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Abstract

A (k, 6)-fullerene graph refers to a planar 3-connected cubic
graph whose faces are k-gons and hexagons. The current study
involves calculating the local metric dimension for specific (k, 6)-
fullerene graphs, where k takes values in the set {3, 4, 5}.
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1 Introduction
For a connected graph G, the distance d(u, v) between two vertices u and v is defined as the
shortest length of the paths connecting u and v in G. A graph G is considered 3-connected
if the removal of any two distinct vertices u and v keeps the graph connected. In addition,
a planar graph is a graph that can be represented in a plane without any edges intersecting.
Furthermore, a graph that is 3-regular is often termed a cubic graph. We now introduce the
concept of an (r, 6)-fullerene graphs.
An (r, 6)-fullerene graph is a planar cubic graph that is also 3-connected, with its faces consisting
solely of r-gons and hexagons. Previous research has established that the only permissible values
of k for which a (k, 6)-fullerene can exists are 3, 4, and 5, see [1]. According to Euler’s formula,
a (3, 6)-fullerene graph will have four triangular faces and (n2 − 2) hexagonal faces. For further
information regarding terminology and notations used for fullerenes, please consult [2–9].

Given a set S = {v1, . . . , vk} ⊆ V (G), the metric S-code associated with a vertex v ∈ V (G)
is expressed as the vector rS(v) = (d(v1, v), . . . , d(vk, v)). The set S is said to distinguishes the
vertices u and v if rS(u) 6= rS(v). Moreover, we designate S as a local metric generator (LMG)
of G when it successfully distinguishes every pair of adjacent vertices in G.
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A local metric basis (LMB) represents an LMG with minimum cardinality. The concept of
the Local metric dimension of G, denoted as diml(G), is defined as the minimum size of S across
all LMGs. This concept was first introduced in [10]. In [11, 12] Fernau and Rodríguez-Velázquez
showed that the decision version of local metric dimension is NP-complete. Recently, [13]
applied certain graph products to ascertain or estimate the local metric dimension for various
chemical graph classes; additionally, a novel methodology for coding customers in delivery
services was presented utilizing the notion of local metric dimension. For an in-depth exploration
of this subject, the reader is directed to [14–16].

To understand the motivation behind this exploration, we recommend examining [17].
This paper aims to investigate the local metric dimension of (k, 6)-fullerene graphs where
k ∈ {3, 4, 5}.

2 Main results
In this section, we begin by presenting a theorem from [10] that pertains to the local metric
dimension of bipartite graphs.

Theorem 2.1. ([10]). Let G be a connected graph with at least one vertex and of order n.
Then diml(G) = n− 1 if and only if G is a complete graph of order n, and diml(G) = 1 if and
only if G is a bipartite graph.

v1

v2v3

v4

v9

v8
v7

v6

v5

v10

v15

v14

v13

v12

v11

v16

v21

v20

v19

v18

v17

v6k−8

v6k−3

v6k−4

v6k−5

v6k−6

v6k−7

v6k−2

v6k−1v6k

n
=

1

n
=

2

n
=

3

n
=

k−
1

Figure 1: The (3, 6)-fullerene graph denoted as F6k.

Next, we determine the local metric dimension of the (3, 6)-fullerene graph F6k as illustrated
in Figure 1.

Theorem 2.2. For the (3, 6)-fullerene F6k, the local metric dimension is 2, provided that k is
an odd integer greater than 4.

Proof. According to Theorem 2.1, it follows that diml(F6k) ≥ 2. Thus, it suffices to show that
diml(F6k) ≤ 2. Let us define the set S = {v6k−3, v6k−5}. We will demonstrate that S is an
serves as a LMG for F6k. To do so, we will analyze the S-codes of vertices in F6k as follows:
The S-codes of the triangular faces in F6k are specified as:

rS(v1) = (2k − 3, 2k − 2), rS(v2) = (2k − 2, 2k − 3), rS(v3) = (2k − 3, 2k − 3),

rS(v6k) = (2, 2), rS(v6k−1) = (3, 2), rS(v6k−2) = (2, 3).
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Additionally, for the hexagonal faces, labelled by n = 1, . . . , k − 1, the S-codes are determined
as follows:

Case 1. For n is odd and n < k − 3:
rS(vi) = (2k − (2n+ 3), 2k − (2n+ 3)) for i ∈ {6n− 1, 6n+ 1, 6n+ 3} and
rS(vi) = (2k − (2n+ 2), 2k − (2n+ 2)) for i ∈ {6n− 2, 6n, 6n+ 2}.

Case 2. n is even and n < k − 3. Then
rS(vi) = (2k − (2n+ 3), 2k − (2n+ 3)) for i ∈ {6n− 2, 6n, 6n+ 2} and
rS(vi) = (2k − (2n+ 2), 2k − (2n+ 2)) for i ∈ {6n− 1, 6n+ 1, 6n+ 3}.

Case 3. When n = k − 3:

rS(v6k−20) = (3, 5), rS(v6k−19) = (4, 4), rS(v6k−18) = (5, 3),

rS(v6k−17) = (4, 4), rS(v6k−16) = (3, 3), rS(v6k−15) = (4, 4).

Case 4. When n = k − 2:

rS(v6k−14) = (2, 4), rS(v6k−13) = (3, 3), rS(v6k−12) = (4, 2),

rS(v6k−11) = (3, 1), rS(v6k−10) = (2, 2), rS(v6k−9) = (1, 3).

Case 5. When n = k − 1:
rS(v6k−8) = (1, 3), rS(v6k−7) = (2, 2), rS(v6k−6) = (3, 1), rS(v6k−4) = (1, 1).

As a result, we observe that rS(u) 6= rS(v) for every edge uv ∈ E(F6k), confirming that S is
indeed an LMG for F6k. �
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Figure 2: The (5, 6)-fullerene graph represented as C26(D3h) with 3 hexagonal faces.

The subsequent theorem provides a precise assessment of the local metric dimension for the
(5, 6)-fullerene C26(D3h) illustrated in Figure 2.

Theorem 2.3. The local metric dimension of C26(D3h) is equal to 2.

Proof. According to Theorem 2.1, the local metric dimension of C26(D3h) cannot be lower
than 2. We define the set S = {v2, v8}. Our objective is to prove that S functions an LMG
for C26(D3h). To achieve this, we will enumerate the S-codes for the vertices of C26(D3h) as
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follows:

rS(v1) = (1, 1), rS(v3) = (1, 2), rS(v4) = (2, 3), rS(v5) = (3, 3),

rS(v6) = (3, 2), rS(v7) = (2, 1), rS(v9) = (2, 2), rS(v10) = (2, 3),

rS(v11) = (1, 3), rS(v12) = (2, 4), rS(v13) = (3, 4), rS(v14) = (4, 5),

rS(v15) = (4, 4), rS(v16) = (5, 4), rS(v17) = (4, 3), rS(v18) = (4, 2),

rS(v19) = (3, 1), rS(v20) = (3, 2), rS(v21) = (4, 3), rS(v22) = (3, 4),

rS(v23) = (3, 5), rS(v24) = (5, 6), rS(v25) = (6, 5), rS(v26) = (5, 3).

This confirms that S qualifies as an LMG for C26(D3h), leading to the conclusion that diml(C26(D3h)) =
2. �

Let F1[n] represent the (3, 6)-fullerene illustrated in Figure 3, which has an order 8n + 4.
We will use the notation established in this figure moving forward.
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Figure 3: The graph F1[n].

Theorem 2.4. The local metric dimension of F1[n] is equal to 2.

Proof. By referencing Theorem 2.1, we conclude that diml(F1[n]) ≥ 2. Next, we aim to prove
that diml(F1[n]) ≤ 2. We will consider S = {u2n−1, v2n−1} ⊂ V (F1[n]) as our candidate set.

To verify that S acts as an LMG for F1[n], we will compute the S-code for the vertices of
F1[n] as follows:

rS(w1) = (2n, 2n), rS(w3) = (2n, 2n− 1), rS(w5) = (2n, 2n+ 1),

rS(w2) = (2n− 1, 2n), rS(w4) = (2n+ 1, 2n+ 1), rS(w6) = (2n+ 1, 2n).

The S-codes for the upper half of F1[n] are:

rS(ui) =


(2n− i− 1, 2n− i), if 1 ≤ i ≤ 2n− 1,

(1, 2), if i = 2n,

(i− 2n, i− 2n+ 1), if 2n+ 1 < i ≤ 4n− 1,

(1, 3), if i = 2n+ 1.

For the lower half of F1[n], the S-codes are given by:

rS(vi) =


(2n− i, 2n− i− 1), if 1 ≤ i ≤ 2n− 1,

(2, 1), if i = 2n,

(i− 2n+ 1, i− 2n), if 2n+ 1 < i ≤ 4n− 1,

(3, 1), if i = 2n+ 1.
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It is evident that all the adjacent vertices of F1[n] possess distinct S-codes. This guarantees
that S serves as an LMG for F1[n], leading us to conclude that diml(F1[n]) ≤ 2. As a result,
we can state that the local metric dimension of F1[n] is 2, thus completing the proof. �
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Figure 4: The graph F1[2].

For further clarification, we will demonstrate the proof of Theorem 2.4 using the graph F1[2].
Consider F1[2], as illustrated in Figure 4, and two vertex groups {w1, w2, w3} and {w4, w5, w6}
corresponding to the outer triangles of F1[2]. Let us take S = {u3, v3} ⊂ V (F1[2]). We will now
prove that S acts an LMG for F1[2]. To accomplish this, we present the S-codes of vertices in
V (F1[2]) as follows:

rS(w1) = (4, 4), rS(u1) = (2, 3), rS(v1) = (3, 2),

rS(w2) = (3, 4), rS(u2) = (1, 2), rS(v2) = (2, 1),

rS(w3) = (4, 3), rS(u3) = (0, 3), rS(v3) = (3, 0),

rS(w4) = (5, 5), rS(u4) = (1, 2), rS(v4) = (2, 1),

rS(w5) = (4, 5), rS(u5) = (1, 3), rS(v5) = (3, 1),

rS(w6) = (5, 4), rS(u6) = (2, 3), rS(v6) = (3, 2),

rS(u7) = (3, 4), rS(v7) = (4, 3).

Consequently, since all adjacent vertices of this graph have unique S-codes, we conclude that
S is indeed an LMG for F1[2].

Theorem 2.5. diml(F2[n]) = 2.

Proof. Given that F2[n] is not bipartite, Theorem 2.1 assures us that diml(F2[n]) ≥ 2.
Let {w1, w2, w12} and {w6, w7, w11} represent the vertex sets in outer triangles of F2[n]. Assume
S = {w9, w4} ⊂ V (F2[n]). Our objective is to show that S functions as an LMG for F2[n]. We
will start by computing the S-codes of vertices in V (F2[n])\S. The codes for the outer vertices
of the graph F2[n] are listed below:

rS(w1) = (2, 3), rS(w5) = (4, 1), rS(w9) = (0, 3),

rS(w2) = (3, 2), rS(w6) = (3, 2), rS(w10) = (1, 4),

rS(w3) = (2, 1), rS(w7) = (2, 3), rS(w11) = (3, 3),

rS(w4) = (3, 0), rS(w8) = (1, 2), rS(w12) = (3, 3).
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Figure 5: The graph F2[n].

Next, we detail the S-codes for the vertices in the upper half of the Fullerene graph F2[n]:

rS(xi) =


(i, i+ 3), if 1 ≤ i ≤ 2n− 2,

(2n− 1, 2n+ 2), if i = 2n− 1,

(4n− 1− i, 4n+ 1− i), if 2n ≤ i ≤ 4n− 3.

We also specify the S-code for the middle vertices of F2[n]:

rS(yi) =


(2, 4), if 1 = i,

(i+ 1, i+ 1), if 2 ≤ i ≤ 2n− 1,

(4n− i, 4n− i), if 2n ≤ i ≤ 4n− 3,

(4, 2), i = 4n− 2.

Furthermore, the S-codes for the lower half of F2[n] are as follows:

rS(zi) =

{
(i+ 3, i+ 1), if 1 ≤ i ≤ 2n− 2,

(4n+ 1− i, 4n− 2− i), if 2n− 1 ≤ i ≤ 4n− 3.

Thus, we see that any adjacent vertex pairs can be distinctly resolved using the set S. This
verifies that the set S acts as an LMG for F2[n] and dimL(F2[n]) ≤ 2. Hence, diml(F2[n]) =
2. �

Theorem 2.6. diml(F3[n]) = 2.

Proof. Since the cycle z1z2z3z1 is odd in the graph F3[n], by invoking Theorem 2.1, we can
establish that diml(F3[n]) ≥ 2. Now, consider the vertex groups {z1, z2, z3} and {z4, z5, z6} rep-
resenting the outer triangles, along with the vertices {a1, a2, a3, a4, a5, a6} of the outer hexagon
in F3[n]. Let us denote S = {a1, v4n−1} ⊂ V (F3[n]). We aim to demonstrate that S serves as
an LMG for F3[n].

To begin, we provide the S-codes for the vertices in V (F3[n]) \S. The S-codes for the outer
vertices of F3[n] are as follows:

rS(a1) = (0, 6), rS(a3) = (2, 4), rS(a5) = (2, 4),

rS(a2) = (1, 5), rS(a4) = (3, 3), rS(a6) = (1, 5).
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Figure 6: The graph F3[n].

Next, we present the S-codes of the vertices corresponding to the outer triangles in F3[n]:

rS(z1) = (2, 6), rS(z3) = (3, 5), rS(z5) = (4, 5),

rS(z2) = (3, 6), rS(z4) = (3, 5), rS(z6) = (4, 4).

The coding for the vertices in the upper half of F3[n] is defined as:

rS(ui) =



(i, v), if 1 ≤ i ≤ 2,

(i, n+ 1), if 3 ≤ i ≤ 2n,

(2n+ 1, 2n+ 1), if i = 2n+ 1,

(4n+ 3− i, 4n+ 2− i), if 2n+ 2 ≤ i ≤ 4n− 3,

(4n+ 3− i, 5), if i ∈ {4n− 1, 4n+ 1},
(4n+ 2− i, 6), if i ∈ {4n− 2, 4n}.

For the middle vertices in F3[n] (valid for n ≥ 2), the S-codes are expressed as:

rS(bi) =



(i+ 1, 7), if 2k − 1 k ∈ N 1 ≤ i ≤ 2n− 1, i ≤ 7,

(i+ 1, 6), if 2k k ∈ N 1 ≤ i ≤ 2n− 1, i ≤ 7,

(i+ 1, i), if 1 ≤ i ≤ 2n− 1, i > 7,

(i+ 1, i+ 1), if i = 2n,

(i+ 1, i− 1), if i = 2n+ 1,

(i+ 1, 4n+ 4− i), if 2n+ 2 ≤ i ≤ 4n− 1,

(4, 3), if i = 4n,

(3, 4), if i = 4n+ 1.
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For another set of middle vertices in F3[n], the codes are indicated as:

rS(ci) =



(4, 4), if i = 1,

(i+ 2, 4), if 2k − 1 k ∈ N 2 ≤ i ≤ 2n− 1, i ≤ 7,

(i+ 2, 5), if 2k k ∈ N 2 ≤ i ≤ 2n− 1, i ≤ 7,

(i+ 2, i− 1), if 1 ≤ i ≤ 2n− 1, i > 7,

(i+ 2, i), if i = 2n,

(i+ 2, 4n− i), if i = 2n+ 1,

(4n+ 5− i, 4n− i), if 2n+ 2 ≤ i ≤ 4n− 2,

(6, 1), if i = 4n− 1,

(5, 2), if i = 4n,

(5, 3), if i = 4n+ 1.

Finally, the S-codes for the vertices located in the lower half of F3[n] are specified as:

rS(vi) =



(i+ 2, 3), if i = 1, 3,

(i+ 2, 2), if i = 2, 4,

(i+ 2, i− 2), if 5 ≤ i ≤ 2n,

(i+ 2, 2n− 2), if i = 2n+ 1,

(4n+ 5− i, 4n− 1− i), if 2n+ 2 ≤ i ≤ 4n− 1,

(1, 5), if i = 4n,

(2, 4), if i = 4n+ 1.

As a consequence, we see that the set S-codes can uniquely identify all pairs of adjacent vertices.
Thus, it follows that S is an LMG for F2[n], and consequently, dimL(F3[n]) ≤ 2. We can
conclude that the local metric dimension of F3[n] is indeed 2. �

Conflicts of Interest. The authors declare that they have no conflicts of interest regarding
the publication of this article.

References
[1] T. Došlić, Cyclical edge-connectivity of fullerene graphs and (k; 6)-cages, J. Math. Chem.

33 (2003) 103–112, https://doi.org/10.1023/A:1023299815308.

[2] M. Arabzadeh, G. H. Fath-Tabar, H. Rasouli and A. Tehranian, On the dif-
ference between Laplacian and signless Laplacian coefficients of a graph and its
applications on the fullerene graphs, Iranian J. Math. Chem. 15 (2024) 39–50,
https://doi.org/10.22052/IJMC.2024.254123.1808.

[3] S. Bakaein, M. Tavakoli, A. R. Ashrafi and O. Ori, Coloring of
fullerenes, Fuller. Nanotub. Carbon Nanostructures 26 (2018) 705–708,
https://doi.org/10.1080/1536383X.2018.1481049.

[4] P. Bonyabadi, K. Khashyarmanesh, M. Tavakoli and M. Afkhami, Edge metric di-
mension of fullerenes, Iranian J. Math. Chem. 14 (2023) 47–54, https://doi.org/
10.22052/IJMC.2022.248392.1666.



Iranian Journal of Mathematical Chemistry 16 (3) (2025) 171− 179 179

[5] M. Faghani and E. Pourhadi, New expansion for certain isomers of
various classes of fullerenes, Math. Interdisc. Res. 2 (2017) 33–43,
https://doi.org/10.22052/MIR.2017.74726.1053.

[6] F. Koorepazan-Moftakhar, A. R. Ashrafi, O. Ori and M. V. Putz, Topologi-
cal invariants of nanocones and fullerenes, Curr. Org. Chem. 19 (2015) 240–248,
https://doi.org/10.2174/1385272819666141216230152.

[7] F. Koorepazan-Moftakhar, A. R. Ashrafi, Z. Mehranian and M. Ghorbani, Automorphism
group and fixing number of (3, 6)- and (4, 6)-fullerene graphs, Electron. Notes Discret.
Math 45 (2014) 113–120, https://doi.org/10.1016/j.endm.2013.11.022.

[8] P. Schwerdtfeger, L. Wirz and J. Avery, Program fullerene: a software package for con-
structing and analyzing structures of regular fullerenes, J. Comput. Chem. 34 (2013) 1508–
1526, https://doi.org/10.1002/jcc.23278.

[9] M. Taheri-Dehkordi, Introducing two transformations in fullerene graphs, star
and semi-star, Iranian J. Math. Chem. 14 (2023) 135–143, https://doi.org/
10.22052/IJMC.2023.252986.1722.

[10] F. Okamoto, L. Crosse, B. Phinezy and P. Zhang, The local metric dimension of a graph,
Math. Bohem. 135 (2010) 239–255.

[11] H. Fernau and J. A. Rodríguez-Velázquez, On the (adjacency) metric dimen-
sion of corona and strong product graphs and their local variants: combi-
natorial and computational results, Discrete Appl. Math. 236 (2018) 183–202,
https://doi.org/10.1016/j.dam.2017.11.019.

[12] H. Fernau, J. A. Rodríguez-Velázquez and J. Alberto, Notions of metric dimension of
corona products: combinatorial and computational results, in: Lecture Notes in Computer
Science, vol. 8476, Springer, Cham, 2014, https://doi.org/10.1007/978-3-319-06686-8_12.

[13] S. Klavžar and M. Tavakoli, Local metric dimension of graphs: generalized hierar-
chical products and some applications, Appl. Math. Comput. 364 (2020) #124676,
https://doi.org/10.1016/j.amc.2019.124676.

[14] J. A. Rodríguez-Velázquez, C. G. Gómez and G. A. Barragán-Ramírez, Computing the
local metric dimension of a graph from the local metric dimension of primary subgraphs,
Int. J. Comput. Math. 92 (2015) 686–693.

[15] J. A. Rodríguez-Velázquez, G. A. Barragán-Ramírez and C. G. Gómez, On the local metric
dimension of corona product graphs, Bull. Malays. Math. Sci. Soc. 39 (2016) 157–173,
https://doi.org/10.1007/s40840-015-0283-1.

[16] S. W. Saputro, On local metric dimension of (n − 3)-regular graph, J. Combin. Math.
Combin. Comput. 98 (2016) 43–54.

[17] S. Akhter and R. Farooq, Metric dimension of fullerene graphs, Electron. J. Graph Theory
Appl. (EJGTA) 7 (2019) 91–103, http://doi.org/10.5614/ejgta.2019.7.1.7.


	Introduction
	Main results

