
Iranian Journal of
Mathematical Chemistry

IJMC

DOI: 10.22052/IJMC.2024.255728.1929
Vol. 16, No.3, 2025, pp. 207-222

Research Paper

Chemical Hyperstructures for Neptunium, Rubidium, and
Plutonium

Fakhry Asad Agusfrianto1 , Mariam Hariri2 and Yudi Mahatma1?

1Mathematics Study Program, Universitas Negeri Jakarta, Jakarta, Indonesia
2College of Interdisciplinary Studies, Zayed University, Abu Dhabi, United Arab Emirates

Keywords:

Algebraic hyperstructures,
Chemical reactions,
Hypergroups,
Latimer diagram

AMS Subject Classification

(2020):

20N20

Article History:

Received: 1 November 2024

Accepted: 25 December 2024

Abstract

The notion of hyperstructures is a generalization of algebraic
structures. This notion was first introduced by Marty in 1934.
Hyperstructures have many applications, such as in biology,
physics, cryptography, and chemistry. This paper focuses on
the application of hyperstructures in chemistry, especially in
chemical reactions. In 2022, Al-Tahan and Davvaz finalized the
results of chemical hyperstructures for chemical elements that
have four oxidation states. Motivated by this research, this
paper aims to investigate algebraic hyperstructures in some
elements that have five oxidation states, that is, neptunium,
rubidium, and plutonium. Furthermore, the chemical interpre-
tation of these chemical elements also is provided in this paper.

c© 2025 University of Kashan Press. All rights reserved.

1 Introduction
Algebraic hyperstructures are a generalization of ordinary algebraic structures, first introduced
by Marty in 1934 [1]. In algebraic hyperstructures, the concept of groups is generalized to
hypergroups [2]. Numerous studies have explored the application of algebraic hyperstructures
in physics, biology, and chemistry [3]. In physics, algebraic hyperstructures are applied in
elementary particle physics (Leptons) [4, 5]. In Biology, they are applied in genetics, especially in
the inheritance that is associated with fuzzy sets and intuitionistic fuzzy sets [6–9]. In this paper,
we focus on the application of algebraic hyperstructures in the field of chemistry, specifically
in chemical reactions [10–12]. Several studies have investigated algebraic hyperstructures in
chemical elements [13–16]. The results are generalized for elements that have three oxidation
states or four oxidation states [17, 18]. Algebraic hyperstructures can also be used to identify the
types of hyperstructures present in electrochemical cell reactions [19]. Furthermore, chemical
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Table 1: (G,⊗).

⊗ p q r
p p {p, q} G
q {p, q} q {q, r}
r G {q, r} q

reactions that occur in everyday life, such as ozone layer depletion reactions and salt formation
reactions, can also be investigated for the types of algebraic hyperstructures contained in these
reactions [20–23].
Motivated by the generalization of algebraic hyperstructures for elements that have three and
four oxidation states [17, 18], this paper aims to investigate the algebraic hyperstructures found
in several elements that have five oxidation states, namely neptunium (Np), rubidium (Ru),
and plutonium (Pu).

2 Preliminaries
In this section, we recall the basic concepts of algebraic hyperstructures that are used in this
study. Let ⊗ : K ×K → P ∗(K) where P ∗(K) is the all-non-empty subset of K. The map ⊗ is
called hyperoperation in K.

• If K is equipped with a hyperoperation ⊗, denoted by (K,⊗), then the mathematical
system (K,⊗) is called a hypergroupoid [2]. Based on this definition, if X and Y are
nonempty subsets of K, then for every x ∈ H, we denote:

X ⊗ Y =
⋃

x∈X,y∈Y x⊗ y, x⊗X = {x} ⊗X, and X ⊗ x = X ⊗ {x}.

• If the hyperoperation ⊗ is equipped with associative properties, namely for every x, y, z ∈
K, (x⊗ y)⊗ z = x⊗ (y ⊗ z), then the hypergroupoid (K,⊗) is called a semihypergroup.

• If the hypergroupoid (K,⊗) is equipped with reproduction axiom, i.e., for every k ∈ K,
k ⊗K = K ⊗ k = K, then it is called a quasihypergroup.

• If the hypergroupoid (K,⊗) is a semihypergroup and a quasihypergroup, then it is called
a hypergroup [2].

Here is a simple example to clarify the definition.

Example 2.1. Given the set G = {p, q, r}. Define an operation "⊗" as in Table 1. Then,
(G,⊗) is a commutative hypergroup.

On the other hand, by Vougioklis the concept of algebraic hyperstructures is generalized into
a concept called "Hv - structures" [24]. In Hv - structures, the weak concept is used to define
its structure. Let K be the non-empty set and ⊗ : K ×K → P ∗(K) is a hyperoperation. The
operation "⊗" in K is called weak associative if for every x, y, z ∈ K, , x⊗(y⊗z)∩(x⊗y)⊗z 6= ∅.
The hypergroupoid (K,⊗) are called Hv - semihypergroups if weak associative properties are
fulfilled. Furthermore, if the hypergroupoid (K,⊗) is equipped with reproduction axiom, then
it is called Hv - group. To clarify this definition, consider the next Example 2.2.
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Table 2: (K,⊗∗).

⊗∗ p q r s t
p p {p, t} {p, t} {p, t} {p, t}
q {p, t} {p, q} p p p
r {p, t} p {p, q} p p
s {p, t} p p {p, t} p
t {p, t} p {p, t} {p, t} {p, t}

Example 2.2. Given a set K = {p, q, r, s, t}. Define an operation ⊗∗ as in Table 2. Then,
(K,⊗∗) is a commutative Hv- semigroup.

3 Main results

3.1 Chemical hyperstructures for neptunium

Neptunium, symbolized by Np, is an element located in the actinide series. This element has an
atomic number of 93. The benefit of this element is that its isotopes, namely 238Np and 239Np,
have a short half-life, so they are useful for radioactive tracers or research on basic chemistry.
The Latimer diagram for Neptunium is given as follows:

NpO2(OH)2 →0.6 NpO2(OH)2 →0.3 Np(OH)4 →−2.1 Np(OH)3 →−2.23 Np.

This can be simplified to:

Np6+ →0.6V Np5+ →0.3V Np4+ →−2.1V Np3+ →−2.23V Np.

Next, we determine standard reduction potentials from chemical reactions that do not yet have
a reduction potential.

Np6+ → Np4+, E = 0.45,

Np6+ → Np3+, E = −0.4,
Np6+ → Np,E = −1.315,

Np5+ → Np3+, E = −0.9,
Np5+ → Np,E = −1.698,
Np4+ → Np,E = −2.1975.

Let X = {Np6+, Np5+, Np4+, Np3+, Np} and � be reactions between two elements in X that
are spontaneous and most positive. The whole possible spontaneous reaction of two elements
in X is given as follows:

Np6+ +Np6+ → Np6+ +Np6+[0],

Np6+ +Np5+ → Np6+ +Np5+[0],

Np6+ +Np4+ →


Np6+ +Np4+[0],

Np5+ +Np5+[0.3],

Np5+ +Np5+[0.15],
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Np6+ +Np3+ →



Np6+ +Np3+[0],

Np5+ +Np6+[1.0],

Np5+ +Np5+[1.2],

Np5+ +Np4+[2.7],

Np4+ +Np6+[0.85],

Np3+ +Np5+[0.5].

Np6+ +Np→



Np6+ +Np[0],

Np5+ +Np6+[1.915],

Np5+ +Np5+[2.298],

Np5+ +Np4+[2.7975],

Np5+ +Np3+[2.83],

Np4+ +Np6+[1.765],

Np4+ +Np4+[2.6475],

Np3+ +Np6+[0.915],

Np3+ +Np4+[1.7],

Np3+ +Np3+[1.83],

Np+Np5+[0.383],

Np+Np4+[0.8825],

Np+Np3+[0.915],

Np5+ +Np5+ → Np5+ +Np5+[0],

Np5+ +Np4+ → Np5+ +Np4+[0],

Np5+ +Np3+ →



Np5+ +Np3+[0],

Np4+ +Np6+[0.7],

Np4+ +Np5+[1.2],

Np4+ +Np4+[2.4],

Np3+ +Np4+[1.2],

Np+Np4+[0.402],

Np5+ +Np→



Np5+ +Np[0],

Np4+ +Np6+[1.615],

Np4+ +Np5+[1.998],

Np4+ +Np4+[2.4975],

Np4+ +Np3+[2.53],

Np3+ +Np6+[0.415],

Np3+ +Np5+[0.798],

Np3+ +Np3+[1.23],

Np+Np4+[0.4995],

Np+Np3+[0.532],
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Table 3: (X,�).

� Np6+ Np5+ Np4+ Np3+ Np
Np6+ Np6+ {Np6+, Np5+} Np5+ {Np5+, Np4+} {Np5+, Np3+}
Np5+ {Np6+, Np5+} Np5+ {Np5+, Np4+} Np4+ {Np4+, Np3+}
Np4+ Np5+ {Np5+, Np4+} Np4+ {Np4+, Np3+} Np3+

Np3+ {Np5+, Np4+} Np4+ {Np4+, Np3+} Np3+ Np
Np {Np5+, Np3+} {Np4+, Np3+} Np4+ {Np3+, Np} Np

Table 4: General Form of Table 3.

� t u v w x
t t {t, u} u {u, v} {u,w}
u {t, u} u {u, v} v {v, w}
v u {u, v} v {v, w} w
w {u, v} v {v, w} w {w, x}
x {u,w} {v, w} w {w, x} x

Np4+ +Np4+ → Np4+ +Np4+[0],

Np4+ +Np3+ → Np4+ +Np3+[0],

Np4+ +Np→


Np4+ +Np[0],

Np3+ +Np4+[0.0975],

Np3+ +Np3+[0.13],

Np3+ +Np3+ → Np3+ +Np3+[0],

Np3+ +Np→ Np3+ +Np[0],

Np+Np→ Np+Np[0].

Then, we can write (X,�) as in Table 3. Let Np6+ = t, Np5+ = u, Np4+ = v, Np3+ = w, and
Np = x. In general, Table 3 can be written as Table 4.

Theorem 3.1. (X,�) is a Hv - semigroup.

Proof. It is clear that ”�” is a hyperoperation of X. To prove that (X,�) is Hv - semigroup, we
should prove that � is a weak associative i.e., for every a, b, c ∈ X, [a�(b�c)]∩ [(a�b)�c] 6= ∅.
Case 1. a = t. It is obvious that t ∈ [t� (b� c)] ∩ [(t� b)� c].
Case 2. a = u. For a = u, if b = w and c = x, we get [u � (w � x)] ∩ [(u � w) ∩ x] = w.
Otherwise, u ∈ [u� (b� c)] ∩ [(u� b) ∩ c].
Case 3. a = v. For a = v, if b = c = t and b = c = x, we get [v� (t� t)]∩ [(v� t)� t] = u and
[v � (x� x)] ∩ [(v � x)� x] = w respectively. Otherwise, v ∈ [v � (b� c)] ∩ [(v � b) ∩ c].
Case 4. a = w. For a = w, if b = c = t and b = c = u, we get [w � (t� t)] ∩ [(w � t)� t] = u
and [w � (u� u)] ∩ [(w � u)� u] = v respectively. Otherwise, w ∈ [w � (b� c)] ∩ [(w � b)� c].
Case 5. a = x. For a = x, if b = c = x, we get [x � (x � x)] ∩ [(x � x) � x] = x. Otherwise,
w ∈ [x� (b� c)] ∩ [(x� b)� c].
Thus, (X,�) is a Hv - semigroup. �

Remark 1. (X,�) is not a semihypergroup since we have [v�(t�t)] = u 6= [(v�t)�t] = {u, v}.
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Table 5: (X,�∗).

�∗ t u v w x
t t {t, u} {t, u, v} {t, u, v, w} X
u {t, u} u {u, v} X X
v {t, u, v} {u, v} v {v, w} {v, w, x}
w {t, u, v, w} X {v, w} w {w, x}
x X X {v, w, x} {w, x} x

Furthermore, suppose that "�∗" is defined as the entire spontaneous reaction that occurs
between two elements in X, then Table 5 is obtained.

Theorem 3.2. ({t, u},�∗), ({u, v},�∗), ({v, w},�∗), and ({w, x},�∗) are hypergroups.

Proof. The proof is clear. �

Theorem 3.3. (X,�∗) is a semihypergroup.

Proof. Since ({t, u},�∗), ({u, v},�∗), ({v, w},�∗), and ({w, x},�∗) are hypergroups, then it
is sufficient to prove the following conditions:

1. a�∗ (b�∗ c) = (a�∗ b)�∗ c for a ∈ {t, u} and {b, c} * {t, u}.

2. a�∗ (b�∗ c) = (a�∗ b)�∗ c for a ∈ {v, w} and {b, c} * {v, w}.

3. e�∗ (b�∗ c) = (e�∗ b)�∗ c for {b, c} * {w, x}.

t�∗ (v �∗ c) =


{t, u, v}, c = t, u, v,

{t, u, v, w}, c = w,

X, c = x,

= (t�∗ v)�∗ c,

t�∗ (w �∗ c) =

{
{t, u, v, w}, c = a, c, d,

X, c = b, e,
= (t�∗ w)�∗ c,

t�∗ (x�∗ c) = (t�∗ x)�∗ c = X,

u�∗ (x�∗ c) =


{t, u, v}, z = t,

{u, v}, z = u, v,

X, z = w, x,

= (t�∗ x)�∗ c,

t�∗ (w �∗ c) = (t�∗ w)�∗ c = X,

t�∗ (x�∗ c) = (t�∗ x)�∗ c = X,

v �∗ (t�∗ c) =


{t, u, v}, c = t, u, v,

{t, u, v, w}, c = d,

X, c = e,

= (v �∗ t)�∗ c,
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v �∗ (u�∗ c) =


{t, u, v}, c = t,

{u, v}, c = u, v,

X, c = d, e,

= (v �∗ u)�∗ c,

v �∗ (x�∗ c) =

{
{v, w, x}, c = v, w, x,

X, c = a, b,
= (v �∗ x)�∗ c,

w �∗ (w �∗ c) =


X, c = t, u,

{v, w, x}, c = v,

{w, x}, c = v, w,

= (w �∗ w)�∗ c,

e�∗ (b�∗ c) = (e�∗ b)�∗ c = X.

Therefore, (X,�∗) is a semihypergroup. �

Theorem 3.4. (X,�∗) is a quasi-hypergroup.

Proof. It is obvious because all rows and columns contain X. �

Corollary 3.5. (X,�∗) is a hypergroup.

3.2 Chemical hyperstructures for rubidium
Rubidium, symbolized by Ru, is an element that has an atomic number of 37, period 5, and is
located in the IA group. Ru is a metallic element that easily loses electrons in its outermost
layer. Ru has applications in high-tech fields, such as MHD power generation, ion propulsion
engines, and thermionic power conversion. The Latimer diagram for rubidium is given as
follows:

RuO4 →1.00 RuO−4 →0.59 RuO2−
4 →0.35 RuO2 →−0.15 Ru.

This can be simplified to:

Ru8+ →1.00 Ru7+ →0.59 Ru6+ →0.35 Ru4+ →−0.15 Ru.

Furthermore, we determine standard potential reductions from chemical reactions that do
not yet have standard potential reductions. In the same way, when looking for standard poten-
tial reduction from Rubidium, the following results are obtained:

Ru8+ → Ru6+, E = 0.759,

Ru8+ → Ru4+, E = 0.5725,

Ru8+ → Ru, E = 0.2113,

Ru7+ → Ru4+, E = 0.43,

Ru7+ → Ru, E = 0.0986,

Ru6+ → Ru, E = 0.1667.

Suppose that K = {Ru8+, Ru7+, Ru6+, Ru4+, Ru} and define � as a spontaneous reaction that
occurs between two elements in K. The whole spontaneous reaction that occurs between two
elements in K is obtained as follows:

Ru8+ +Ru8+ → Ru8+ +Ru8+[0],
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Ru8+ +Ru7+ → Ru8+ +Ru7+[0],

Ru8+ +Ru6+ →


Ru8+ +Ru6+[0],

Ru7+ +Ru8+[0],

Ru7+ +Ru7+[0.41],

Ru8+ +Ru4+ →



Ru8+ +Ru4+[0],

Ru7+ +Ru8+[0.4275],

Ru7+ +Ru7+[0.57],

Ru7+ +Ru6+[0.65],

Ru6+ +Ru6+[0.409],

Ru4+ +Ru7+[0.1425].

Ru8+ +Ru→



Ru8+ +Ru[0],

Ru7+ +Ru8+[0.7887],

Ru7+ +Ru7+[0.9014],

Ru7+ +Ru4+[1.15],

Ru6+ +Ru8+[0.5477],

Ru6+ +Ru7+[0.6604],

Ru6+ +Ru6+[0.5923],

Ru4+ +Ru8+[0.3612],

Ru4+ +Ru7+[0.4739],

Ru4+ +Ru6+[0.4058],

Ru4+ +Ru4+[0.7225],

Ru+Ru7+[0.1127],

Ru+Ru6+[0.0446],

Ru+Ru4+[0.3613].

Ru7+ +Ru7+ → Ru7+ +Ru7+[0],

Ru7+ +Ru6+ → Ru7+ +Ru6+[0],

Ru7+ +Ru4+ →



Ru7+ +Ru4+[0],

Ru6+ +Ru8+[0.0175],

Ru6+ +Ru7+[0.16],

Ru6+ +Ru6+[0.24],

Ru4+ +Ru6+[0.08].

Ru7+ +Ru→



Ru7+ +Ru[0],

Ru6+ +Ru8+[0.3787],

Ru6+ +Ru7+[0.4914],

Ru6+ +Ru6+[0.4233],

Ru6+ +Ru4+[0.74],

Ru4+ +Ru7+[0.3314],

Ru4+ +Ru4+[0.58],

Ru+Ru4+[0.2468].
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Table 6: (K,�).

� t u v w x
t t {t, u} u {u, v} {u,w}
u {t, u} u {u, v} v {v, w}
v u {u, v} v {v, w} w
w {u, v} v {v, w} w {w, x}
x {u,w} {v, w} w {w, x} x

Table 7: (K,�∗).

�∗ t u v w x
t t {t, u} {t, u, v} {t, u, v, w} K
u {t, u} u {u, v} K K
v {t, u, v} {u, v} v {v, w} {v, w, x}
w {t, u, v, w} X {v, w} w {w, x}
x K K {v, w, x} {w, x} x

Ru6+ +Ru6+ → Ru6+ +Ru6+[0],

Ru6+ +Ru4+ → Ru6+ +Ru4+[0],

Ru6+ +Ru→



Ru6+ +Ru[0],

Ru4+ +Ru8+[0.1387],

Ru4+ +Ru7+[0.2514],

Ru4+ +Ru6+[0.1883],

Ru4+ +Ru4+[0.50],

Ru+Ru7+[0.0681],

Ru+Ru4+[0.3167].

Ru4+ +Ru4+ → Ru4+ +Ru[0],

Ru4+ +Ru→ Ru4+ +Ru[0],

Ru+Ru→ Ru+Ru[0].

Let Ru8+ = t, Ru7+ = u, Ru6+ = v, Ru4+ = w, and Ru = x. Then, we have Table 6.

Theorem 3.6. (K,�) is a Hv - semigroup.

Proof. It is obvious since (K,�) ∼= (X,�) �

Now, suppose that "�∗" is defined as the entire spontaneous reaction that occurs between
two elements in K, then Table 7 is obtained.

Theorem 3.7. (K,�∗) is a hypergroup.
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3.3 Chemical hyperstructures for plutonium

Plutonium, symbolized by Pu, is a chemical element that has an atomic number of 94 and
belongs to the actinide metal type. Plutonium is a radioactive element whose isotopes can be
useful as explosives. The Latimer diagram of plutonium is as follows:

PuO2(OH)2 →0.3 PuO2OH →0.9 Pu(OH)4 →−1.4 Pu(OH)3 →−2.46 Pu.

This can be simplified to:

Pu6+ →0.3 Pu5+ →0.9 Pu4+ →−1.4 Pu3+ →−2.46 Pu.

Next, we determined standard potential reductions from chemical reactions that do not yet have
a standard potential reduction. In the same way when looking for standard potential reduction
from neptunium, the following results are obtained:

Pu6+ → Pu4+, E = 0.6,

Pu6+ → Pu3+, E = −0.067,
Pu6+ → Pu, E = −1, 263,
Pu5+ → Pu3+, E = −0.25,
Pu5+ → Pu, E = −1.576,
Pu4+ → Pu, E = −2.195.

Suppose that M = {Pu6+, Pu5+, Pu4+, Pu3+, Pu} and define a hyperoperation � as a most
positive spontaneous reaction that occurs between two elements in M . The whole spontaneous
reaction that occurs between two elements in M is obtained as follows:

Pu6+ + Pu6+ → Pu6+ + Pu6+[0],

Pu6+ + Pu5+ →

{
Pu6+ + Pu5+[0],

Pu4+ + Pu6+[0.3].

Pu6+ + Pu4+ → Pu6+ + Pu4+[0],

Pu6+ + Pu3+ →



Pu6+ + Pu3+[0],

Pu5+ + Pu6+[0.367],

Pu5+ + Pu5+[0.55],

Pu4+ + Pu6+[0.667],

Pu4+ + Pu5+[0.85],

Pu4+ + Pu4+[2.0],

Pu3+ + Pu5+[0.183],

Pu3+ + Pu5+[1.333],

Pu+ Pu4+[0.137].
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Pu6+ + Pu→



Pu6+ + Pu[0],

Pu5+ + Pu6+[1.563],

Pu5+ + Pu5+[1.876],

Pu5+ + Pu4+[2.495],

Pu4+ + Pu6+[1.863],

Pu4+ + Pu5+[2.176],

Pu4+ + Pu4+[2.795],

Pu3+ + Pu6+[1.2],

Pu3+ + Pu5+[1.509],

Pu3+ + Pu4+[2.128],

Pu3+ + Pu3+[2.393],

Pu+ Pu5+[0.313],

Pu+ Pu4+[0.932],

Pu+ Pu3+[1.197].

Pu5+ + Pu5+ →

{
Pu5+ + Pu5+[0],

Pu6+ + Pu4+[0.6].

Pu5+ + Pu4+ →

{
Pu5+ + Pu4+[0],

Pu4+ + Pu6+[0.3].

Pu5+ + Pu3+ →



Pu5+ + Pu3+[0],

Pu4+ + Pu6+[0.967],

Pu4+ + Pu5+[1.15],

Pu4+ + Pu4+[2.3],

Pu3+ + Pu4+[1.15].

Pu5+ + Pu→



Pu5+ + Pu[0],

Pu4+ + Pu6+[2.163],

Pu4+ + Pu5+[2.467],

Pu4+ + Pu4+[3.095],

Pu4+ + Pu3+[3.36],

Pu3+ + Pu6+[1.013],

Pu3+ + Pu5+[1.326],

Pu3+ + Pu4+[1.945],

Pu3+ + Pu3+[2.21].

Pu4+ + Pu4+ → Pu4+ + Pu4+[0],

Pu4+ + Pu3+ → Pu4+ + Pu3+[0].

Pu4+ + Pu→



Pu4+ + Pu[0],

Pu3+ + Pu5+[0.176],

Pu3+ + Pu4+[0.795],

Pu3+ + Pu3+[1.06],

Pu+ Pu3+[0.265].
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Table 8: (M,�).

� a b c d e
a a {a, c} {a, c} c c
b {a, c} {a, c} {a, c} c {c, d}
c {a, c} {a, c} c {c, d} d
d c c {c, d} d {d, e}
e c {c, d} d {d, e} e

Table 9: (M,�∗).

�∗ a b c d e
a a {a, b, c} {a, c} M M
b {a, b, c} {a, b, c} {a, b, c} {a, b, c, d} M
c {a, c} {a, b, c} c {c, d} {b, c, d, e}
d M {a, b, c, d} {c, d} d {d, e}
e M M {b, c, d, e} {d, e} e

Pu3+ + Pu3+ → Pu3+ + Pu3+[0],

Pu3+ + Pu→ Pu3+ + Pu[0],

Pu+ Pu→ Pu+ Pu[0].

Let a = Pu6+, b = Pu5+, c = Pu4+, d = Pu3+, e = Pu. Then, we have Table 8.

Theorem 3.8. (M,�) is a Hv - semigroup.

Proof. It is clear that "�" is a hyperoperation of M . To prove that (M,�) is a Hv - semigroup,
we should prove that a hyperoperation � is a weak associative i.e., for every x, y, z ∈ M, [x �
(y � z)] ∩ [(x� y)� z] 6= ∅.
Case 1 x = a. For x = a, if y = z = a, we get [a� (a�a)]∩ [(a�a)�a] = {a} 6= ∅. Otherwise,
it is clear that c ∈ [a� (y � z)] ∩ [(a� y)� z].
Case 2 x = b. It is clear that c ∈ [(b� (y � z)] ∩ [(b� y)� z].
Case 3 x = c. For x = c, if y = z = e, we get [c� (e� e)]∩ [(c� e)� e] = {d} 6= ∅. Otherwise,
it is clear that c ∈ [c� (y � z)] ∩ [(c� y)� z].
Case 4 x = d. For x = d, if y = d and z = e, we get [d� (d� e)] ∩ [(d� d)� e] = {d, e} 6= ∅.
If x = y = d, we get [d � (d � d)] ∩ [(d � d) � d] = d 6= ∅. Otherwise, it is clear that
c ∈ [d� (y � z)] ∩ [(d� y)� z].
Case 5 x = e. For x = e, if y = z = a and y = z = e, we get [e�(a�a)]∩[(e�a)�a] = c 6= ∅ and
[e�(e�e)]∩[(e�e)�e] = e 6= ∅ respectively, Otherwise, it is clear that d ∈ [e�(y�z)]∩[(e�y)�z]

Since (M,�) is a weak associative, then (M,�) is a Hv - semigroup. �

Remark 2. (M,�) is not a semihypergroup since c� (e� e) = d 6= (c� e)� e = {d, e}.
Now, define a hyperoperation �∗ as the entire spontaneous reaction that occurs between

two elements in M . Then, Table 9 is obtained.

Theorem 3.9. ({c, d},�) and ({d, e},�) is a hypergroup.
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Proof. Obvious. �

Theorem 3.10. (M,�∗) is a quasi-hypergroup.

Proof. It is obvious because all rows and columns contain M . �

Theorem 3.11. (M,�∗) is a semihypergroup.

Proof. Since ({c, d},�) and ({d, e},�) is a hypergroup, then it is enough to prove the following
condition:

1. x�∗ (y �∗ z) = (x�∗ y)�∗ z for x ∈ {c, d} and {y, z} * {c, d},

2. a�∗ (y �∗ z) = (a�∗ y)�∗ z,

3. b�∗ (y �∗ z) = (b�∗ y)�∗ z,

4. e�∗ (y �∗ z) = (e�∗ y)�∗ z for {y, z} * {d, e}.

c�∗ (a�∗ z) =


{a, c}, z = a, c,

{a, b, c}, z = b,

M, z = d, e,

= (c�∗ a)�∗ z,

c�∗ (b�∗ z) =


{a, b, c}, z = a, b, c,

{a, b, c, d}, z = d,

M, z = e,

= (c�∗ b)�∗ z,

c�∗ (e�∗ z) =

{
{b, c, d, e}, z = d, e,

M, z = a, b, c,
= (c�∗ e)�∗ z,

d�∗ (y �∗ z) = (d�∗ y)�∗ z = M,

a�∗ (a�∗ z) =


a, z = a,

{a, b, c}, z = b,

{a, c}, z = c,

M, z = d, e,

= (a�∗ a)�∗ z,

a�∗ (b�∗ z) =

{
{a, b, c}, z = a, b, c,

M, z = d, e,
= (a�∗ b)�∗ z,

a�∗ (c�∗ z) =


{a, c}, z = a, c,

{a, b, c}, z = b,

M, z = d, e,

= (a�∗ c)�∗ z,

a�∗ ({d, e}�∗ z) = (a�∗ {d, e})�∗ z,

b�∗ ({a, b, c}�∗ z) =


{a, b, c}, z = a, b, c,

{a, b, c, d}, z = d,

M, z = e,

= (b�∗ {a, b, c})�∗ z,
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b�∗ (d�∗ z) =

{
{a, b, c, d}, z = b, c, d,

M, z = a, e,
= (b�∗ d)�∗ z,

b�∗ (e�∗ z) = (b�∗ e)�∗ z = M,

e�∗ (y �∗ z) = (e�∗ y)�∗ z = M.

Thus, (M,�∗) is a semihypergroup. �

Corollary 3.12. (M,�∗) is a hypergroup.

4 Chemical interpretation

In this section, we give chemical interpretations of the hyperstructures that we have obtained
for redox reactions in neptunium, rubidium, and plutonium.
Remark 3. Based on Table 5, we can conclude that Np4+ is the most abundant in nature and
Np is the least abundant in nature.
Remark 4. Based on Table 7, we can conclude that Ru4+ is the most abundant in nature and
Ru is the least abundant in nature.
Remark 5. Based on Table 9, we can conclude that Pu4+ is the most abundant in nature and
Pu is the least abundant in nature.
Remark 6. The hyperstructures for neptunium and rubidium are isomorphic. This is due to
the similarity in the condition of the Latimer diagram. That is, the Latimer diagrams of neptu-
nium and rubidium have potential conditions that decrease as their oxidation states decrease.
Remark 7. The hyperstructure for plutonium is not isomorphic to the hyperstructures of
neptunium and rubidium because the hyperstructure for plutonium has four idempotent ele-
ments, and the hyperstructures for neptunium and rubidium have five idempotent elements.
This occurs because of the difference in the conditions of the Latimer diagram between pluto-
nium, neptunium, and rubidium. The potential conditions on the plutonium Latimer diagram
increase and then decrease, unlike the conditions on the rubidium and neptunium Latimer
diagrams which decrease as their oxidation states decrease.

5 Concluding remarks

Based on the explanation above, we have determined the types of hyperstructures for some
elements that have five oxidation states. These elements include neptunium, rubidium, and
plutonium. We also find that the hyperstructures of plutonium are not isomorphic to the hy-
perstructures of neptunium and rubidium. For future research, these results can be generalized
specifically to elements that have five oxidation states.
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