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Abstract

The algebraic value of a chemical composition plays a crucial
role in determining its physical properties, chemical reactivity,
and biological activity. Algebraic graph theory investigates
the connection between abstract algebra and graph theory.
Focusing on the commuting graphs of semi-dihedral groups, we
examine their various topological properties. Furthermore, we
provide a detailed exploration of key topological graph indices,
including the general Randić index, the Wiener index, the
atom-bond connectivity index (and its fourth variation), the
Schultz molecular topological index, the geometric-arithmetic
index, the harmonic index, and the Harary index. This research
reveals the structural as well as mathematical features of
these graphs, providing valuable insights into their possible
applications.

c© 2025 University of Kashan Press. All rights reserved.

1 Introduction
In studies of quantitative structure-property relationships (QSPR), physical properties such as
melting point, strain energy, stability and certain topological indices are used to determine the
bioactivity of chemical compounds. The main objective of topological indices is the quantifica-
tion of molecular structures and values unaffected by any action that maintains the structural
integrity of a molecular structure, providing unique metrics for assessing symmetry and charac-
terizing its topology [1]. Various indices can be used to examine specific chemically structured
material properties. A prime instance was derived in 1947 when Wiener came up with the idea
of a topological description while investigating the paraffin melting temperature [2] and it is
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known as the beginning of a path number. Since then, some other degree and distance-based
topological descriptors have been created and examined; see, for example, [3, 4] and the ref-
erences therein. Pólya [5] investigated the polynomial, which several researchers later used to
figure out the polyunsaturated hydrocarbon orbital. Additionally, they extended this concept
and developed the spectral theory of graphs. In 1988, Hosoya [6] came up with this idea, and
several chemical structures of graphs were explored using certain polynomial computations.
After that, in 1996, Sagan et al. [7] subsequently named it the Wiener polynomial. Estrada
et al. [8] examined numerous applications of the generalized Wiener index. Several essential
indices are based on the degrees and distances of vertices of a graph. The Randić connectivity
index is a prominent molecular index introduced in 1975; see [9] for further details. In 1993,
Ivanciuc et al. [10] defined the Harary index as the sum of the reciprocal distances between
all pairs of nonadjacent vertices in a graph. Furthermore, Estrada et al. [11] deliberated the
atomic-bond connectivity (ABC) index as a modification of the Randić index. This concept is
strongly related to physicochemical parameters, including the formation enthalpy and stability
of alkanes, as well as the strain energy of cycloalkanes.

Graph theory is an essential branch of mathematics with applications in various fields in-
cluding but not limited to computer science, chemistry and statistics. It is beneficial to use
graphs and understand their properties to understand a wide variety of mathematical prob-
lems or to explain real-world situations. In this paper, we are concerned with the so-called
commuting graphs, which are defined to reflect the commuting structure of a given (in general,
non-abelian) group. More precisely, for a given group H with center Z(H), one can consider
the notion of a classical commuting graph as G = C(H,Γ) where Γ is a non-empty subset of
H\Z(H), for which Γ is the vertex set and any x, y ∈ Γ are joined by an edge if and only if
x and y commute in H. Clearly, the concept of commuting graphs has been analyzed in [12]
in several contexts. The connectivity and spectral radius of the commuting graphs of dihedral
and dicyclic groups were investigated in [13]. Tolue [14] studied the graph-theoretic properties
of the non-commuting graphs over the AC-group and dihedral groups. Moreover, in [15], the
authors examined the structure of the commuting conjugacy class graph of a group G having
G

Z(G)
∼= D2n property.

The relationship between chemical characteristics and algebraic graphs constitutes a fasci-
nating area of research, especially when examined from the perspective of group theory. Sym-
metry groups, semi-dihedral, and generalized quaternion groups have significantly enhanced the
understanding of molecular structures and electron configurations. These algebraic tools are
particularly effective in studying structural isomerism and conformational analysis. By repre-
senting atoms as vertices and bonds as edges, the algebraic graphs offer a precise visualization
of molecular structures, enabling the investigation of all possible conformations and isomers. In
[16–19], the authors found several Zagreb indices, the degree-based, and distance-based topo-
logical indices of power and commuting graphs over certain finite groups. Inspired by their
work, we focus on the commuting graphs of semi-dihedral groups. However, computing topo-
logical indices for an algebraic graph is a challenging effort. This study tackles this complexity
by analyzing degree- and distance-based topological descriptors (summarized in Table 1) for
commuting graphs of semi-dihedral groups.

The present literature study still contains plenty of gaps regarding the computations of
commuting graphs. Also, the Hosoya polynomials have been explored in various contexts.
Determining certain topological invariants for such nontrivial structures is very challenging.
This article examines several well-known topological properties of the commuting graphs of
semi-dihedral groups. Additionally, we deliberate on resolving and Hosoya polynomials for the
same algebraic graphs.

This paper is structured as follows: Section 2 summarizes significant findings and funda-
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mental terminology that serve as the foundation for the rest of this paper. Moving to Section
3, we analyze the degree and distance-based topological indices of the commuting graphs over
semi-dihedral groups. The concluding remarks are given in Section 5.

2 Preliminaries
This part is a concise overview of the basic concepts and significant discoveries in graph theory.
It will serve as a useful reference point as we dive deeper into the topic throughout the article.

All graphs studied in this paper are simple graphs, that is unweighted, undirected graphs
with no loops or multiple edges. Let a and b be two vertices in a graph Γ. The number of
edges incident to a vertex a is known as its degree (or valency) and is denoted by da. The
neighborhood of a vertex a, denoted by N(a) is the set of all connected vertices to a in Γ. The
sum of all distinct edges connecting every vertex in N(a) is known as the ve-degree of a, and
it is represented by dve(a). A complete graph Kn is a graph in which every pair of distinct
vertices is connected by a unique edge. The distance from a to b in Γ, denoted by dis(a, b),
is the length of the shortest path between a and b, while the longest path from a to b in Γ is
denoted by disD(a, b). The largest distance between a vertex a and any other vertex of Γ is
called its eccentricity and denoted by e(a). The diameter of Γ (diam(Γ)) is the largest among
all the vertices of a graph Γ. Also, the radius r(Γ) is the smallest eccentricity among all the
vertices of Γ.

Table 1: A list of potential topological indices.

The index’s name Symbol Formula

General Randić index [20] Rα(Γ)
∑
v∼w (dv × dw)

α

Schultz molecular topological index [21] MTI(Γ)
∑
{v,w}∈V (Γ) (dv + dw) dis(v, w) +

∑
w∈V (Γ) d

2
w

Atomic-bond connectivity (ABC) index [22] ABC(Γ)
∑
v∼w

√
dv+dw−2
dv×dw

Fourth version of ABC index [23] ABC4(Γ)
∑
v∼w

√
Sv+Sw−2
Sv×Sw

Geometric-arithmetic (GA) index [22] GA(Γ)
∑
v∼w

2
√
dv×dw
dv+dw

Fifth version of GA index [23] GA5(Γ)
∑
v∼w

2
√
Sv×Sw

Sv+Sw

Sankruti index [24] S(Γ)
∑
uv∈E(Γ)

(
SuSv

Su+Sv−2

)3

Hosoya polynomial [3] H(Γ, x)
∑
i≥0 dis(Γ, i)x

i

Reciprocal status Hosoya polynomial [3] Hrs(Γ, x)
∑
vw∈E(Γ) x

rs(v)+rs(w), where rs(w) =
∑
v∈V (Γ),w 6=v

1
dis(w,v)

Definition 2.1. Let G be a group and Ω be a nonempty subset of G. The commuting graph
Γ(G,Ω) has vertex set Ω, where x1, x2 ∈ Ω are adjacent whenever x1x2 = x2x1 in G.

Furthermore, for m ≥ 2, the presentation of semi-dihedral group is given as:

SD8m = 〈a, b | a4m = b2 = e, bab = a2m−1〉.

Given the structure of SD8m when m is odd, it is clear that Z(SD8m) = {e, am, a2m, a3m}
is the center of SD8m. Now, we divide SD8m into φ1 = {e, a, a2, . . . , a4m−1} and φ2 =

{b, ba, . . . , ba4m−1}=
⋃m−1
i=0 φi2, where φi2 = {bai, bam+i, ba2m+i, ba3m+i} and φ3 = φ1\Z(SD8m)

are the subsets of SD8m.
Ifm is even then Z(SD8m) = {e, a2m}. Moreover, ψ1 = {e, a, . . . , a4m−1}, ψ2 = {b, ab, . . . , a4m−1b}

=
⋃2m−1
i=0 ψi2, where ψi2 = {bai, ba2m+i} and ψ3 = ψ1 \ Z(SD8m) are the subsets of SD8m.

Therefore, the structure of the commuting graph of SD8m is given in the following lemma.
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Lemma 2.2. ([25]). For m ≥ 2, we have

Γ(SD8m) =

{
K4 ∨ (mK4 ∪K4m−4), if m is odd,
K2 ∨ (2mK2 ∪K4m−2), if m is even.

3 Topological properties
Topological indices have a vital role in graph theory and have a lot of applications in physical
chemistry. In the existing literature, various indices have been discussed for different algebraic
graphs, see for example [26, 27]. In the present section, we extend this concept and discuss
certain topological properties of commuting graphs over finite semi-dihedral groups.

Proposition 3.1. The all possible distance of Γ(SD8m) = Γ(SD8m, SD8m) is given as follows:
When m is odd,

dis(Γ(SD8m), k) =

{
4m(2m+ 5), if k = 1,
48m(m− 1), if k = 2.

When m is even,

dis(Γ(SD8m), k) =

{
8m(m+ 1), if k = 1,
8m(4m− 2), if k = 2.

Proposition 3.2. The degree of x ∈ Γ(SD8m) can be expressed as follows:
When m is odd,

dx =


8m− 1, if x ∈ Z(SD8m),

7, if x ∈ φ2,

4m− 1, if x ∈ φ3.

When m is even,

dx =


8m− 1, if x ∈ Z(SD8m),

3, if x ∈ ψ2,

4m− 1, if x ∈ ψ3.

Now, using the above proposition, we have the following results.

Theorem 3.3. The atomic-bond connectivity index of the commuting graph of the semi-dihedral
group is given as:

When m is odd,

ABC(Γ(SD8m)) =
4

7

(
3
√

3m+

√
2m− 1

(4m− 1)2
(28m2 − 63m+ 35) + 8

√
7m

√
2m+ 1

8m− 1

+ 21

√
4m− 1

(8m− 1)2
+ 56

√
3m− 1

32m2 − 12m+ 1
(m− 1)

)
.

When m is even, then

ABC(Γ(SD8m)) =
2

3

(
2m+ 3

√
4m− 1

(8m− 1)2
+

√
2m− 1

(4m− 1)2
(24m2 − 30m+ 9)
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+ 8
√

6m

√
m

8m− 1
+

√
3m− 1

32m2 − 12m+ 1
(24m− 12)

)
.

Proof. Using the structure of Γ(SD8m) Proposition 3.2, and the atomic-bond connectivity in-
dex, we can write:

If m is odd then

ABC(Γ(SD8m)) = 6

√
(8m− 1 + 8m− 3)

(8m− 1)(8m− 1)
+ 6m

√
12

49
+

(
4m− 4

2

)√
4m− 1 + 4m− 3

(4m− 1)2

+ 16m

√
8m+ 7− 3

(7)(8m− 1)
+ 16(m− 1)

√
8m− 1 + 4m− 3

(4m− 1)(8m− 1)

= 6

√
(16m− 4)

(8m− 1)2
+

6
√

12

7
m+ (8m2 − 18m+ 10)

√
8m− 4

(4m− 1)2

+ 16m

√
8m+ 4

(56m− 7)
+ 16(m− 1)

√
12m− 4

(32m2 − 12m+ 1)

=
4

7

(
3
√

3m+

√
2m− 1

(4m− 1)2
(28m2 − 63m+ 35) + 21

√
4m− 1

(8m− 1)2

+ 8
√

7m

√
2m+ 1

8m− 1
+ 56

√
3m− 1

32m2 − 12m+ 1
(m− 1)

)
.

Similarly, if m is even then

ABC(Γ(SD8m)) =

√
(8m− 1 + 8m− 3)

(8m− 1)(8m− 1)
+ 2m

√
4

9
+

(
4m− 2

2

)√
4m− 1 + 4m− 3

(4m− 1)2

+ 8m

√
8m+ 3− 3

3(8m− 1)
+ 4(2m− 1)

√
8m+ 4m− 4

(4m− 1)(8m− 1)

=

√
(16m− 4)

(8m− 1)2
+ 2m

√
4

9
+ (8m2 − 10m+ 3)

√
8m− 4

(4m− 1)2

+ 8m

√
8m

(24m− 3)
+ 4(2m− 1)

√
12m− 4

(32m2 − 12m+ 1)

=
2

3

(
2m+

√
2m− 1

(4m− 1)2
(24m2 − 30m+ 9) + 3

√
4m− 1

(8m− 1)2

+ 8m
√

6

√
m

8m− 1
+

√
3m− 1

32m2 − 12m+ 1
(24m− 12)

)
.

We obtain our desired results after simplifying the calculations. �

Theorem 3.4. The general Randić index of Γ(SD8m) is given below:
When m is odd,

Rα(Γ(SD8m)) = 6(8m− 1)α
(
(8m− 1)α +

8(7)αm

3
+

8

3
(m− 1)(4m− 1)α

)
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+ 2
(
3m(7)2α + (4m2 − 9m+ 5)(4m− 1)2α

)
.

When m is even,

Rα(Γ(SD8m)) = (8m− 1)α
(
(8m− 1)α + 8(3)αm+ (8m− 4)(4m− 1)α

)
+ 2m

(
(3)2α

+ (8m2 − 10m+ 3)(4m− 1)2α
)
.

Proof. Based on Lemma 2.2 and Proposition 3.2, the general Randić index can be expressed as
follows:

if m is odd then

Rα(Γ(SD8m)) = 6((8m− 1)2)α + 6m
(
(7)2

)α
+

(
4m− 4

2

)(
(4m− 1)2

)α
+ 16m ((8m− 1)(7))

α
+ 4(4m− 4) ((8m− 1)(4m− 1))

α

= 6(8m− 1)2α + 6m(49)α + (8m2 − 18m+ 10)(4m− 1)2α

+ 16m(56m− 7)α + 16(m− 1)(32m2 − 12m+ 1)α

= 6(8m− 1)α
(

(8m− 1)α +
8

3
m(7)α +

8

3
(m− 1)(4m− 1)α

)
+ 2
(

3m(7)2α

+ (4m2 − 9m+ 5)(4m− 1)2α
)
.

After simplifications, we get

Rα(Γ(SD8m)) = 6(8m− 1)α
(
(8m− 1)α +

8(7)αm

3
+

8

3
(m− 1)(4m− 1)α

)
+ 2
(
3m(7)2α + (4m2 − 9m+ 5)(4m− 1)2α

)
.

Similarly, if m is even then

Rα(Γ(SD8m)) =
(
(8m− 1)2

)α
+ 2m

(
(3)2

)α
+

(
4m− 2

2

)(
(4m− 1)2

)α
+ 8m (3(8m− 1))

α
+ 2(4m− 2) ((8m− 1)(4m− 1))

α

= (8m− 1)2α + 2m(9)α + (8m2 − 10m+ 3)(4m− 1)2α + 8m(24m− 3)α

+ 4(2m− 1)(32m2 − 12m+ 1)

= (8m− 1)α
(

(8m− 1)α + 8m(3)α + (8m− 4)(4m− 1)α
)

+ 2m
(

(3)2α

+ (8m2 − 10m+ 3)(4m− 1)2α
)
.

Therefore,

Rα(Γ(SD8m)) = (8m− 1)α
(
(8m− 1)α + 8(3)αm+ (8m− 4)(4m− 1)α

)
+ 2m

(
(3)2α + (8m2 − 10m+ 3)(4m− 1)2α

)
,

and the proof is completed. �

Theorem 3.5. The Schultz molecular topological index of Γ(SD8m), is given as:

MTI(Γ(SD8m)) =

{
(8m− 1)(40m2 + 47m+ 4), if m is odd.
(8m− 1)(40m2 + 15m+ 2), if m is even.
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Proof. Using the Schultz molecular topological index formula, Lemma 2.2, and Proposition 3.2,
we may write that if m is odd then

MTI(Γ(SD8m)) = 12(8m− 1) +

(
4m− 4

2

)
(8m− 2) + 84m+ 16m(8m+ 6)

+ 4(4m− 4)(12m− 2) + 8m(4m− 4)(4m− 6) + 224m(m− 1)

+m(8m− 1)2 + 4m(7)2 + (4m− 4)(4m− 1)2

= 6(16m− 2) + 6m(14) + (8m2 − 18m+ 10)(8m− 2) + 16m(8m+ 6)

+m(8m− 1)2 + 16(m− 1)(12m− 2) + 32m(m− 1)(4m+ 6)

+ 224m(m− 1) + 196m+ (4m− 4)(4m− 1)2

= (8m− 1)(40m2 + 47m+ 4).

Similarly, if m is even then

MTI(Γ(SD8m)) = 2m(3 + 3) + 2(8m− 1) +

(
4m− 2

2

)
(8m− 2) + 8m(8m+ 2)

+ 4(2m− 1)(12m− 2) + 8m(4m− 2)(4m+ 2) + 48m(2m− 1)

+m(8m− 1)2 + 4m(3)2 + (4m− 2)(4m− 1)2

= (16m− 2) + 12m+ (8m2 − 10m+ 3)(8m− 2) + 8m(8m+ 2)

+ (4m− 2)(4m− 1)2 + 4(2m− 1)(12m− 2) + 16m(m− 1)(4m+ 2)

+ 48m(2m− 1) +m(8m− 1)2 + 4m(3)2

= (8m− 1)(40m2 + 15m+ 2).

Which is the required proof. �

Theorem 3.6. The fourth atomic-bond connectivity index of Γ(SD8m) is given below:
if m is odd then

ABC4(Γ(SD8m)) =

√
m(2m+ 1)

(4m+ 1)4
(32m2 − 72m+ 40)

+ 24
√

2

√
m(m+ 2)

(16m2 + 32m+ 1)2

(
24m

√
4m+ 2

(32m+ 17)2

)

+ 32
√

2 (m− 1)

√
m(4m+ 5)

(4m+ 1)2(16m2 + 32m+ 1)

+ 64m

√
m2 + 4m+ 1

512m3 + 1296m2 + 576m+ 17
.

If m is even then

ABC4(Γ(SD8m)) =
m
√

2(32m2 − 40m+ 12)

(16m2 + 1)
+ 4

√
m(2m+ 1)

(4m+ 1)4

+(16m
√

2−8
√

2)

√
m

64m3 + 16m2 + 4m+ 1
+16m

√
2

√
m(2m+ 3)

(4m+ 1)2(16m+ 1)
+8m

√
2

√
m

(16m+ 1)2
.
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Proof. Using the fourth atomic-bond connectivity index formula, for both odd and even m, we
can write

ABC4(Γ(SD8m)) = 6

(√
2 (3(8m− 1) + 28m+ (4m− 4)(4m− 1))− 2

(3(8m− 1) + 28m+ (4m− 4)(4m− 1))
2

)
+ 6m

(√
(8(8m− 1) + 21)− 2

(4(8m− 1) + 21)2

)
+

(
4m− 4

2

)(√
2 (4(8m− 1) + (4m− 5)(4m− 1))− 2

(4(8m− 1) + (4m− 5)(4m− 1))
2

)
+ 16m

(√
3(8m− 1) + 28m+ (4m− 4)(4m− 1) + 4(8m− 1) + 19

(3(8m− 1) + 28m+ (4m− 4)(4m− 1))(4(8m− 1) + 21)

)
+ 4(4m− 4)

(√
(3(8m− 1) + 28m+ (4m− 4)(4m− 1)) + (4(8m− 1) + (4m− 5)(4m− 1))− 2

(3(8m− 1) + 28m+ (4m− 4)(4m− 1))(4(8m− 1) + (4m− 5)(4m− 1))

)
= 8

(
5

√
m(2m+ 1)

(4m+ 1)4
+ 4m2

√
m(2m+ 1)

(4m+ 1)4
+ 3
√

2

√
m(m+ 2)

(16m2 + 32m+ 1)2

− 4
√

2

√
m(4m+ 5)

(4m+ 1)2(16m2 + 32m+ 1)
+m

(
− 9

√
m(2m+ 1)

(4m+ 1)4
+ 3

√
4m+ 2

(32m+ 17)2

+ 4
√

2

√
m(4m+ 5)

(4m+ 1)2(16m2 + 32m+ 1)
+ 8

√
m2 + 4m+ 1

512m3 + 1296m2 + 576m+ 17

))

=

√
m(2m+ 1)

(4m+ 1)4
(32m2 − 72m+ 40) + (24)2

√
2m

√
m(m+ 2)

(16m2 + 32m+ 1)2

√
4m+ 2

(32m+ 17)2

+ 32
√

2(m− 1)

√
m(4m+ 5)

(4m+ 1)2(16m2 + 32m+ 1)
+ 64m

√
m2 + 4m+ 1

512m3 + 1296m2 + 576m+ 17
.

and,

ABC4(Γ(SD8m))

=

√
2((8m− 1) + 12m+ (4m− 2)(4m− 1))− 2

((8m− 1) + 12m+ (4m− 2)(4m− 1))2
+ 2m

(√
2(2(8m− 1) + 3)− 2

(2(8m− 1) + 3)2

)
+

(
4m− 2

2

)(√
2(2(8m− 1) + (4m− 3)(4m− 1))− 2

(2(8m− 1) + (4m− 3)(4m− 1))2

)
+ 8m

( √
((20m− 1 + (4m− 2)(4m− 1)) + (16m+ 1)− 2

((8m− 1) + 12m+ (4m− 2)(4m− 1))(2(8m− 1) + 3)

)
+ 2(4m− 2)

(√
((20m− 1 + (4m− 2)(4m− 1)) + (16m− 2 + (4m− 3)(4m− 1))− 2

(20m− 1 + (4m− 2)(4m− 1))(2(8m− 1) + (4m− 3)(4m− 1))

)

= 4

(√
m(2m+ 1)

(4m+ 1)4
+

48m4

(16m2 + 1)2
− 2
√

2

√
m

64m3 + 16m2 + 4m+ 1

+ 2m
√

2

(√
m

(16m2 + 1)2
+ 2

√
m(2m+ 3)

(4m+ 1)2(16m+ 1)
− 5

√
m2

(16m2 + 1)2
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+ 2

√
m

64m3 + 16m2 + 4m+ 1

))

=

√
2m2

(16m2 + 1)2
(32m2 − 40m+ 12) +

√
2m

64m3 + 16m2 + 4m+ 1
(16m− 8)

+ 4

√
m(2m+ 1)

(4m+ 1)4
+ 8m

√
2m

(16m+ 1)2
+ 16m

√
2m(2m+ 3)

(4m+ 1)2(16m+ 1)
.

As a result of the simplification, we get the desired results for both cases. �

Theorem 3.7. The geometric arithmetic index of Γ(SD8m) is given as:

GA(Γ(SD8m)) =


6(m+ 1) + 16m

√
56m−7

4m+3 + 2(1−4m)(4m2−9m+5)
4m−1

+ 16(m−1)
√

32m2−12m+1
6m−1 , if m is odd,

m+ 1
2 + 4m

√
24m−3

4m+1 + (1−4m)(8m2−10m+3)
8m−2

+ 2(2m−1)
√

32m2−12m+1
6m−1 , if m is even.

Proof. By using the structure of Γ(SD8m), if m is odd, then

GA(Γ(SD8m)) = 6

(
2
√

(8m− 1)2

8m− 1

)
+ 6m+

(
4m− 4

2

)(
2
√

(4m− 1)2

2(4m− 1)

)
+ 32m

(
2
√

7(8m− 1)

8m+ 7− 1

)
+ 4(4m− 4)

(
2
√

(4m− 1)(8m− 1)

12m− 2

)
= 6 + 6m+

(16m2 − 36m+ 20)

2
+ 32m

(
2
√

(56m− 7)

8m+ 6

)
+ 16(m− 1)

(√
32m2 − 12m+ 1

6m− 1

)
= 6(m+ 1) +

16m
√

56m− 7

4m+ 3
+

2(1− 4m)(4m2 − 9m+ 5)

4m− 1

+
16(m− 1)

√
32m2 − 12m+ 1

6m− 1
.

Similarly, if m is even then

GA(Γ(SD8m)) =
2
√

(8m− 1)2

2(8m− 1)
+ 2m

(
2
√

3× 3

3 + 3

)
+

(
4m− 2

2

)(
2
√

(4m− 1)2

2(4m− 1)

)
+ 16m

(
2
√

3(8m− 1)

8m+ 2

)
+ 2(4m− 2)

(
2
√

(4m− 1)(8m− 1)

12m− 2

)
= 1 + 2m+ (16m2 − 20m+ 6) + 4(2m− 1)

(√
(32m2 − 12m+ 1)

(6m− 1)

)
+ 16m

(√
(24m− 3)

4m+ 1

)
= m+

1

2
+

4m
√

24m− 3

4m+ 1
+

(1− 4m)(8m2 − 10m+ 3)

8m− 2
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+
2(2m− 1)

√
32m2 − 12m+ 1

6m− 1
,

which is the required result. �

Next, we are going to compute the fifth version of geometric arithmetic index.

Theorem 3.8. The fifth version of GA of Γ(SD8m) is computed as:
if m is odd then

GA5(Γ(SD8m)) = 2(m− 1)(4m− 5) + 16m

√
(32m+ 17)(16m2 + 32m+ 1)

(8m2 + 32m+ 9)

+ 6(m+ 1) + 16(m− 1)(4m+ 1)

√
16m2 + 32m+ 1

(16m2 + 20m+ 1)
.

If m is even then

GA5(Γ(SD8m)) = 1 + 2m+ (2m− 1)(4m− 3) + 8m(4m+ 1)

√
16m+ 1

(8m2 + 12m+ 1)

+ 4(2m− 1)(4m+ 1)

√
16m2 + 1

(16m2 + 4m+ 1)
.

Proof. Using the structure of Γ(SD8m), if m is odd, then

GA5(Γ(SD8m)) = 6

(
2

√(
3(8m− 1) + 28m+ (4m− 4)(4m− 1)

)2
2
(
3(8m− 1) + 28m+ (4m− 4)(4m− 1)

) )

+

(
4m− 4

2

)(
2
√

(4(8m− 1) + (4m− 5)(4m− 1))2

2(4(8m− 1) + (4m− 5)(4m− 1))

)
+ 6m

(
2
√

(4(8m− 1) + 21)2

2(4(8m− 1) + 21)

)

+ 16m

(
2
√(

52m− 3 + (4m− 4)(4m− 1)(32m+ 17)
)(

3(8m− 1) + 28m+ (4m− 4)(4m− 1)
)

+ 328m+ 17

)

+16(m− 1)

(
2

√(
52m−3+(4m−4)(4m−1)

)(
4(8m−1)+(4m−5)(4m−1)

)(
52m−3+(4m−4)(4m−1)

)
+4(8m−1)+(4m−5)(4m−1)

)

= 2

(
(m− 1)(4m− 5) + 3(m+ 1) +

8(m− 1)(4m+ 1)√
16m2 + 20m+ 1

+
8m
√

512m3 + 1296m2 + 576m+ 17

(8m2 + 32m+ 9)

)

= 6(m+ 1) + 2(m− 1)(4m− 5) + 16m

√
(32m+ 17)(16m2 + 32m+ 1)

(8m2 + 32m+ 9)

+ 16(m− 1)(4m+ 1)

√
16m2 + 32m+ 1

(16m2 + 20m+ 1)
.
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Similarly if m is even then

GA5(Γ(SD8m)) =
2

√(
(8m− 1) + 4m(3) + (4m− 2)(4m− 1)

)2
2
(
(8m− 1) + 12m+ (4m− 2)(4m− 1)

)
+

(
4m− 2

2

)(
2

√(
2(8m− 1) + (4m− 3)(4m− 1)

)2
2
(
2(8m− 1) + (4m− 3)(4m− 1)

) )

+ 2m

(
2
√

(2(8m− 1) + 3)2

2(2(8m− 1) + 3)

)
+ 8m

(
2
√

(8m− 1) + 12m+ (4m− 2)(4m− 1)(2(8m− 1) + 3)

((8m− 1) + 12m+ (4m− 2)(4m− 1)) + 2(8m− 1) + 3

)
+4(2m− 1)

(
2
√

(20m−1+(4m−2)(4m−1))(2(8m−1)+(4m−3)(4m−1))

(20m−1+(4m−2)(4m−1))+(2(8m−1)+(4m−3)(4m−1))

)
= 1 + 2m+ (2m− 1)(4m− 3) + 8m(4m+ 1)

√
16m+ 1

(8m2 + 12m+ 1)

+ 4(2m− 1)(4m+ 1)

√
16m2 + 1

(16m2 + 4m+ 1)
.

After a few steps of simplification, we get our desired results. �

Theorem 3.9. The Sanskruti index of Γ(SD8m) is given as:

S(Γ(SD8m)) =



3
(16384)

(
(16m2+32m+1)6

m(m+2)3 + m(32m+17)6

(2m+1)3

)
+ (m−1)(4m−5)

2048
(4m+1)12

m(2m+1)3

+ m
256

(
(32m+17)(16m2+32m+1)

(m2+4m+1)

)3

+ (m−1)
32

(4m+1)6(16m2+32m+1)3

(m(4m+5))3 , if m is odd,
(16m2+8m+1)6

4096(m(2m+1))3 + (16m+1)6

(128m)2 + (2m−1)(4m−3)
32768 ( 16m2+1

m )6

+ 1
64m2

(
(4m+1)2(16m+1)

(2m+3)

)3

+ 2m−1
128

(
(4m+1)(16m2+1)

m

)3

, if m is even.

Proof. To prove the given result, we use the Sanskruti index formula, Lemma 2.2, and Propo-
sition 3.2. Now if m is odd then

S(Γ(SD8m)) = 6m

((
32m− 17

)2
64m− 36

)3

+ 6

( (
52m− 1 + (4m− 4)(4m− 1)

)2
2
(
52m− 1 + (4m− 4)(4m− 1)

)
− 2

)3

+

(
4m− 4

2

)( (
4(8m− 1) + (4m− 5)(4m− 1)

)2(
4(8m− 1) + (4m− 5)(4m− 1)

)
− 2

)3

+16m

(
(52m− 1 + (4m− 4))((4m− 1)(4(8m− 1) + 21))

(52m− 1 + (4m− 4)(4m− 1)) + (4(8m− 1) + 19)

)3

+16(m− 1)

((
52m−1+(4m−4)(4m−1)

)(
4(8m−1)+(4m−5)(4m−1)

)
52m+(4m−4)(4m−1)+4(8m−1)+(4m−5)(4m−1)−3

)3

=
1

16384m3

(
8(m− 1)(4m− 5)(4m+ 1)12

(2m+ 1)3
+

3m4(32m+ 17)6

(2m+ 1)3
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+
512(m− 1)(4m+ 1)6(16m2 + 32m+ 1)

(4m+ 5)3

+
64m4(32m+ 17)3(16m2 + 32m+ 1)3

(m2 + 4m+ 1)3
+

3(16m2 + 32m+ 1)6

(m+ 2)3

)

= 1
(2048)

(
3(16m2+32m+1)6

8m(m+2)3 + 3m(32m+17)6

8(2m+1)3

)
+ (m−1)(4m−5)(4m+1)12

m(2m+1)3

+ m
256

(
(32m+17)(16m2+32m+1)

(m2+4m+1)

)3

+ (m−1)
32

(4m+1)6(16m2+32m+1)3

(m(4m+5))3 .

In the same manner, if m is even then

S(Γ(SD8m)) =

((
(8m− 1) + 12m+ (4m− 2)(4m− 1)

)2
28m+ 2(4m− 2)(4m− 1)− 4

)3

+ 2m
((16m+ 1

)2
32m

)3

+

(
4m− 2

2

)((
2(8m− 1) + (4m− 3)(4m− 1)

)2
16m+ (4m− 3)(4m− 1)− 4

)3

+ 8m

((
(8m− 1) + 12m+ (4m− 2)

)(
(4m− 1)(2(8m− 1) + 3)

)
(8m− 1) + 12m+ (4m− 2)(4m− 1) + 2(8m− 1) + 1

)3

+2(4m− 2)

( (
(8m−1)+12m+(4m−2)(4m−1)

)(
2(8m−1)+(4m−3)(4m−1)

)(
(8m−1)+12m+(4m−2)(4m−1)

)
+2(8m−1)+(4m−3)(4m−1)−2

)3

.

After simplification, we get

S(Γ(SD8m)) =
(16m2 + 8m+ 1)6

4096(m(2m+ 1))3
+

(16m+ 1)6

(128m)2
+

(2m− 1)(4m− 3)

32768

(
16m2 + 1

m

)6

+
1

64m2

( (4m+ 1)2(16m+ 1)

(2m+ 3)

)3

+
2m− 1

128

( (4m+ 1)(16m2 + 1)

m

)3

.

This gives the required result. �

4 Hosoya properties

Several chemists have used Polya’s concept of counting polynomials to determine the molecular
orbitals of unsaturated hydrocarbons [5]. In the concept of graph spectra, the characteris-
tic polynomials have been intensively investigated. In 1988, Hosoya used such a concept to
introduce polynomials of numerous chemical structures, which are now commonly known as
Hosoya polynomials and have received a lot of attention in the past years, see for example [28].
The Hosoya polynomial provides a wide range of knowledge regarding distance-based graph
invariants.

The Hosoya polynomial of a finite graph Γ of order m is

H(Γ, y) =
∑
i≥0

dis(Γ, i)yi. (1)
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For every i ≤ diam(Γ), the coefficient dis(Γ, i) indicates certain pair of vertices (v, u) that
satisfy dis(v, u) = i. As stated by Ramane and Talwar [29], the reciprocal status Hosoya
polynomial of Γ is

Hrs(Γ, y) =
∑

vu∈E(Γ)

yrs(v)+rs(u), (2)

where rs(u) =
∑
v∈V (Γ),u 6=v

1
dis(v,u) is known as the reciprocal status of u.

Therefore, we have extended this concept on commuting graphs of semi-dihedral groups.

Theorem 4.1. The Hosoya polynomial of Γ(SD8m) is

H(Γ(SD8m), y) =

{(
24m(m− 1)

)
y2 + 4m(2m+ 5)y + 8m, if m is odd,(

12m(2m− 1)
)
y2 + 8m(m+ 1)y + 8m, if m is even.

Proof. Since, diam(Γ(SD8m)) = 2. We need to examine dis(Γ(SD8m), 0), dis(Γ(SD8m), 1) and
dis(Γ(SD8m), 2). Next, for an odd m, we consider a vertex set Vk for any pair of vertices of
Γ(SD8m) and we get:

|Vk| =
(

8m

2

)
+ 8m =

8m(8m+ 1)

2
.

Let
C(Γ(SD8m), k) = {(v1, v2); v1, v2 ∈ V (Γ(SD8m)) | dis(v1, v2) = k},

and dis(Γ(SD8m), k) = |C(Γ(SD8m), k)|. Then,

Vk = C(Γ(SD8m), 0) ∪ C(Γ(SD8m), 1) ∪ C(Γ(SD8m), 2).

Since, for each v1 ∈ V (Γ(SD8m)), dis(v1, v1) = 0 Thus, C(Γ(SD8m), 0) = 8m and

C(Γ(SD8m), 1) = 4(4m) + 4(4m− 4) +

(
4

2

)
+m

(
4

2

)
+

(
4m− 4

2

)
= 16m+ 16m− 16 + 6 + 6m+ 8m2 − 18m+ 10

= 8m2 + 20m.

Therefore,

C(Γ(SD8m), 1) = |Vk| − dis(Γ(SD8m), 0)− dis(Γ(SD8m), 1)

=
8m(8m+ 1)

2
− 8m− (8m2 + 20m)

=
48m2 − 48m

2
= 24m(m− 1),

and
H(Γ(SD8m), y) = (24m(m− 1))y2 + (8m2 + 20m)y + 8m.

Now, if m is even then we consider the vertex set Vk and we have:

|Vk| =
(

8m

2

)
+ 8m =

8m(8m+ 1)

2
.

Suppose
C(Γ(SD8m), k) = {(v1, v2); v1, v2 ∈ V (Γ(SD8m)) | dis(v1, v2) = k},



122 F. Ali et al. / Topological Properties of Commuting Graphs over....

and dis(Γ(SD8m), k) = |C(Γ(SD8m), k)|. Then,

Vk = C(Γ(SD8m), 0) ∪ C(Γ(SD8m), 1) ∪ C(Γ(SD8m), 2).

Since dis(v1, v1) = 0, for each v1 ∈ V (Γ(SD8m)) C(Γ(SD8m), 0) = 8m. Next,

C(Γ(SD8m), 1) = 8m+ 2(4m− 2) +

(
2

2

)
+ 2m

(
2

2

)
+

(
4m− 2

2

)
= 8m+ 8m− 4 + 1 + 2m+ 8m2 − 10m+ 3

= 8m2 + 8m,

and,

C(Γ(SD8m), 2) = |Vk| − dis(Γ(SD8m), 0)− dis(Γ(SD8m), 1)

=
8m(8m+ 1)

2
− 8m− (8m2 + 8m)

=
48m2 − 24m

2
= 12m(2m− 1).

Hence,
H(Γ(SD8m), y) = (12m(2m− 1))y2 + (8m2 + 8m)y + 8m.

This is the required proof. �

Proposition 4.2. If y is a vertex of Γ(SD8m), where m is odd, then

rs(y) =


4m+ 4, y ∈ Z(SD8m),

4m, y ∈ φ2,

2(2m− 1), y ∈ φ3.

(3)

Proof. For oddm, we know that Γ(SD8m) = K4∨(mK4∪K4m−4) whose vertex set is Z(SD8m)∪
φ2 ∪ φ3. Therefore, if y ∈ Z(SD8m) then ec(y) = 1, and using the reciprocal status concept,
we get

rs(y) =

(
1

1

)
(4m+ 4) = 4m+ 4.

Again using the reciprocal status concept and ec(y) = 1 for y ∈ φ2, we obtain

rs(y) =

(
1

1

)
(4 + 4m− 4) = 4m.

Moreover, for any y ∈ φ3, we have ec(y) = 2. Also, apply the reciprocal status concept, we get

rs(y) =

(
1

2

)
(4m+ 4m− 4)

=
8m− 4

2
= 2(2m− 1).

Combining these, we obtain the required result. �
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Proposition 4.3. If m is even and y is a vertex of Γ(SD8m) then

rs(y) =


4m+ 2, y ∈ Z(SD8m),

4m, y ∈ ψ2,

4m− 1, y ∈ ψ3.

(4)

Proof. Since the structure of Γ(SD8m) is K2 ∨ (2mK2 ∪K4m−2), where m is even, its vertex
set is Z(SD8m) ∪ ψ2 ∪ ψ3. Therefore, by using the reciprocal status formula, we get ec(y) = 1
for y = Z(SD8m) and so,

rs(y) =
(1

1

)
(2 + 2(2m)) = 4m+ 2.

If y ∈ ψ2 then ec(y) = 1. So

rs(y) =
(1

1

)
(2 + 4m− 2) = 4m.

Likewise, if y ∈ ψ3 then ec(y) = 2 and we have:

rs(y) =
(1

2

)
(2(2m) + 4m− 2)

=
8m− 2

2
= (4m− 1).

Combining all cases, we get the required result. �

Theorem 4.4. The reciprocal status Hosoya polynomial of Γ(SD8m) is

Hrs(Γ(SD8m), y) =

{
4(4m)y4(m+1) + 4(4m− 4)y4m + 4m(4m− 4)y2(2m−1), if m is odd,
(4m)y2(2m+1) + (8m− 4)y4m + (16m2 − 8)y4m−1, if m is even.

Proof. By using Proposition 4.2, there are three types of edges (v1 ∼ v2, v1 ∼ v3, v2 ∼ v3) in
Γ(SD8m), and according to the end vertices reciprocal status, we have v1 + v2 = 4(m + 1),
v1 + v3 = 4m and v2 + v3 = 2(2m− 1) edges. By incorporating the edge set’s and the formula
for the reciprocal status Hosoya polynomial, we obtain

Hrs(Γ(SD8m), y) =
∑
v1∼v2

yv1+v2 +
∑
v1∼v3

yv1+v3 +
∑
v2∼v3

yv2+v3

= 4(4m)y4(m+1) + 4(4m− 4)y4m + 4m(4m− 4)y2(2m−1).

Similarly, ifm is even, then three distinct types of edges exist, that is (v1 ∼ v2, v1 ∼ v3, v2 ∼ v3).
Therefore, using Proposition 4.3, we get

v1 + v2 = 2(2m+ 1), v1 + v3 = 4m, v2 + v3 = (4m− 1).

By incorporating the edge sets and formula, we get the reciprocal status Hosoya polynomial in
the following manner:

Hrs(Γ(SD8m), y) =
∑
v1∼v2

yv1+v2 +
∑
v1∼v3

yv1+v3 +
∑
v2∼v3

yv2+v3

= (4m)y2(2m+1) + (8m− 4)y4m + (16m2 − 8)y4m−1.

Which is the required proof. �
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5 Concluding remarks

This work aimed to explore the structural characteristics of the commuting graphs over certain
non-abelian groups. The group of symmetries, semi-dihedral and dicyclic groups have famil-
iar algebraic structures that have substantially enhanced our understanding of molecules and
electron configurations. In this paper, we examined several (detour) distance properties, de-
liberated the metric dimension, and resolving polynomial of the commuting graphs of dicyclic
groups. Moreover, this approach has also allowed us to examine numerous essential degree-
based topological invariants of the commuting graphs of semi-dihedral groups.
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