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Abstract

Degree distance D′(G) is an important molecular descriptor
which provides valuable insights into the connectivity and
properties of molecular graphs, making it a powerful tool in
diverse areas of chemical graph theory. This descriptor has
attained much attention in the recent past for its broad range
of applicability in different problems of chemical graph theory.
Ordering of graphs with certain parameters allows chemists to
identify patterns and trends of different chemical compounds
and as a result predict their reaction behavior accordingly. In
this paper, the first sixteen tricyclic graphs are presented which
have minimum degree distances (in ascending order) if n ≥ 31.

c© 2025 University of Kashan Press. All rights reserved.

1 Introduction
In this paper, simple, finite and undirected graphs are considered. The order and size of a
graph represent the number of vertices and edges in it, respectively. In chemical compounds,
atoms may be regarded as vertices and their covalent bonds can be visualized as the edges of a
graph. The degree of a vertex u refers to number of edges incident to it and is usually denoted
by du. If du = 1 then u is said to be a pendent vertex. The minimum and maximum degree
in the graph G are usually denoted by δ(G) and ∆(G), respectively. Let ρ denote the number
of non-pendent vertices in a graph and let d(u, v) denote the distance between two vertices u
and v. The maximum distance from a vertex v to all other vertices of a graph is known as the
eccentricity of v (written as ecc(v)) and maximum eccentricity among the vertices of the graph
is known as diameter of the graph, denoted by diam(G).
Suppose Gn is a connected graph of order n. Gn is considered a tricyclic graphs (written as
G3n) if the deletion of three appropriate edges produces an acyclic graph of order n. Similar
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definitions hold for unicyclic (G1n) and bicyclic (G2n) graphs. In the class of G3n, the number of
edges is n+ 2.
A graph invariant I associates a real number with a graph G, which satisfies the equation I(G)
= I(G∗) for every graph G∗ isomorphic (structurally equivalent) to G. Molecular descriptors,
also known as topological indices, are graph invariant which have many applications in chemical
graph theory. The Degree distance is one of the several well-known molecular descriptors that
has shown significant better results compared to other degree-based molecular descriptors. It is
the tailored form of well-known Wiener index. It was introduced by Dobrynin and Kochetova
[1] in 1994 to characterize alkanes by an integer. It is described as under:-

D′(G) =
∑
u∈V

du
∑
v∈V

d(u, v).

Since then, a lot of work has been done on D′(G). The ordering of connected graphs is an
important concept which characterizes a sequence of graphs having minimum (or maximum)
values of a topological index along with its values (usually in ascending order). Through order-
ing, chemists can make several connections between chemical properties and reaction behavior
of a chemical compound. Tomescu [2] presented the first three graphs having minimum D′(G)
if G ∈ Gn with n ≥ 4 (these graphs are K1,n−1, BS(n− 3, 1) and K1,n−1 + e). In [3], Tomescu
and Kanwal presented the next six graphs satisfying n ≥ 15 having different diameters (two of
diam(G)=2, three of diam(G)=3 and one of diam(G)=4) and hence completed a series of nine
graphs having smallest D′(G). In [4], Tomescu and Kanwal ordered four graphs that belong to
G1n having minimum D′(G), provided n ≥ 15 (one has diam(G)=2 and three has diam(G)=3).
In the class of G2n graphs, Dragan and Tomescu [5] determined ordering of seven graphs having
minimum values of D′(G) provided that n ≥ 19 and having diam(G) equal to 2 or 3.
Zhu et al. [6] determined two graphs having smallest D′(G) in the class of G3n provided n ≥ 5
and both have the same value of D′(G). In this paper, the next fourteen graphs (making a series
of sixteen) in the class of G3n are characterized along with their values which have minimum
values of D′(G).

2 Preliminary results

In this section, some basic results are presented, which are used to prove the results in the next
section. The symmetric function

S(y1, y2, ..., yr) =

r∑
r=1

yi(2n− 2− yi),

was defined in [2] for all (y1, y2, ..., yr) ∈ Dr,s,w,z, where Dr,s,w,z = { yj | 1 ≤ yj ≤ s for
1 ≤ j ≤ r, y1 ≥ y2 ≥ ... ≥ yr ≥ 1, y1 ≥ y2 ≥ ... ≥ yz ≥ 2 and

∑r
j=1 yj = w wherever s ≤ n− 1

and 4 ≤ z ≤ r}. Consider the transformation T over the vectors in Dr,s,w,z, which is defined as
follows: If 1 ≤ j < k ≤ r, yj ≤ s− 1 and yk ≥ 2 (or yk ≥ 3 if k ≤ r) then replace (y1, y2, ..., yr)
by (y1, y2, ..., yj+1, ..., yk−1, ..., yr). We get (y∗1 , y

∗
2 , ..., y

∗
r ) ∈ Dr,s,w,z which implies that

S(y1, y2, ..., yr)− S(y∗1 , y
∗
2 , ..., y

∗
r ) = 2(1 + yj − yk) > 0. This shows that S(y1, y2, ..., yr) can be

strictly decreased over Dr,s,w,z.

Lemma 2.1. ([2]). Let a vertex v ∈ Gn have eccentricity e. If e = 1 then D′(v) = (n− 1)2, if

e = 2 then D′(v) = dv (2n− 2− dv) and for e ≥ 3 we have D′(v) ≥ dv (2n− dv +
e2 − 3e

2
− 1).
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Corollary 2.2. ([5]). Let V (G) = {vi| 1 ≤ i ≤ n} represent vertex set of Gn then

D′(G) ≥
n∑

i=1

dvi
(2n− 2− dvi).

Lemma 2.3. ([5]). Consider G ∈ Gn with n ≥ 4 and ∆ = n− 2 then any pendent vertex vp of
Gn has ecc(vp) ≥ 3.

Lemma 2.4. If G ∈ G3n with order n ≥ 4 then there are at least four vertices of minimum
degree 2.

Proof. K4 is the minimal graph in the class of G3n which has four vertices of degree 2. The
condition holds for all other graphs in the class of G3n. �

Lemma 2.5. Sixteen graphs are presented in Figure 1. By direct computations,the values of
D′(G) of these graphs are as follows:
D′(G1) = D′(G2) = 3n2 + 5n− 32, D′(G3) = 3n2 + 5n− 30,
D′(G4) = 3n2+5n−28, D′(G5) = 3n2+5n−26, D′(G6) = 3n2+9n−52, D′(G7) = 3n2+9n−46,
D′(G8) = 3n2+9n−43, D′(G9) = 3n2+9n−40, D′(G10) = D′(G11) = D′(G12) = 3n2+9n−38,
D′(G13) = 3n2 + 9n− 36, D′(G14) = D′(G15) = 3n2 + 9n− 34, D′(G16) = 3n2 + 9n− 32.

3 Main results

In this section, the first sixteen graphs in the class of G3n are presented which have minimum
values of D′(G) along with their values. To prove the main result, a few lemmas are useful.

Lemma 3.1. In the class of G3n, the graphs having ∆ = n− 1 and D′(G) < 3n2 + 9n− 32 are
G1 −G5, depicted in Figure 1, provided that n ≥ 7.

Proof. Let G ∈ G3n satisfying the hypothesis of the lemma. We will prove it using different
values of ρ.
If ρ = 4, then the degree sequence will be (n − 1, ε, ζ, η, 1, ..., 1), where ε ≥ ζ ≥ η ≥ 2 and
ε + ζ + η = 9. It results that the only graphical degree sequence will be (n − 1, 3, 3, 3, 1, ..., 1)
which has a unique graphical realization characterized as G1 in Figure 1.
If ρ = 5, then the degree sequence will be (n − 1, ε, ζ, η, θ, 1, ..., 1), where ε ≥ ζ ≥ η ≥ θ ≥ 2
and ε + ζ + η + θ = 10. Only graphical degree sequences will be (n − 1, 4, 2, 2, 2, 1, ..., 1) and
(n − 1, 3, 3, 2, 2, 1, ..., 1) which have unique graphical realizations characterized as G2 and G3

respectively in Figure 1.
If ρ = 6, then the degree sequence will be (n − 1, ε, ζ, η, θ, ι, 1, ..., 1), where ε ≥ ζ ≥ η ≥ θ ≥
ι ≥ 2 and ε + ζ + η + θ + ι = 11. It results that the only graphical degree sequence will be
(n−1, 3, 2, 2, 2, 2, 1, ..., 1). This sequence has a unique graphical realization characterized as G4

in Figure 1.
If ρ = 7, then the degree sequence will be (n − 1, ε, ζ, η, θ, ι, κ, 1, ..., 1), where ε ≥ ζ ≥ η ≥
θ ≥ ι ≥ κ ≥ 2 and ε + ζ + η + θ + ι + κ = 12. Only graphical degree sequence will be
(n− 1, 2, 2, 2, 2, 2, 2, 1, ..., 1). This sequence has a unique graphical realization characterized as
G5 in Figure 1.
There is no such graph in G3n fulfilling the conditions of the lemma if ρ ≥ 8. �
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Figure 1: The first sixteen graphs having minimum degree distance.

Lemma 3.2. Let G ∈ G3n, the graphs having ∆ = n−2 and D′(G) ≤ 3n2+9n−32 are G6−G16,
depicted in Figure 1, provided that n ≥ 24.

Proof. Let G ∈ G3n having ∆ = n − 2. When ρ = 4, the degree sequence will be (n −
2, ε, ζ, η, 1, ..., 1), where ε ≥ ζ ≥ η ≥ 2 and ε + ζ + η = 10. This results that the only
graphical degree sequence will be (n−2, 4, 3, 3, 1, ..., 1) which has a unique graphical realization
characterized as G6 in Figure 1.
If ρ = 5, then the degree sequence will be (n − 2, ε, ζ, η, θ, 1, ..., 1), where ε ≥ ζ ≥ η ≥
θ ≥ 2 and ε + ζ + η + θ = 11. It results that the only graphical degree sequences will be
(n−2, 4, 3, 2, 2, 1, ..., 1) and (n−2, 3, 3, 3, 2, 1, ..., 1). In case of (n−2, 4, 3, 2, 2, 1, ..., 1), there are
two graphical realizations which are characterized as G17 and G18 in Figure 2. Furthermore,
D′(G17) = 3n2 + 19n − 49 > 3n2 + 9n − 32 for n ≥ 2 and D′(G18) = 3n2 + 10n − 55 >
3n2 + 9n − 32 for n ≥ 24. In case of (n − 2, 3, 3, 3, 2, 1, ..., 1), there are four graphical real-
izations which are characterized as G8, G10 in Figure 1 and G19, G20 in Figure 2. Moreover,
D′(G19) = 3n2+10n−53 > 3n2+9n−32 for n ≥ 22 andD′(G20) = 3n2+11n−55 > 3n2+9n−32
for n ≥ 12.
If ρ = 6, then the degree sequence will be (n−2, ε, ζ, η, θ, ι, 1, ..., 1), where ε ≥ ζ ≥ η ≥ θ ≥ ι ≥ 2
and ε + ζ + η + θ + ι = 12. Only graphical degree sequences will be (n − 2, 4, 2, 2, 2, 2, 1, ..., 1)
and (n − 2, 3, 3, 2, 2, 2, 1, ..., 1). In case of (n − 2, 4, 2, 2, 2, 2, 1, ..., 1), there are three graphical
realizations which are characterized as G7, G11 in Figure 1 and G21 in Figure 2. Furthermore,
D′(G21) = 3n2 +12n−68 > 3n2 +9n−32 for n ≥ 13. In case of (n−2, 3, 3, 2, 2, 2, 1, ..., 1), there
are seven graphical realizations which are characterized as G9, G13 and G15 in Figure 1 and G22,
G23, G24 and G25 in Figure 2. Moreover, D′(G22) = 3n2 +10n−46 > 3n2 +9n−32 for n ≥ 15,
D′(G23) = 3n2 +11n−60 > 3n2 +9n−32 for n ≥ 15, D′(G24) = 3n2 +10n−54 > 3n2 +9n−32
for n ≥ 23 and D′(G25) = 3n2 + 10n− 53 > 3n2 + 10n− 50 for n ≥ 19
If ρ = 7, then the degree sequence will be (n − 2, ε, ζ, η, θ, ι, κ, 1, ..., 1), where ε ≥ ζ ≥ η ≥
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Figure 2: Graphs G17-G27.

θ ≥ ι ≥ κ ≥ 2 and ε + ζ + η + θ + ι + κ = 13. Only graphical degree sequence will be
(n−2, 3, 2, 2, 2, 2, 2, 1, ..., 1) which has three graphical realizations characterized as G12 and G14

in Figure 1 and G26 in Figure 2. Moreover, D′(G26) = 3n2 + 10n − 42 > 3n2 + 9n − 32 for
n ≥ 11
If ρ = 8, then the degree sequence will be (n − 2, ε, ζ, η, θ, ι, κ, λ, 1, ..., 1), where ε ≥ ζ ≥ η ≥
θ ≥ ι ≥ κ ≥ λ ≥ 2 and ε + ζ + η + θ + ι + κ + λ = 14. It results that the only graphical
degree sequence will be (n− 2, 2, 2, 2, 2, 2, 2, 2, 1, ..., 1), which has a unique graphical realization
characterized as G16 in Figure 1.
If ρ = 9, then the degree sequence will be (n− 2, ε, ζ, η, θ, ι, κ, λ, µ, 1, ..., 1), where ε ≥ ζ ≥ η ≥
θ ≥ ι ≥ κ ≥ λ ≥ µ ≥ 2 and ε+ ζ + η + θ + ι+ κ+ λ+ µ = 15, which is not possible. Similarly,
in the case of δ = 10,

∑9
i=1 di = 16, which is again not possible (where di ≥ 2 for i = 1, ..., 9).

Hence there is no further graph fulfilling the conditions of the lemma if ρ ≥ 9. �

Lemma 3.3. If G ∈ G3n having ∆ = n− 3 and n ≥ 23, then we have D′(G) > 3n2 + 9n− 32.

Proof. Let G ∈ G3n having ∆ = n − 3. When ρ = 4, the degree sequence will be (n −
3, ε, ζ, η, 1, ..., 1), where ε ≥ ζ ≥ η ≥ 2 and ε + ζ + η = 11 which results the only graphical
degree sequence is (n − 3, 4, 4, 3, 1, ..., 1). This degree sequence has a unique graphical realiza-
tion characterized as G27 in Figure 2 and D′(G27) = 3n2 +13n−76 > 3n2 +9n−32 for n ≥ 12.
If ρ = 5, then the degree sequence will be (n− 3, ε, ζ, η, θ, 1, ..., 1), where ε ≥ ζ ≥ η ≥ θ ≥ 2 and
ε+ζ+η+θ = 12. It results that only graphical degree sequences will be (n−3, 4, 4, 2, 2, 1, ..., 1),
(n− 3, 4, 3, 3, 2, 1, ..., 1) and (n− 3, 3, 3, 3, 3, 1, ..., 1). These degree sequences have many graph-
ical realizations. In case of (n− 3, 4, 4, 2, 2, 1, ..., 1), using Lemmas 2.1 and 2.3, we have
D′(G) ≥ S(n− 3, 4, 4, 2, 2) + (n− 5)(2n− 2) = 3n2 + 10n− 57 > 3n2 + 9n− 32 for n ≥ 26.
Similarly, for (n− 3, 4, 3, 3, 2, 1, ..., 1) we have
D′(G) ≥ S(n− 3, 4, 3, 3, 2) + (n− 5)(2n− 2) = 3n2 + 10n− 55 > 3n2 + 9n− 32 for n ≥ 24
and for (n− 3, 3, 3, 3, 3, 1, ..., 1) we have
D′(G) ≥ S(n− 3, 3, 3, 3, 3) + (n− 5)(2n− 2) = 3n2 + 10n− 53 > 3n2 + 9n− 32 for n ≥ 22.
If ρ = 6, then the degree sequence will be (n−3, ε, ζ, η, θ, ι, 1, ..., 1), where ε ≥ ζ ≥ η ≥ θ ≥ ι ≥ 2
and ε+ζ+η+θ+ ι = 13. The only graphical degree sequences will be (n−3, 4, 3, 2, 2, 2, 1, ..., 1)
and (n−3, 3, 3, 3, 2, 2, 1, ..., 1). These degree sequences have many graphical realizations. In the
case of (n− 3, 4, 3, 2, 2, 2, 1, ..., 1), we have
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D′(G) ≥ S(n− 3, 4, 3, 2, 2, 2) + (n− 6)(2n− 2) = 3n2 + 10n− 54 > 3n2 + 9n− 32 for n ≥ 23.
Similarly, for (n− 3, 3, 3, 3, 2, 2, 1, ..., 1) we have
D′(G) ≥ S(n− 3, 3, 3, 3, 2, 2) + (n− 6)(2n− 2) = 3n2 + 10n− 52 > 3n2 + 9n− 32 for n ≥ 21.
If ρ = 7, then the degree sequence will be (n − 3, ε, ζ, η, θ, ι, κ, 1, ..., 1), where ε ≥ ζ ≥ η ≥ θ ≥
ι ≥ κ ≥ 2 and ε+ ζ + η + θ + ι+ κ = 14. Consequently, the only graphical degree sequence is
(n− 3, 3, 3, 2, 2, 2, 2, 1, ..., 1) which has many graphical realizations, so we have
D′(G) ≥ S(n− 3, 3, 3, 2, 2, 2, 2) + (n− 7)(2n− 2) = 3n2 + 10n− 51 > 3n2 + 9n− 32 for n ≥ 20.
In view of the above, similar results hold for ρ ≥ 8. Hence, the result follows. �

Lemma 3.4. If G ∈ G3n having ∆ ≤ n− 4 and n ≥ 31 then D′(G) > 3n2 + 9n− 32.

Proof. Let G ∈ G3n having ∆ ≤ n − 4. Consider the symmetric function S and the set of
vectors Dr,s,w,z. Incorporating the conditions of the lemma leads to Dn,s,2n+4,z with s ≤ n− 4
(which contains all graphs that satisfy the conditions of the lemma). Using Corollary 2.2, we
get D′(G) ≥ min S(y1, y2, ..., yr) where (y1, y2, ..., yr) ∈ Dn,s,2n+4,z with s ≤ n − 4 and z ≥ 4.
Consider this minimum as g(n, s, 2n + 4, z). Suppose z2 ≥ z1 ≥ 4 and s1 ≥ s2 then we have
g(n, s, 2n + 4, z1) ≤ g(n, s, 2n + 4, z2) and g(n, s1, 2n + 4, 4) ≤ g(n, s2, 2n + 4, 4). It results
that min g(n, s, 2n + 4, z) is reached for s = n − 4 and z = 4. Thus, min S(y1, y2, ..., yr)
over Dn,n−4,2n+4,4 is realized for (n− 4, 8, 2, 2, 1, ..., 1), which leads to S(n− 4, 8, 2, 2, 1, ..., 1) =
3n2 + 11n− 92 > 3n2 + 9n− 32 for n ≥ 31. Hence the result follows. �

Theorem 3.5. If G ∈ G3n then the graphs that have minimum values of D′(G) are G1−G16 (in
this order), depicted in Figure 1, provided that n ≥ 31. All these graphs have diam(G) equal to
2 or 3.

Proof. Using Lemmas 3.1 to 3.4, the result follows. �

4 Concluding remarks

In this paper, we have determined the first sixteen graphs in the class of G3n which have minimum
values of D′(G) along with its values. Although, in general, ordering of graphs is difficult to
estimate perfectly, however the authors have tried this in the best possible manner. It would be
interesting to find the same characterization of D′(G) in the class of connected k−cyclic graphs
with k ≥ 4.
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