Iranian Journal of LIMC
Mathematical chemistry

DOI: 10.22052/1JMC.2025.255399.1897
Vol. 16, No. 3, 2025, pp. 245-255
Research Paper

Extremal Kragujevac Trees with Respect to Randi¢ Energy

Abbas Heydari*

1Department of Science, Arak University of Technology, Arak, Iran

Keywords: Abstract

Characteristic polynomial,

R-Spectrum, Let G be a simple graph with vertex set V(G) =
Randi¢ energy, <2 . .

Kragujevac {v1,v2,...,v,}. The Randi¢ matrix of G, represented as R(G),

is defined as the n x n matrix whose (i, j)-entry is (clidj)%1 if
v; and v; are adjacent and 0 otherwise. The Randi¢ energy of
graph G is the sum of absolute values of the eigenvalues of R(G).

AMS Subject Classification

2020):

( ) In this study, we determine the Kragujevac trees with a fixed

05C09; 05C50; 05C92 degree and fixed order that have maximal and minimal Randi¢
energy. Additionally, we obtain upper and lower bounds for the

Article History: Randi¢ energy of these trees.

Received: 11 September 2024
Accepted: 19 January 2025

© 2025 University of Kashan Press. All rights reserved.

1 Introduction

Let G = (V,E) be a simple connected graph with vertex set V(G) = {v1,va,...,0,}. The
Randi¢ matrix [1, 2] R(G) = (r;;) of G whose vertex v; has degree d; is defined by r;; = \/ﬁ

if the vertices v; and v; are adjacent, and r;; = 0 otherwise. Denote the eigenvalues of the
Randi¢ matrix of G by x1,za,...,2,. The multi set SPr(G) = {x1,22,...,2,} is called the
R-spectrum of the graph G. The Randié¢ energy of G is defined as:

RE(G) =Y |u.
=1

The Randi¢ polynomial associated with the graph G, represented as ¢g(z), is defined as
the characteristic polynomial of the Randi¢ matrix R(G), that is,

oa(x) = det(zI, — R(G)),

where I, is the identity matrix of order n. If G is a tree of order n, then

QZSG(Z‘) = Z(_l)ka2kxn72k'

k>0
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Figure 1: The branches of Kragujevac trees.

The Coulson-type integral of Randi¢ energy of a tree is [3]

+oo
RE(G) = %/ x—ZLn[Z(—l)kagkx%]dm, (1)
- k>0

where (—1)*ag; > 0.

Let P3 be the 3-vertex tree, rooted at one of its terminal vertices. For k > 2, By a branch
of a Kragujevac tree is constructed by identifying the roots of k copies of P; (see Figure 1). We
denote by T'(Bk, , Bk, - - -, Br,) a Kragujevac tree of degree d where constructed by connecting
the central vertex of By,, Bk,,. .. B, to an isolated vertex (see Figure 2).

Recently, a number of studies have investigated and compared the numeric descriptors of
Kragujevac trees [4-6]. In this paper, the Kragujevac trees with a fixed degree and a fixed
order, having maximal and minimal Randié¢ energy are determined by similar methods where
are used in [6]. As an application, we obtain an upper bound and a lower bound for the Randi¢
energy of these trees.

Let E,, n; be an n; X n; matrix whose (1, 1)-entry is 1, and all other entries are zero. If A is
a square matrix, then we will denote by A, the obtained matrix from A by deleting its first row
and first column. In the following theorem the main method of computation of characteristic
polynomial of R(G) is introduced.

Figure 2: A Kragujevac tree of order 38 and degree 5.
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Theorem 1.1. ([7]). Let A,,, Ap,, ..., Apn, be square matrices. If

Anl Enl,nz Enhns e E”lvnk
Enmm An2 Enmns T Enmnk
X = Ergni  Engn, Ans o Epgyny ,
Enk7"1 Enkﬂw Emmns Ank |
then
|[Ap,| o012 13 - ok
ag1 |Ap,| @23 o Qo
det(X)=| @¥1 @32 [Ang| -+ o3k ,
QK1 Qe Qg3 o |Anl
where

Qlii = |Ani,nj|a Zf Eni,nj 7& Oa
* 0, if En;n; =0.

2 Extremal Kragujevac trees

In this section, at first, the Randi¢ polynomial of the branches of a Kragujevac tree is computed.
To this purpose, we will use the following elementary lemma.

Lemma 2.1. If z and y are arbitrary variables, then we have

y -1 -1 ... -1
-1 = o ... 0
-1 0 x ... 0 _ x”_l(xy—n).
-1 0 0o ... =x

n+1l,n+1

Let v; be a vertex of G for 1 < ¢ < n. In what follows, we need to delete a vertex of a
graph without any change in the entries of R(G — v;). So we will denote by R(G — v;) the
square matrix where is obtained by deleting the i-th row and i-th column of R(G) and denote
by ¢ (z) the Randi¢ polynomial of R(G — v;) .

Let G and G2 be two disjoint simple graph, v; € V(G;) for i = 1,2 and G constructed by
adjacent v; and vs. In the following lemma the Randi¢ polynomial of G will be computed.

Lemma 2.2. Let d(v;) be the degree of v; in G for i =1,2, then

1 ’ /
bc(r) = ¢a, () e, () — m¢c17u1(3«”)¢627v2 (z).
Proof. Let n; = |V(G;)| for i = 1,2 where v, has the first label and label of vy is n; + 1 in
V(G). If the (1,1)-entry of E,, ,, is ————— and all other enteries are 0, then the Randi¢

d(v1)d(vz)
matrix of G is

R(G1> Enl,nz
ET R(Gs) |’

ni,n2

RG) =
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Figure 3: Labelling of the vertices of 8 in Lemma 2.3.

Using Theorem 1.1, Randi¢ polynomial of G is given as

D1 | de)deée ) 6, @)
%60 = Ty | b @) be)
1

b6, (2)ba, (x) — m¢gl,m<x>¢em ().
|

Let T be a Kragujevac tree and By be a branch of T. Note that the degree of the central
vertex of By is k+ 1. Thus, in the calculation of the Randi¢ polynomial of T" we consider a tree
such as [ instate By where degree of its central vertex is k + 1.

Lemma 2.3. Let k be a positive integer. The characteristic polynomial of By is given as:

k—1
gzﬁgk(x):x(m?—;) <x2—§:i;)

Proof. Let the vertices of i be labelled as shown in Figure 3 and

1
7 0 0 1
A= L v ,Z_[O O}andC—[ s 0| then
0o C C C C
ct A 7z Z . Z
ct z A Z . Z
Re(x)=1| 0T z z A ... Z
¢tz z z ... A
Since ¢a(z) = x? — % and ¢4(z) = =z, thus by use of Theorem 1.1, the characteristic

polynomial of g is computed as follows:
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_ -1 —1 —1 7
V2(k+1)  V20k+1)  (2(k+1) T 2(k+1)
— z? — 3 0 0 o 0
2(k+1)
—x 2 1
bp(z) = \/2(k+1) 0 t 2 0 0
e : ' : T
V2D 0 0 0 ..oz 2 |
2k + 1Dz 1 1 1
22—
. 1 = 0 0
2 1
- 1 0o 0
2(k+1) . .
1 0 0 0 il

Therefore, by using Lemma 2.1, we get

o) = gy (o) (2 neT2) )

T xQ—E . x2—2k+1
2 2k+2)°

Let R’ (G) denote the square matrix obtained from R(G) by replacing any positive integer
instead of the degree of a vertex of G. In what follows, we need to verify the sign of the
coefficients of the characteristic polynomial of R (G) where we will call it the modified Randi¢
polynomial of G and denote by ¢¢().

[ay

Lemma 2.4. The sigsn of the coefficients of ¢g(x) and ¢c(x) are the same.

Proof. Let V(G) = {v1,va,...,v,} and d; = deg(v;). Without losing the generality, suppose
that in the construction of R(G), we consider the positive integer d; instead of di. Let 61, =1
if v = v, adjacent to v; € V(G), otherwise d; ; = 0. For

C 01,2 01,3 O1,n
Vididy \dyds' N /dydy |

we have
- T C
QZSG(J;) = ’ cT R(G _ Ul) ‘
If
D_ [ 01,2 01,3 01,n }
Vdids' Vdids’ did, |’

then
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] %D
pa(z) =
DT R(G — ’Ul)
Thus in the computation of ¢g(x) only the (1,1)- entry of det(xl — R(G)) changes from z to
ddllz and the coefficients of ¢g(x) and ¢g(x) are the same. [ |

Let k1 and ko be integers such that 2 < ky < ky — 2. Suppose that Ty is a subtree of a
Kragujevac tree 1" obtained by deleting the branches By, and By, from T with v as its central
vertex. So, T is constructed by attaching v to the root vertices of By, and By,. Construct
the tree T by attaching v in Ty to the root vertices of new branches, By, 11 and By,—1 (see
Figure 4).

Lemma 2.5. If ¢r(z) = >~ o(—1)'aziz" 2" and ¢ (z) = ZDO(—l)ia;ix”_Qi, then ay; > ag;
fori>0. B -

Proof. Let u; denote the central vertex of By, for ¢ = 1,2 and let d = d(v) in T. By using
Lemma 2.2 for edges vu, and vug, we have

¢/0—U z ¢ By \ ¢lk —up \ T
¢T(x) = ¢T0(x)¢ﬂkl ($)¢Bk2 (l‘) - d ( )d?k1(+)1)6 2 ( ) -
O o(@) .oy (@)1, (@)

d(ks + 1)

And
(b/ O_U(x)(’b k141 (x)(’b/ ko—1—U2 (x)
¢T’ (3;‘) = (bTO <x)¢5k1+1(x)¢6k271(x) el ’ Prs _

dko
¢;"0—1)(x)¢,,62k1+1—u1 (x)¢5k271 (:E)
d(ky + 2) '
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Since (b;ﬂ.—u,: (z) = (2% — $)¥, for i = 1,2, by using Lemma 2.3, we have

1 _
bpr () — ¢r(z) = —¢r,(2)a?(a? — §)k1+k2 *(@® - a)
' 1
) — )R ), @)
where a = 2k —k}) =5k k=3 and 8 = ky ki 2k —1 Since kg > k1 + 2, in follows that

2(k3—k2)+2ks—6k1 —4 kZ—kZ+ko—3k —2°
o, B> 0. Thus, in (2), ¢, (2)2?(2? — $)¥1 %272 (22 — @) can considered as Randi¢ (or modified
Randi¢) polynomial of a graph contains Ty, k1 + ko copy of P, (the path of order 2) and two
disjoint vertices. Also ¢/T070(x)x(x2 — 4)fath2=1(g2 — B) can considered as modified Randi¢
polynomial of a graph contains Ty — v, k1 + k2 copies of P, and a disjoint vertex.

Therefore by using Lemma 2.4, ¢, () — ¢r(x) is a polynomial of degree n — 2 where the
sing of coefficient of 2% is equal to the sign of the coefficient of z* in ¢p(z) for 0 < < [2]—1.

Thus, ay; > ag; for i > 0. |

The trees T and T are Kragujevac trees with same order and degree. Because of the
requirement ko — 2 > k1 > 2, in the transformation 7' — T/, a larger branch is diminished and
a smaller branch is increased. Since the Randi¢ energy of trees is a monotonically increasing
function of parameters (—1)%ag; for i = 1,2,..., | 5], by Lemma 2.5 and (1) we get the our
main results [3].

Lemma 2.6. IfT and T be Kragujevac trees of order n and degree d with structure as indicated
in Figure 4, then for 2 < k1 < ko —2, the Randi¢ energy of T' is greater than the Randié¢ energy
of T.

Continuing the argument used in Lemma 2.6, and repeatedly applying the transformations
T — T as far as possible for any Kragujevac tree, we can obtain the Kragujevac trees with
maximum Randié¢ energy or minimum Randié¢ energy as follows:

Theorem 2.7. Within the Kragujevac trees with order n and degree d, the trees such that either
all branches isomorphic to By, if

1 n—1

s an integer, or branches isomorphic to By and Bi_1 for

F=Tpt -1

have mazimal Randié energy. Therefore in a Kragujevac tree with maximal Randié energy the
branches are either equal or almost equal.

Finally, by using the transformations of the type T = T as far as it is possible, we can
obtain the Kragujevac trees with minimum Randi¢ energy.

Theorem 2.8. Within the Kragujevac trees with order n and degree d, trees such that all
branches are isomorphic to By and a single branch is isomorphic to By where

k:%m—z—w—m,

have minimal Randié¢ energy.
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3 Bounds of Randié¢ energy of the Kragujevac trees

In this section, we obtain an upper bound and a lower bound for the Randi¢ energy of a
Kragujevac tree in terms of its order and degree.

Theorem 3.1. Let T = T(By,, By, - - -, Br,) be a Kragujevac tree. The characteristic polyno-
mial of T is computed as

d 2_ 1 d
s 2k + 1 2?1 2k; + 1
d—=1/,2 = o1 (ki—1) 2 2 _ ? _ 72 2 _ J
v g) (” g(” o 12 ;dki—&-l)jlll(x 2k]-+2)>'

Proof. Let the central vertex of T" be labeled 1 and let the vertices of By,, Bk,, ..., Bk, have
consecutive labels. If Ry, R, ..., R4 denote the Randi¢ matrix of By, , Bk,, .-, Bk, respectively,
Om,n, denotes the m x n zero matrix and

1 1 1
C=|———00,...,0,[———u,0,...,0,...,———.0,...,0] ,
\/d(kl-i-l) T Vd(k‘gﬁ-l) T \/d(kd—‘rl) T
1 2 d
then the Randié matrix of T is given as:

[0 C C C ... C 1

ct Ry O2k141,2k0+1  O2ky41,2k541 -+ Ok 41,2k441

CT Ospyi12k 41 Ry O2ky+1,2k5+1 -+ O2kyt1,2k5+1

Ry(x) = CT Oopyii241  Ookyt1,2k541 R oo Oogyt1,2k,41
| CT Oskyi126+1 O2kyt1,26+1  O2kyd12k54+1 - - Ry ]

If Ry, denotes determinant of the square matrix obtained by deleting the first column and the
first row of det(zI — R(B,)) for 1 < i < d, then using Theorem 1.1, we have

X

1 1
Vd(ki+1)  y/d(k2+1) o d(ka+1)

fir 0 0 0

Vi TD Rg, ()
R
R,

7\/@ 0 0 Rﬁkg, (x) - 0
LY 0 0 0 Rs, ()
IO R B,

x 1 1 .. 1
Ak 1Ry, (@) 0 ... 0

_ Ry
- @) |1 0 Aot Bon, @ 0
dlk; +1) | . B

i=1

d(ka+1)Rg,,  (2)
Ry

d
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Therefore, by using Lemma 2.1, we get

d

= d d d
| d(k; + 1)Rp, d(k; + 1)Rp, (z
¢T(=T) _ dk]?kl 1)<xH ( R) Bl(x)*z H (J R) BJ( ))
iy dlki + i=1 i i=1 ji=1 k;
R
- xHRBk T Zd(k 1) EIRBk (3)

Since Ry, = (22 — %)ki, for 1 < ¢ < d, by using Lemma 2.3, we have

d d 1 d
1.sva 2k; + 1 5 2k; +1
d—1/,2 I\ (ki—1) (2 2 4 2 2 4R
v =3) <z U(I 212 del—&-l I] @ 2kj+2)>'
i=1 i=1 j#i=1
|
Corollary 3.2. The characteristic polynomial of T = T(By, Ba, Ba, ..., Bs) is computed as
—_——
d—1
d-1.,2  Yikya—2,..2 D2, 2
¢r(z) = 27 (2"~ 3) (@® =) @ =)
(12d(k + 1)zt — (14kd + 8d — 4k + 8)x? + 2kd + d — 2k + 4).
Proof. Let ky =k and k; = 2 for 2 <4 < d. By using (3), we get
d—1 d—1 d—2
Rr(z) = 2(Rp,(2))" Rp,(2) = —57= By (Rp, ()" Rp, (2) —
7R R d—1
Ty R (@)
1 5 2k+1 5
_ d-1¢.2  A\k+d-202 _ 2\d-2( .2(.2 _ 9
s = R = Dy (- S - D)
d-1(, 1 9 2k+1 1 s 1,4 5
3d (‘T 2> (I 2k:+2) @ =g
1
_ Zd71($2 . 5)k+d72(x2 _ %)d72(l_2 o 1)
(12d(k 4 1)z* — (14kd + 8d — 4k + 8)x2 + 2kd + d — 2k + 4).
|

Corollary 3.3. The characteristic polynomial of T = T(Bg—_1, Bx—1,- .-, Bk—1, Bk, Bk, - - -, Bk)
dy d—dy

is computed as:

1 2k —1 2k+1
_ d—10,.2  IN\(k—1)d—dyi (2 _ di—1/,2 d=di=1(,2 _
Ra(w) =" a* - 3) (@® = S5t e - ) e - )

(4kd(k + 1)a* — (dkd(k + 1) + 2(2dy — d))2? + 2kd + 2d; — d> 2% +2dy — d).
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Proof. Let k; =k —1for 1 <i<d; and k; =k for 2d; + 1 < i < d. By using Theorem 3.1, we
get

RT(x) = [Rﬁk1(x)]d1_1[Rﬂk('r)]d_dl_l(xRBk1(3:)Rﬂk(x)_j]1€Rk1R5k(x)

d—dy ) _
_mRﬂkﬂ (ac)de>

1 2% — 1 2k + 1
_ od-12  I(k—1)d-di(2 _ di—1/,2 d—dy—1
et =3) @ == )" - 5s)
2k1 2%k + 1
20,2 2V 2 _
(x(x 2 )
dq 2 1 2 2k + 3 d—dy 2 1 2 2k +1
0" "D g T an ot T )

1 2k —1 2k +1
d-1/,2  IN(k=1)d—di (.2 _ di—1/.2 d—di—-1(,2 _ 4
2@ - ) (o = ) @t - Sy @ )

<4kd(l<: + )2t — (dkd(k + 1) + 2(2dy — d))2? + 2kd + 2d; — d).

Theorem 3.4. A lower bound for Randi¢ energy of Kragujevac trees of order n and degree d
18 given as:

_ 2V/5(d—2)
2+ V2(d+k—2) + PR+

\/Thd+4(d+1)—2k-+/(5k+2)2d2 —4(k—2)2(d—1)
\/3d(k+1) '

Proof. Let T = T(By, B2, Ba,...,Bs2) be a Kragujevac tree of order n and degree d where
—_——

d—1
n = 5(d—1)+2k+2. By using Corollary 3.2, the spectrum of R(T) contains 0 with multiplicity
d—1, % with multiplicity k + d — 2, % with multiplicity d — 2, +1 and

/Thd + 4(d + 1) — 2k + /(5K + 228 —A(k —2)(d — 1)
12d(k + 1) '
Thus the Randit¢ energy of T is computed as

n

RE(T) = |l
i=1
. 2(k +d—2) N 2v/5(d — 2)
V2 V6
2\/Thd +4(d + 1) — 2k + \/(5k + 2)°& — d(k — 2)°(d — 1)
- 12d(k + 1) '
The result can be obtained by using Theorem 2.8. |

Let T be a Kragujevac tree with maximum Randi¢ energy of order n and degree d. By

Theorem 2.7, if k = %(”Tfl —1)], then T = T(Bg—1,Bk-1,-..,Bk—1, Bk, Bg, ..., By) for

dy d—dy
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dy = %. By Corollary 3.3, an upper bound for the Randi¢ energy of the Kragujevac trees

is given as follows:

Theorem 3.5. Let T be a Kragujevac tree of order n and degree d, then

2k — 1 2k +1
< — — — — —
RE(T) <24 V2((k —1)d —dy) + 2(dy — 1) o F2d—di =1y 5
N 2dk(k + 1) + 2d; — d & \/4k2d2(k2 — 1) + (2d; — d)?
dk(k +1) '
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