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Abstract

Let G = (V (G), E(G)) be a graph with the set of vertices
V (G) and the set of edges E(G). A subset S of E(G) is called a
k-nearly independent edge subset if there are exactly k pairs of
elements of S that share a common end. Zk(G) is the number
of such subsets. This paper studies Z1. Various properties of
Z1 are discussed. We characterize the two n-vertex trees with
the smallest Z1, as well as the one with the largest value. A
conjecture on the n-vertex tree with the second-largest Z1 is
proposed.

c© 2025 University of Kashan Press. All rights reserved.

1 Introduction

A simple and undirected graph G is an ordered pair of sets G = (V (G), E(G)), where V (G)
is a set of objects called vertices, and E(G) is a (possibly empty) set of unordered pairs of
elements of V (G) called edges. The order and size of G are |V (G)| and |E(G)|, respectively.
For simplicity, we write |G| instead of |V (G)|. For graph theory notation and terminology, we
generally follow [1].

An independent edge subset of a graph G = (V (G), E(G)) is a subset I of V (G) with the
property that if e1 and e2 are two edges in I, then e1 and e2 are not adjacent in G; that is, e1
and e2 do not share a common end in G. Similarly, as already defined in [2], σ1(G) counts the
number of independent subsets S of V (G) such that the subgraph induced by S in G contains
only one edge. The number of independent edge subsets of a graph has been extensively studied
in the literature. See the survey [3], where it is called the Hosoya index. The name Hosoya
comes from the Japanese chemist, Haruo Hosoya [4] who was the first person to introduce this
index in 1971. He showed that there is a correlation between the boiling points of paraffins
(saturated hydrocarbons) and the Hosoya index.
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In a series of papers [5–10], the application of the Hosoya index was revealed in showing the
structure-dependence of the total π-electron energy of chemical molecules. This boosted the
interest of many mathematicians to study the number of independent edge subsets. Established
results include classes of graphs that contain elements that are not molecular graphs. In [11],
the family of trees with a given degree sequence is studied, and the element which has the
minimum number of independent edge subsets is fully characterized. The result implies as
corollaries characterizations of trees with the smallest number of independent edge subsets in
various other classes like trees with a fixed order, or with fixed order and given maximum
degree.

This paper proposes a generalisation of the number of independent edge subsets. For an
integer k ≥ 1, we define a k-nearly independent edge subset of a graph G with vertex set V (G)
and edge set E(G) as a subset I of E(G) that contains exactly k pairs of adjacent edges.
Denote by Zk(G) the number of k-nearly independent edge subsets of G. Z0(G) is the number
of independent edge subsets of G. The main focus of this paper is to study Z1. For the classes
of graphs we investigated, the behavior of Z1 seems to have a lot in common with that of Z0.
Among all trees of order n, the star K1,n−1 minimises both Z0 and Z1, while the path Pn

maximises both Z0 and Z1. In [2] similar comparison made between σ1 and the usual number
of independent vertex subsets shows a considerable difference.

The rest of the paper is structured as follows. Section 2 is a preliminary, where we present
basic useful facts about Z1. There, we discuss the effect of adding or removing an edge, we
provide recursive formulas for Z1 as well as an explicit formula for Z1 of paths. These are used
in Section 3 to characterize the two trees with order n and smallest Z1. In Section 4, we proved
that the path Pn is the forest of order n that has the largest Z1. A conjecture on the forest
with the second-largest Z1 is also provided there.

2 Preliminary

This section consists of a few technical tools that will be needed in other sections. Since we are
introducing Z1, we also include some properties that we do not use much, but we expect to be
useful for further studies of Z1.

Let G be a graph with vertex set V (G), edge set E(G), order n = |V (G)| and size m =
|E(G)|. We denote the degree of a vertex v in G by degG(v). For a subset S of vertices of a
graph G, we denote by G− S the graph obtained from G by deleting the vertices in S and all
edges incident to them. If S = {v}, then we simply write G− v rather than G− {v}.

For positive integers r and s, we denote by Kr,s the complete bipartite graph with partite
sets X and Y such that |X| = r and |Y | = s. A complete bipartite graph K1,n−1 is also called
a star. We use the typical notations Pn, Cn, and Kn for the path of order n, the cycle of order
n and the complete graph of order n, respectively.

2.1 Effect of an edge or vertex removal or addition

Suppose that u and v are non-adjacent vertices in a graph G. If H = G + uv is the graph
obtained from G by adding the edge uv, then Z1(H) ≥ Z1(G). Adding the edge uv does not
affect the adjacency of the already existing edges. The inequality is strict if and only if G−u−v
contains a P3 or at least one of u and v is not isolated. These are the only situations where the
newly added edge is contained in at least one new set of 1-nearly independent edges. For small
graphs like 2K1 (two vertices with no edge), it is possible that the newly added edge is not
contained in a 1-nearly independent edge subset. In this case Z1 will not increase. It follows
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from this that for any graph G with n vertices, we have:

Z1(G) ≤ Z1(Kn),

with equality occur only if the two compared graphs are the same or n < 3. The edgeless graph
has the smallest Z1 which is 0.

An isolated vertex does not affect the value of Z1. If degG(v) = 0, then Z1(G) = Z1(G−v). If
degG(v) ≥ 2, then Z1(G) > Z1(G−v). In this case, at least one possibility of a P3 subtree of G is
lost and hence at least one 1-nearly independent edge subsets. We still have Z1(G) > Z1(G−v)
if we remove a vertex v of degree 1 that is attached to a vertex of degree at least 2, as we then lose
at least one P3 containing v. If v is contained in P2 component of G, then Z1(G) ≥ Z1(G− v),
with strict inequality if G−NG[v] contains a P3.

2.2 Relation between σ1 and Z1

The line graph L(G) of G is the graph with the set of vertices E(G), and such that two different
elements e and e′ of E(G) are adjacent in L(G) if they have a common end in G. We state,
without proof, the following straightforward lemma.

Lemma 2.1. For any graph G, we have Z1(G) = σ1(L(G)).

2.3 Explicit formulas for Z1 of some graphs

It is convenient to set Z1(Pt) = 0 whenever t ≤ 2 and Z0(Pt) = 1 whenever t ≤ 1. Let α = 1+
√
5

2

and β = 1−
√
5

2 . Then, we have α+ β = 1, α− β =
√
5, α · β = −1. The following formulas are

well known, see for example [12] and [3].

Theorem 2.2 (cf. [12]). For n ∈ N, we have:

Z0(Pn) =
1√
5

(
αn+1 − βn+1

)
. (1)

Theorem 2.3 (cf. [3]). If G1, G2, . . . , Gr are the connected components of a graph G, then

Z0(G) = Z0

(
r⋃

i=1

Gi

)
=

r∏
i=1

Z0(Gi). (2)

The following results have been recently established [2].

σ1(Pn) =
1

5

[
(n− 1) (αn + βn) +

2√
5

(
αn−1 − βn−1)] ,

and
σ1(Cn) =

n√
5

(
αn−2 − βn−2) .

Thanks to Lemma 2.1, we also have:

Z1(Pn) = σ1(L(Pn)) = σ1(Pn−1) =
1

5

[
(n− 2)

(
αn−1 + βn−1)+ 2√

5

(
αn−2 − βn−2)] ,

and

Z1(Cn) = σ1(L(Cn)) = σ1(Cn) =
n√
5

(
αn−2 − βn−2) .
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2.4 Recursive formula
We denote by PG(v) the set of P3 subtrees in G that contain the vertex v. If there is no risk of
confusion, we simply use P(v).
Lemma 2.4. For any vertex z in a graph G, we have

Z1(G) = Z1(G− z) +
∑

v∈NG(z)

Z1(G− z − v) +
∑

P∈PG(z)

Z0(G− P ). (3)

Proof. Z1(G − z) counts all the 1-nearly independent edge subsets that do not contain z.∑
v∈NG(z) Z1(G − z − v) counts all those that contain z in a P2.

∑
P∈PG(z) Z0(G − P ) counts

those that contain z in a P3. �

A pseudo-leaf of a forest T is a vertex that is not isolated and has at most one neighbour
that is not a leaf (a vertex of degree 1). We often use (3) for z being a leaf attached to a pseudo
leaf v with degree d and neighbour u of largest degree, so that it becomes

Z1(G) = Z1(G− z) + Z1(G− z − v) + Z0(G−NG(v)) + (d− 2)Z0(G− (NG[v] \ {u}).

3 Trees of order n with small Z1

This section characterizes the two trees of order n ≥ 9 that have the smallest Z1. First, we
show that the n-vertex tree with smallest Z1 is only the star if n ≥ 9.

Theorem 3.1. Among all connected graphs, in particular trees, T of order n ≥ 9 we have
Z1(T ) ≥ Z1(K1,n−1), with equality if and only if T is K1,n−1.

Proof. As discussed in Subsection 2.1, Removing an edge from a connected graph of order n ≥ 9
decreases Z1. Hence, we can restrict this proof to the case where T is a tree.

The basis cases corresponding to n = 9 and 10 can be seen in Section 5. Suppose that
the claim holds for n = k, for some k ≥ 10. Now consider the case of n = k + 1. Let v be
a pseudo-leaf of degree d in T , z a leaf neighbour of v and u a neighbor of v with the largest
degree that might possibly be not a leaf. If d = n − 1, then T ∼= K1,n−1. So, we may assume
that d ≤ n− 2. Thus, we have:

Z1(T ) = Z1(T − z) + Z1(T − v − z) + Z0(T − z − v − u) + (d− 2)Z0(T −N [v] \ {u})
= Z1(T − z) + Z1(T −N [v] \ {u}) + Z0(T −N [v]) + (d− 2)Z0(T −N [v] \ {u})
≥ Z1(K1,(n−1)−1) + Z1(K1,(n−d−1)) + Z0(K1,n−(d+1)−1) + (d− 2)Z0(K1,(n−d−1))

=
(n− 2)(n− 3)

2
+

(n− d− 1)(n− d− 2)

2
+ n− (d+ 1)− 1 + 1

+ (d− 2)(n− d− 1 + 1)

= −d
2

2
+ n2 +

5d

2
− 5n+ 3.

Hence,

Z1(T )− Z1(K1,n−1) ≥ −
d2

2
+ n2 +

5d

2
− 5n+ 3− (n− 1)(n− 2)

2

= −d
2

2
+
n2

2
+

5d

2
− 7n

2
+ 2

=
n2

2
− 7n

2
+ 2−

(
d2

2
− 5d

2

)
.
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However,

d2

2
− 5d

2
≤ (n− 2)2

2
− 5(n− 2)

2
=
n2

2
− 9n

2
+ 7.

Thus,

Z1(T )− Z1(K1,n−1) ≥
n2

2
− 7n

2
+ 2−

(
d2

2
− 5d

2

)
≥ n2

2
− 7n

2
+ 2−

(
n2

2
− 9n

2
+ 7

)
= n− 5 > 0, since n > 5,

this compeletes the proof. �

We use similar techniques to find the tree with second-minimum Z1. Let Bk
n be the tree of

order n obtained from a path, Pk, of order k by adding n − k new vertices and then joining
them to exactly one end-vertex of Pk. Such a tree is usually called a broom. B3

n is the only
n-vertex tree with degree sequence (n− 2, 2, 1, . . . , 1).

Theorem 3.2. Among all trees T 6= K1,n−1 of order n ≥ 9 we have Z1(T ) ≥ Z1(B
3
n), with

equality if and only if T is B3
n.

Proof. Note that

Z1(B
3
n) = Z1(K1,n−2) + Z1(K1,n−3) + 1

=
(n− 2)(n− 3) + (n− 3)(n− 4) + 2

2
= (n− 3)2 + 1.

The basis cases corresponding to n = 9 and 10 can be seen in Section 5. Suppose that the claim
holds for n = k, for some k ≥ 10. Now consider the case of n = k + 1. Let v be a pseudo-leaf
of degree d in T , z a leaf neighbour of v and u a neighbor of v with largest degree that might
possibly be not a leaf. If T −z is a star, then T is B3

n, and there would be nothing left to prove.
Hence, we can assume that T − z is not a star. Since T 6= K1,n−1, we must have n ≥ d+2. For
n = d+ 2 the graph T is isomorphic to B3

n. So, we can consider n ≥ d+ 3. Thus, we have:

Z1(T ) =Z1(T − z) + Z1(T − v − z) + Z0(T − z − v − u) + (d− 2)Z0(T −N [v] \ {u})
=Z1(T − z) + Z1(T −N [v] \ {u}) + Z0(T −N [v]) + (d− 2)Z0(T −N [v] \ {u})
≥Z1(B

3
n−1) + Z1(K1,(n−d−1)) + Z0(K1,n−(d+1)−1) + (d− 2)Z0(K1,(n−d−1))

=(n− 3− 1)2 + 1 +
(n− d− 1)(n− d− 2)

2
+ n− (d+ 1)− 1 + 1

+ (d− 2)(n− d− 1 + 1)

=− d2

2
+

3n2

2
+

5d

2
− 21n

2
+ 17.

Hence,

Z1(T )− Z1(B
3
n) ≥ −

d2

2
+

3n2

2
+

5d

2
− 21n

2
+ 17− (n− 3)2 − 1

=
n2

2
− 9n

2
+ 7−

(
d2

2
− 5d

2

)
.
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However,

d2

2
− 5d

2
≤ (n− 3)2

2
− 5(n− 3)

2
=
n2

2
− 11n

2
+ 12.

Thus,

Z1(T )− Z1(B
3
n) ≥

n2

2
− 9n

2
+ 7−

(
d2

2
− 5d

2

)
≥ n2

2
− 9n

2
+ 7−

(
n2

2
− 11n

2
+ 12

)
= n− 5 > 0, since n > 5,

this completes the proof. �

4 Forest with maximum Z1

In this section we show that Pn is the tree of order n ≥ 9 that has the largest Z1. We also
attempted to determine the one that has the second-largest Z1. We only managed to prove
that it has to be a tripod (a tree with only three leaves). Based on a computational check for
small values of n, a conjecture describing the full characterization is provided.

We start with a few technical lemmas.

Lemma 4.1. Let n be an integer.

i) If n ≥ 0, we have Z0(Pn) ≥ n.

ii) If n ≥ 4, we have Z0(Pn) ≥ n+ 1.

iii) If n ≥ 3, we have Z1(Pn) ≥ n− 2.

Proof. For n = 0, 1, 2, we have Z0(P0) = 1 ≥ 0, Z0(P1) = 1 ≥ 1 and Z0(P2) = 2 ≥ 2. Suppose
that i) holds for n = k ≥ 2, then for n = k + 1 ≥ 3 we have:

Z0(Pn) = Z0(Pk+1) = Z0(Pk) + Z0(Pk−1) ≥ k + k − 1 ≥ k + 1,

since k ≥ 2, thereby proving i). For n = 4, 5, we have Z0(P4) = 5 ≥ 4+1 and Z0(P5) = 7 ≥ 5+1.
If Z0(Pn) ≥ n+ 1 for all 4 ≤ n ≤ k for some k ≥ 5, then

Z0(Pk+1) = Z0(Pk) + Z0(Pk−1) ≥ k + 1 + k − 1 + 1 ≥ (k + 1) + 1.

This proves ii). The proof of iii), namely Z1(Pn) ≥ n− 2 follows from the fact that Pn has at
least n− 2 copies of P3. �

Lemma 4.2. For any integers n and d with n ≥ d+ 1 and d ≥ 5, we have:

(d− 1)Z0(Pn−d) + Z1(Pn−d) ≤ Z0(Pn−3) + Z1(Pn−2).

Proof. We proceed by induction on n. For n = d+ 1 ≥ 4, using Lemma 4.1 we have

(d− 1)Z0(P1) + Z1(P1) = d− 1 ≤ d+ 1− 3 + 1 ≤ Z0(Pd+1−3) + Z1(Pd+1−2),



Iranian Journal of Mathematical Chemistry 16 (1) (2025) 65− 84 71

for d ≥ 5. For n = d+ 2 ≥ 5, using Lemma 4.1 we have:

(d− 1)Z0(P2) + Z1(P2) = 2(d− 1) ≤ d− 1 + 1 + d− 2 ≤ Z0(Pd+2−3) + Z1(Pd+2−2),

for d ≥ 5. Suppose that the claim holds for n = k ≥ d+2. Now consider the case of n = k+1.
Then we have:

Z0(Pn−3) + Z1(Pn−2)

= Z0(Pn−4) + Z0(Pn−5) + Z1(Pn−3) + Z1(Pn−4) + Z0(Pn−5)

= Z0(P(n−1)−3) + Z0(P(n−2)−3) + Z1(P(n−1)−2) + Z1(P(n−2)−2) + Z0(Pn−5)

≥ (d− 1)Z0(Pn−1−d) + Z1(Pn−1−d) + (d− 1)Z0(Pn−2−d) + Z1(Pn−2−d) + Z0(Pn−3−d)

= (d− 1)Z0(Pn−d) + Z0(Pn−d),

as required. �

Lemma 4.3. For any integer n ≥ 7, we have:

Z1(Pn−3) + Z0(Pn−4) + Z0(Pn−3) ≤ Z1(Pn−2) + Z0(Pn−3).

Proof. We proceed by induction on n ≥ 7. If n = 7, we have:

Z1(P4) + Z0(P3) + Z0(P4) = 2 + 3 + 5 ≤ 5 + 5 = Z1(P5) + Z0(P4).

If n = 8, we have:

Z1(P5) + Z0(P4) + Z0(P5) = 5 + 5 + 7 ≤ 10 + 7 = Z1(P6) + Z0(P5).

For the induction assumption, suppose that the inequality holds for n = k ≥ 8. Suppose now
that n = k + 1. Then we have

Z1(Pn−3) + Z0(Pn−4) + Z0(Pn−3)

= Z1(Pn−4) + Z1(Pn−5) + Z0(Pn−6) + Z0(Pn−5) + Z0(Pn−6) + Z0(Pn−4) + Z0(Pn−5)

= Z1(Pn−4) + Z0(Pn−5) + Z0(Pn−4) + Z1(Pn−5) + Z0(Pn−6) + Z0(Pn−5) + Z0(Pn−6)

= Z1(P(n−1)−3) + Z0(P(n−1)−4) + Z0(P(n−1)−3)+

+ Z1(P(n−2)−3) + Z0(P(n−2)−4) + Z0(P(n−2)−3) + Z0(Pn−6)

≤ Z1(P(n−1)−2) + Z0(P(n−1)−3) + Z1(P(n−2)−2) + Z0(P(n−2)−3) + Z0(P(n−2)−3)

= Z1(Pn−2) + Z0(Pn−3).

as required. �

Lemma 4.4. For any integer n ≥ 7, we have:

Z1(Pn−4) + Z0(Pn−5) + 2Z0(Pn−4) ≤ Z1(Pn−2) + Z0(Pn−3).

Proof. We proceed by induction on n ≥ 7. For n = 7, we have

Z1(P3) + Z0(P2) + 2Z0(P3) = 1 + 2 + 2× 3 ≤ 5 + 5 = Z1(P5) + Z0(P4).

For n = 8, we have:

Z1(P4) + Z0(P3) + 2Z0(P4) = 2 + 3 + 2× 5 ≤ 10 + 7 = Z1(P6) + Z0(P5).
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For the induction assumption, suppose that the inequality holds for n = k ≥ 8. Suppose now
that n = k + 1. Then we have:

Z1(Pn−4) + Z0(Pn−5) + 2Z0(Pn−4)

= Z1(Pn−5) + Z1(Pn−6) + Z0(n− 7) + Z0(Pn−6) + Z0(Pn−7) + 2Z0(Pn−5) + 2Z0(Pn−6)

= Z1(Pn−5) + Z0(Pn−6) + 2Z0(Pn−5) + Z1(Pn−6) + Z0(Pn−7) + 2Z0(Pn−6) + Z0(Pn−7)

= Z1(P(n−1)−4) + Z0(P(n−1)−5) + 2Z0(P(n−1)−4)

+ Z1(P(n−2)−4) + Z0(P(n−2)−5) + 2Z0(P(n−2)−4) + Z0(P(n−3)−4)

≤ Z1(P(n−1)−2) + Z0(P(n−1)−3) + Z1(P(n−2)−2) + Z0(P(n−2)−3)

= Z1(Pn−2) + Z0(Pn−3),

as required. �

Since adding an edge can only increase Z1 or keep it unchanged, for any forest F , there is
a tree T of the same order such that Z1(T ) ≥ Z1(F ). The following lemma is well-known.

Lemma 4.5 ([13]). For any forest F with order n we have Z0(F ) ≤ Z0(Pn).

We are now ready to present a proof of a characterization of the forest of order n ≥ 9 that
has the largest Z1.

Theorem 4.6. Among all forests F of order n ≥ 9, we have Z1(F ) ≤ Z1(Pn), with equality if
and only if F is Pn.

Proof. We use an induction on n. The base cases of n = 9, 10 can be seen on the Section 5.
Suppose that the claim holds for n = k ≥ 10. We now consider the case of n = k + 1. Suppose
that v is a pseudo-leaf of F of degree d. Let u be a neighbor of v having the largest degree. If
v has a neighbour that is not a leaf, then it is u. Let z be a leaf neighbour of v.

Case 1: Suppose that d = 2. With the use of Lemma 4.5, we have:

Z1(F ) = Z1(F − z) + Z1(F − z − v) + Z0(F − v − u− z)
≤ Z1(Pn−1) + Z1(Pn−2) + Z0(Pn−3) = Z1(Pn).

Case 2: Suppose that d = 3. Let x be the leaf adjacent to v other than z. Then, using
Lemma 4.3, we have:

Z1(F ) = Z1(F − z) + Z1(F − z − v) + Z0(F − v − u− z) + Z0(F − v − x− z)
= Z1(F − z) + Z1(F − z − v − x) + Z0(F − v − u− z − x) + Z0(F − v − x− z)
≤ Z1(Pn−1) + Z1(Pn−3) + Z0(Pn−4) + Z0(Pn−3)

≤ Z1(Pn−1) + Z1(Pn−2) + Z0(Pn−3) = Z1(Pn).

Case 3: Suppose that d = 4. Let x and y be the two leaves adjacent to v other than z. Then,
using Lemma 4.4, we have:

Z1(F ) = Z1(F − z) + Z1(F − z − v) + Z0(F − v − u− z)
+ Z0(F − v − x− z) + Z0(F − v − y − z)

= Z1(F − z) + Z1(F − z − v − x− y)
+ Z0(F − v − u− z − x− y) + 2Z0(F − v − x− z − y)

≤ Z1(Pn−1) + Z1(Pn−4) + Z0(Pn−5) + 2Z0(Pn−4)

≤ Z1(Pn−1) + Z1(Pn−2) + Z0(Pn−3) = Z1(Pn).
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Case 4: Suppose that d ≥ 5. By counting the 1-nearly independent edge subsets without v,
with v in a P2 and then with v in a P3, we have:

Z1(F )

= Z1(F − z) + Z1(F − (N [v] \ {u})) + Z0(F −N [v]) + (d− 2)Z0(F − (N(v) \ {u}))
≤ Z1(F − z) + Z1(F − (N [v] \ {u})) + (d− 1)Z0(F − (N [v] \ {u}))
≤ Z1(Pn−1) + Z1(Pn−d) + (d− 1)Z0(Pn−d)

≤ Z1(Pn−1) + Z1(Pn−2) + Z0(Pn−3) (using Lemma 4.2)
= Z1(Pn),

this completes the proof. �

From now, we aim to find out which n-vertex tree has the second-largest Z1. A series of
lemmas is needed. We write [T1, . . . , Tj ] for the rooted tree, where the branches of the root
vertex v are the rooted trees T1, . . . , Tj , such that the root of each of T1, . . . , Tj is adjacent to v.
The following lemma is well-known under the name of Ironing Lemma. It means that replacing
a non-path branch by a path branch increases Z0.

Lemma 4.7 ([14]). For any rooted tree T1, . . . , Tj, we have

Z0([T1, . . . , Tj ]) < Z0([P|T1|, T2, . . . , Tj ]),

if T1 is not a path rooted at one of its end-vertices.

We now provide an ironing lemma for Z1. Replacing a branch that is not a path by a path
of the same order increases Z1.

Lemma 4.8. For any rooted trees T1, . . . , Tj, we have

Z1([T1, . . . , Tj ]) < Z1([P|T1|, T2, . . . , Tj ]),

if T1 is not a path rooted at one of its end-vertices.

Proof. We proceed by induction on j. If j = 1, then [P|T1|] = P|T1|+1 and the claim holds by
Theorem 4.6. Suppose that the claim holds whenever j = k for some k ≥ 1 and let us consider
the case where j = k + 1. Let v be the root of T = [T1, . . . , Tj ] and vi is the neighbour of v in
Ti for any i. Suppose that T1 is not a path rooted at one of its end-vertices. Then |T1| ≥ 3.
In the equation below, we use Lemmas 2.4 and 4.7 and the induction assumption to replace T1
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with P|T1|.

Z1(T )

= Z1(T − v2) + Z1((T2 − v2) ∪ (T − T2 − v)) +
∑

x∈NT2
(v2)

Z1(T − v2 − x)

+
∑

i∈{1,3,4,...,`}

Z0(T − v2 − v − vi) +
∑

x∈NT2
(v2)

Z0(T − x− v2 − v)

+
∑

P∈PT2
(v2)

Z0(T − P )

= Z1([T1, T3, T4, . . . , Tj ])Z0(T2 − v2) + Z0([T1, T3, T4, . . . , Tj ])Z1(T2 − v2)

+ Z1(T2 − v2)Z0(T1)

j∏
i=3

Z0(Ti) + Z0(T2 − v2)Z1(T1)

j∏
i=3

Z0(Ti)

+ Z0(T2 − v2)Z0(T1)Z1(

j⋃
i=3

Ti) +
∑

x∈NT2
(v2)

Z1(T2 − v2 − x)Z0([T1, T3, T4, . . . , Tj ])

+ Z0(T2 − v2 − x)Z1([T1, T3, T4, . . . , Tj ])

+ Z0(T1 − v1)Z0(T − T1 − v2 − v) +
∑

i∈{3,4,...,`}

Z0(T1)Z0(T − T1 − v2 − v − vi)

+
∑

x∈NT2
(v2)

Z0(T1)Z0(T − T1 − x− v2 − v) +
∑

P∈PT2
(v2)

Z0(T2 − P )Z0(T1)Z0(T − T1 − T2)

< Z1([P|T1|, T3, T4, . . . , Tj ])Z0(T2 − v2) + Z0([P|T1|, T3, T4, . . . , Tj ])Z1(T2 − v2)

+ Z1(T2 − v2)Z0(P|T1|)

j∏
i=3

Z0(Ti) + Z0(T2 − v2)Z1(P|T1|)

j∏
i=3

Z0(Ti)

+ Z0(T2 − v2)Z0(P|T1|)Z1(

j⋃
i=3

Ti) +
∑

x∈NT2
(v2)

Z1(T2 − v2 − x)Z0([P|T1|, T3, T4, . . . , Tj ])

+ Z0(T2 − v2 − x)Z1([P|T1|, T3, T4, . . . , Tj ]) + Z0(P|T1−v1|)Z0(T − T1 − v2 − v)

+
∑

i∈{3,4,...,`}

Z0(P|T1|)Z0(T − T1 − v2 − v − vi) +
∑

x∈NT2
(v2)

Z0(P|T1|)Z0(T − T1 − x− v2 − v)

+
∑

P∈PT2
(v2)

Z0(T2 − P )Z0(P|T1|)Z0(T − T1 − T2) = Z1([P|T1|, T2, . . . , Tj ]),

this compelets the proof. �

In view of Lemma 4.8, we can restrict to star-like trees when trying to find trees of given
number of vertices and second-largest Z1. A star-like tree is a tree with at most one vertex
of degree greater than 2. We write [Pn1

, . . . , Pnk
] for the star-like tree with n1 + · · · + nk + 1

vertices, k branches where the i-th branches have length ni for all i.
In the following lemma, we replace two path branches with a single path rooted at one of

its ends.

Lemma 4.9. For any positive integers n1 ≥ · · · ≥ nj and j ≥ 3, we have:

Z1([Pn1
, . . . , Pnj

]) < Z1([Pn1+n2
, Pn3

, . . . , Pnj
]).
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Proof. We use induction on the order n = n1 + · · ·+ nj +1. If n = j +1, then [Pn1 , . . . , Pnj ] is
a star and [Pn1+n2

, Pn3
, . . . , Pnj

] is not a star. The desired inequality holds by Theorem 3.1.
Suppose that the inequality Z1([Pn1

, . . . , Pnj
]) < Z1([Pn1+n2

, Pn3
, . . . , Pnj

]) holds whenever
n = n1 + · · ·+ nj + 1 = k for some k ≥ j + 1. Now consider the case where n = k + 1 ≥ j + 2
Then n1 ≥ 2. Suppose that n1 > 2. Using Lemma 2.4, we have:

Z1([Pn1 , . . . , Pnj ]) = Z1([Pn1−1, . . . , Pnj ]) + Z1([Pn1−2, . . . , Pnj ]) + Z0([Pn1−3, . . . , Pnj ]),

and

Z1([Pn1+n2
, Pn3

, . . . , Pnj
]) = Z1([Pn1+n2−1, Pn3

, . . . , Pnj
]) + Z1([Pn1+n2−2, Pn3

, . . . , Pnj
])

+ Z0([Pn1+n2−3, Pn3
, . . . , Pnj

]). (4)

By Lemma 4.7, we know that

Z0([Pn1+n2−3, Pn3
, . . . , Pnj

]) > Z0([Pn1−3, Pn2−3, . . . , Pnj
]).

By the induction assumption, we know that

Z1([Pn1−1, . . . , Pnj ]) < Z1([Pn1+n2−1, Pn3 , . . . , Pnj ]),

and
Z1([Pn1−2, . . . , Pnj

]) < Z1([Pn1+n2−2, Pn3
, . . . , Pnj

]).

Hence, we have:
Z1([Pn1

, . . . , Pnj
]) < Z1([Pn1+n2

, Pn3
, . . . , Pnj

]),

as we aimed to prove.
Now suppose that n1 = 2. (4) still holds, while

Z1([Pn1
, . . . , Pnj

]) = Z1([Pn1−1, . . . , Pnj
]) + Z1([Pn1−2, . . . , Pnj

]) + Z0

(
j⋃

i=2

Pni

)
.

Note that n1 − 2 = 0, n1 + n2 − 2 = n2 and hence

[Pn1−2, . . . , Pnj
] = [Pn2

, . . . , Pnj
] = [Pn1+n2−2, . . . , Pnj

].

Moreover,
⋃j

i=2 Pni
can be obtained from [Pn1+n2−3, Pn3

, . . . , Pnj
] = [Pn2−1, Pn3

, . . . , Pnj
] by

removing all edges incident to the branching vertex except the one connecting it to Pn2
. Thus

we have:

Z0([Pn1+n2−3, Pn3 , . . . , Pnj ]) > Z0

(
j⋃

i=2

Pni

)
.

By the induction assumption, we know that

Z1([Pn1−1, . . . , Pnj
]) < Z1([Pn1+n2−1, Pn3

, . . . , Pnj
]),

and
Z1([Pn1−2, . . . , Pnj ]) = Z1([Pn1+n2−2, Pn3 , . . . , Pnj ]).

Hence, we again have:

Z1([Pn1 , . . . , Pnj ]) < Z1([Pn1+n2 , Pn3 , . . . , Pnj ]),

as desired. �
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The following theorem follows immediately from Lemmas 4.8 and 4.9. It reduces the set of
candidates to that of tripods.

Theorem 4.10. If a tree T has order n ≥ 4, and for any n-vertex tree H, we have Z1(Pn) >
Z1(T ) ≥ Z1(H), then

T ∈ {[Pn1
, Pn2

, Pn3
] : n1 + n2 + n3 = n− 1}.

Section 5 suggest that the n-vertex trees with second-largest Z1 is [P1, P1, Pn−3] for n =
9, and it is [P3, P3, Pn−7] for n = 10. Further computational check showed that we have
[P1, P1, Pn−3] again for n = 11, but for 12 ≤ n ≤ 20 we always have [P3, P3, Pn−7]. Hence, the
following conjecture.

Conjecture 4.11. Among all forest F 6= Pn of order n ≥ 12 we have Z1(F ) ≤ Z1([P3, P3, Pn−7]),
with equality if and only if F is [P3, P3, Pn−7].

The fact that [P3, P3, Pn−7] is not the tripod with largest Z0 [15] is part of the reason why
proving Conjecture 4.11 is challenging.
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5 Appendix
In this appendix, we exhaustively compute Z1(T ), where T is any tree of order n, where
9 ≤ n ≤ 10. The trees of order n = 9 are in Table 1. Those of order n = 10, are in in Table 2.

Table 1: Z1 of trees of order n = 9.
T Z1(T) T Z1(T) T Z1(T)

28 37 43

45 46 47

50 50 51

52 53 54

55 55 55

55 55 55

56 58 59

59 59 59
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T Z1(T) T Z1(T) T Z1(T)

60 60 60

60 61 62

62 62 63

63 63 64

64 64 65

65 66 67

67 68 68

69 71
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Table 2: Z1 of trees of order n = 10.
T Z1(T) T Z1(T) T Z1(T)

36 50 60

65 65 66

68 75 75

75 78 80

80 80 80

82 84 84

87 87 87

88 88 89
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T Z1(T) T Z1(T) T Z1(T)

90 91 91

92 92 92

92 93 95

95 95 95

95 95 96

96 97 98

99 99 100

100 101 102
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T Z1(T) T Z1(T) T Z1(T)

102 102 102

102 103 103

103 103 103

104 104 104

105 105 106

106 107 107

107 108 108

108 109 109
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T Z1(T) T Z1(T) T Z1(T)

109 110 110

110 110 111

111 111 112

112 112 113

113 115 115

115 116 116

116 116 117

117 117 118
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T Z1(T) T Z1(T) T Z1(T)

118 119 120

120 121 121

125 125 126

130
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