ(x).

(24)

Also the boundary conditions (13) yields,

CT D ρ(0) = αCT ρ(0), CT D ρ(1) = 0, (25)

To get approximate the solution uM (x), The residual of Equation (24) is enforced at the first
M − 2 roots of the polynomial ρM+2(x) as follows

R(xi) = 0, i = 1, ...,M − 2. (26)

Combined theM−2 system of equations resulting from the last equation with the two boundary
conditions given in (25), yields a system of M + 1 nonlinear algebraic equations.
Remark 3. The resulting system is then solved using Newton’s iterative scheme, allowing for
the computation of the approximate solution uM (x) as expressed in (23).
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3.3 Derivation of the collocation technique for 1 < ν < 2 and 0 < λ < 1

This section presents a numerical procedure tailored to solve the nonlinear multi-order fractional
problem in the case where the fractional orders satisfy 1 < ν < 2 and 0 < λ < 1. To facilitate
the formulation, we first summarize essential concepts from fractional calculus.

Definition 3.3 ([13]). For a sufficiently smooth function h(τ), the Caputo fractional derivative
of order ζ is defined by

Dζh(τ) =
1

Γ(p− ζ)

∫ τ

0

(τ − ξ)p−ζ−1h(p)(ξ) dξ, ζ > 0, τ > 0, (27)

where p ∈ N is the smallest integer such that p− 1 < ζ ≤ p.

The Caputo operator Dζ satisfies the following properties for p− 1 < ζ ≤ p, p ∈ N:

Dζb = 0, for any constant b, (28)

Dζχκ =

0, if κ ∈ N0 and κ < dζe,
κ!

Γ(κ−ζ+1)χ
κ−ζ , if κ ∈ N0 and κ ≥ dζe,

(29)

where N = {1, 2, 3, . . .}, N0 = {0} ∪N, and dζe denotes the ceiling function.

Theorem 3.4. The following formula holds for all λ ∈ (0, 1):

Dλ ρj(x) =x−λ

j+2∑
k=1

j+2∑
p=k

p!Ap,j+2Bk,p
(p− λ)!

T ∗k (x) +
(−1)jΓ(1− λ)

Γ(−j − λ− 1)Γ(j − λ+ 3)

+
(λ− 1)(−1)j − 2(j + 2)2 x

Γ(2− λ)

)
,

(30)

where Ai,j and Bi,j are defined respectively in (6) and (10).

Proof. Based on relation (5), one gets

ρj(x) =

j+2∑
k=0

Ak,j x
k − 2(j + 2)2

(
(−1)j + 1

α
+ x

)
− (−1)j . (31)

Now, the application of Caputo fractional derivative (27), we get

Dλ ρj(x) = x−λ

(
j+2∑
k=1

Ak,j k!

Γ(k − λ+ 1)
xk − 2 (j + 2)2 x

(1− λ)!

)
. (32)

The previous equation can be rewritten after using (9) as

Dλ ρj(x) = x−λ

(
j+2∑
k=1

k∑
p=1

k!Ak,j+2Bp,k
(k − λ)!

T ∗p (x) +

j+2∑
k=1

k! 4−k (2k)!Ak,j+2

(k!)2(k − λ)!
− 2 (j + 2)2 x

(1− λ)!

)
. (33)

The previous equation can be rewritten after rearranging the terms as

Dλ ρj(x) = x−λ

j+2∑
k=1

j+2∑
p=k

p!Ap,j+2Bk,p
(p− λ)!

T ∗k (x) +

j+2∑
k=1

k! 4−k(2k)!Ak,j+2

(k!)2(k − λ)!
− 2 (j + 2)2 x

(1− λ)!

 . (34)
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Now,
∑j+2
k=1

k! 4−k(2k)!Ak,j+2

(k!)2(k−λ)! can be summed and simplified as

j+2∑
k=1

k! 4−k(2k)!Ak,j+2

(k!)2(k − λ)!
=

(−1)j
(

Γ(1−λ)2

Γ(−j−λ−1)Γ(j−λ+3) − 1
)

Γ(1− λ)
. (35)

Therefore, we get the following relation after inserting Equation (35) into Equation (34)

Dλ ρj(x) =x−λ

j+2∑
k=1

j+2∑
p=k

p!Ap,j+2Bk,p
(p− λ)!

T ∗k (x) +
(−1)jΓ(1− λ)

Γ(−j − λ− 1)Γ(j − λ+ 3)

+
(λ− 1)(−1)j − 2(j + 2)2 x

Γ(2− λ)

)
,

(36)

this completes the proof of this theorem. �

Theorem 3.5. The following formula holds for ν ∈ (1, 2):

Dν ρj(x) =x−ν

j+2∑
k=1

j+2∑
p=k

p!Ap,j+2Bk,p
(p− ν)!

T ∗k (x)

+(−1)j
(

Γ(1− ν)

Γ(−j − ν − 1)Γ(j − ν + 3)
+
ν + 2(j + 2)2x− 1

Γ(2− ν)

))
.

(37)

Proof. Using the same steps as in Theorem 3.4, the proof of this theorem is readily obtained. �

Based on Theorems 3.4 and 3.5 and (23), the residual of Equation (12) when 1 < ν < 2 and
0 < λ < 1 can be written as

R(x) = Dν uM − αDλ uM + αη (χ− uM ) euM

= x−ν
M∑
j=0

cj

j+2∑
k=1

j+2∑
p=k

p!Ap,j+2Bk,p
(p− ν)!

T ∗k (x)

+(−1)j
(

Γ(1− ν)

Γ(−j − ν − 1)Γ(j − ν + 3)
+
ν + 2(j + 2)2x− 1

Γ(2− ν)

))

− αx−λ
M∑
j=0

cj

j+2∑
k=1

j+2∑
p=k

p!Ap,j+2Bk,p
(p− λ)!

T ∗k (x) +
(−1)jΓ(1− λ)

Γ(−j − λ− 1)Γ(j − λ+ 3)

+
(λ− 1)(−1)j − 2(j + 2)2 x

Γ(2− λ)

)
+ αη

χ− M∑
j=0

cj ρj(x)

 e
∑M

j=0 cj ρj(x).

(38)

We may now enforce Equation (38) at (M − 2) points with conditions Equation (25) by apply-
ing the collocation method, which results in (M + 1) nonlinear equations that can be solved
iteratively using Newton’s method.
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4 Error analysis

Theorem 4.1. Suppose that d
iuM (x)
dxi ∈ C([0, 1]) for i = 0, 1, 2, . . . ,M +2, where uM (x) denotes

the approximate solution. Define

%M = sup
x∈[0,1]

∣∣∣∣dM+3u(x)

dxM+3

∣∣∣∣ .
Then, the following inequality holds:

‖u(x)− uM (x)‖2 ≤
%M√

2M + 7 (M + 3)!
.

Proof. Consider the following Taylor polynomial expansion of u(x) around x = 0:

AM (x) =

M+2∑
i=0

(
di u(x)

d xi

)
x=0

xi

i!
, (39)

with the remainder given by

u(x)−AM (x) =
xM+3

(M + 3)!

(
dM+3 u(x)

d xM+3

)
x=c

, c ∈ [0, 1].

Since uM (x) is the optimal approximation of u(x), it follows that

‖u(x)− uM (x)‖22 ≤ ‖u(x)−AM (x)‖22

≤
∫ 1

0

%2
M x2(M+3)

((M + 3)!)2
dx

=
%2
M

(2M + 7) ((M + 3)!)2
,

(40)

which yields
‖u(x)− uM (x)‖2 ≤

%M√
2M + 7(M + 3)!

.

�

5 Illustrative examples
The nonlinear multi-order fractional issue is illustrated numerically in this section. Due to the
non availability of the exact solution for (12), we instead consider the error remainder function

RE =
∣∣Dν uM − αDλ uM + αη (χ− uM ) euM

∣∣ , (41)

Example 5.1. Consider Equation (12) subject to conditions (13), this equation is solved at
different values of ν, λ, η, χ and α as follows:

• At ν = 2, λ = 1, η = 0.7, χ = 0.8, α = 5. Table 1 presents a comparison of numerical
values of u between our method and Laguerre collocation technique (LCT) [45] atM = 7.
Table 2 presents the approximate solution and RE at different values of x when M = 24.
Figure 1 shows the RE at different values of M . Also, Figure 2 shows the Log10RE at
different values of M . Figure 3 shows the stability |uM+1(x)− uM (x)| of our method at
different values of M . Finally, Figure 4 shows the approximate solution (left) and RE
(right) at M = 24.
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Table 1: Comparison of numerical values of u at M = 7.

x LCT [45] proposed method Our CPU time
0.0 0.10171 0.101646
0.1 0.151679 0.151608
0.2 0.199758 0.199691
0.3 0.245711 0.245648
0.4 0.289255 0.289195
0.5 0.330028 0.329973 1.203
0.6 0.367514 0.367466
0.7 0.4009 0.40086
0.8 0.428821 0.428793
0.9 0.448906 0.448898
1.0 0.456985 0.456998

Table 2: The approximate solution and RE at M = 24.

x Proposed method RE CPU time
0.0 0.101646 1.94289× 10−15

0.1 0.151608 1.11022× 10−15

0.2 0.199691 1.63758× 10−15

0.3 0.245648 3.05311× 10−16

0.4 0.289196 4.44089× 10−16

0.5 0.329974 1.11022× 10−16 1.299
0.6 0.367467 7.77156× 10−16

0.7 0.400861 3.38618× 10−15

0.8 0.428796 7.66054× 10−16

0.9 0.448903 8.10463× 10−16

1.0 0.457005 1.42109× 10−14

• At ν = 1.9, α = 0.05, η = 0.5, and χ = 0.6. Figure 5 shows the approximate solutions
(left) and it’s zoom in the interval [0.2, 0.4] (right)at different values of λ when M = 6.

• At λ = 0.8, α = 2, η = 0.5 and χ = 0.6. Figure 6 shows the approximate solutions at
different values of ν when M = 6.



266 Y. H. Youssri et al. / Explicit Chebyshev Collocation Method for Multi-Order....
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Figure 1: The RE at different values of M .
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Figure 3: Stability |uM+1(x)− uM (x)|.
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Figure 4: The approximate solution (left) and RE (right) at M = 24.
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Figure 5: The approximate solutions (left) and it’s zoom in the interval [0.2, 0.4] (right)at
different values of λ when M = 6.
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Figure 6: The approximate solutions at different values of ν when M = 6.

Example 5.2. Consider the modified nonlinear multi-order fractional version

Dν u(x)− αDλ u(x) + αη
(
χ− u(x)

)
eu(x) = f(x), 0 < x < 1, (42)

subject to

u′(0) = αu(0), u′(1) = 0, (43)

where f(x) is chosen such that the exact solution of this problem is u(x) = x5 (1− x)2.
Figure 7 shows the comparability of analytic and approximate solution at M = 5 when ν = 2,
λ = 1, η = 0.7, χ = 0.8 and α = 5. Figure 8 shows the absolute errors at different values of λ
when ν = 1.9, α = 0.05, η = 0.5, χ = 0.6 at M = 5.
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Figure 7: Comparability of analytic and approximate solution at M = 5.
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Figure 8: The absolute errors at M = 5.

6 Closing remarks

A numerical approach has been proposed and implemented for the treatment of nonlinear
multi-order fractional differential equations using a collocation technique based on first-kind
Chebyshev polynomials. The suggested method relies on constructing appropriate basis func-
tions that satisfy the boundary conditions and using operational matrices for both integer and
fractional derivatives. Two distinct cases have been studied: the classical case (ν = 2, λ = 1)
and the general fractional-order case (1 < ν ≤ 2, 0 < λ ≤ 1). In both settings, the method
demonstrates high accuracy and excellent stability. The use of Chebyshev roots as collocation
points enhances the convergence behavior of the numerical scheme. As an expected future work,
we aim to employ the developed theoretical results in this paper along with suitable spectral
methods to treat some other problems. All codes were written and debugged by Mathematica
11 on HP Z420 Workstation, Processor: Intel(R) Xeon(R) CPU E5-1620 v2 - 3.70GHz, 16 GB
Ram DDR3, and 512 GB storage.

Moreover, comparisons with existing methods such as the Laguerre collocation technique
confirm the superiority of the proposed approach in terms of precision and computational
efficiency. Future extensions may include multi-dimensional problems or fractional partial dif-
ferential equations using the same spectral framework.
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