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Abstract

In this paper, a combined methodology based on the method
of lines (MOL) and spline is implemented to simulate the solu-
tion of a two-dimensional (2D) stochastic fractional telegraph
equation with Caputo fractional derivatives of order α and β
where 1 < α, β ≤ 2. In this approach, the spatial directions are
discretized by selecting some equidistance mesh points. Then
fractional derivatives are estimated via linear spline approxi-
mation and some finite difference formulas. After substituting
these estimations in the semi-discretization equation, the con-
sidered problem is transformed into a system of second-order
initial value problems (IVPs), which is solved by using an or-
dinary differential equations (ODEs) solver technique in Mat-
lab software. Also, it is proved that the rate of convergence is
O(∆x2 + ∆y2), where ∆x and ∆y denote the spatial step size
in x and y directions, respectively. Finally, two examples are
included to confirm the efficiency of the suggested method.

c© 2025 University of Kashan Press. All rights reserved.

1 Introduction

Partial differential equations (PDEs) due to their connection with real phenomena are one of
the most extensive topics in mathematical researches. PDEs play a crucial role in modeling
various phenomena in chemistry. They form the basis for describing the change of velocity,
temperature, and concentration in systems with multiple independent variables. In chemi-
cal engineering, PDEs are commonly encountered, especially first and second-order equations,
which are essential for understanding transport phenomena. Additionally, PDEs are used to
model diffusive-advective transport equations in chemical systems, with applications in solving
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steady-state conditions and addressing challenges like hyperbolic PDE systems and discontin-
uous solutions. Overall, PDEs are fundamental tools in chemistry for predicting and under-
standing complex dynamics at various spatial and temporal scales. PDEs in chemistry help
explain system evolution at macroscopic scales, aiding in efficient computation-intensive tasks
like prediction and control of physico-chemical processes.

Among PDEs, hyperbolic PDEs have a significant role in applicable sciences and engineer-
ing, and are applied in the formulation fundamental equations in atomic physics [1]. Telegraph
equation is one of the high usage hyperbolic equation which is employed in the study of wave
propagation of electric signals [2] and wave phenomena [3]. The telegraph partial differential
equation has various applications in different fields. One application is in the mathematical
modeling of transmission lines, where it is used to find the approximate solution of hyperbolic
PDEs. Another application is in representing reaction-diffusion processes in engineering and
biological disciplines. The telegraph equation is also used in signal analysis, wave propagation,
and random walk problems. Additionally, it is applied in studying the influence of microwaves
on signal transmission in telecommunication water. Furthermore, the telegraph equation is
used in finance for non-linear transformations of classical telegraph processes, such as in option
pricing. Since in most situations, it is difficult to solve telegraph equation explicitly, much
efforts have been done to provide their accurate numerical solution. Different types of 1D tele-
graph equations have been solved via varied techniques including spectral Legendre-Galerkin
algorithm [4], B-spline Galerkin [5], cubic B-spline finite elements [6], meshless local radial point
interpolation [7], Chebyshev tau approximation [8], a combined technique based on meshless
and finite difference method [9]. Solving 2D telegraph equation is more complicated than 1D
telegraph equation and recently some articles have been published on the numerical solution
of 2D telegraph equation. For instance, Yüzbaşı and Karaçayır used a Galerkin-like scheme to
solve 2D version of telegraph equation in [10]. In [11], 2D telegraph equation with Dirichlet
boundary conditions has been first turned into partial integro-differential equations (PIDEs)
and then obtained PIDEs have been numerically solved via operational matrix method. The
traditional meshfree scheme has been presented in [12], while the author of [13] combined mesh-
less method with spectral collocation idea in order to provide the approximate solution of 2D
time-fractional telegraph equation.
In many cases, there is uncertainty in real problems that must be included in mathematical
models. All phenomena are modeled by deterministic functional equations, have some random
factors that are ignored due to poor computational power. Therefore, it is interesting and
necessary to consider stochastic effects and to study the impact of noise on regularities of the
solutions and their longtime behaviors. In recent decades, by increasing demand to employ
more suitable models and to gain more accurate results, a noise source was entered to integral
equations (IEs), PDEs and ODEs and have been created stochastic IEs (SIEs), stochastic PDEs
(SPDEs) and stochastic ODEs (SODEs).
This leads to considering the stochastic telegraph equations, which is defined by adding a noise
term to the deterministic telegraph equations. On the other hand, derivatives of fractional order
allow the memory and heredity qualities of various substances to be described. So, stochastic
telegraph equations of fractional order are more suitable than integer-order stochastic telegraph
equations. Solving stochastic functional equations exactly in many situations are impossible
and it is necessary that some acceptable schemes are implemented to provide their approximate
solution. Meshless methods based on radial basis functions (RBFs) have been developed to solve
two-dimensional weakly singular SIEs [14]. In these methods, RBFs interpolation are used to
estimate the unknown function and then obtained integrals are approximated via quadrature
rules, therefore solving SIEs are reduced to solving a system of algebraic equations. Also, oper-
ational matrix method based on hat basis functions [15], hybrid functions [16], delta functions
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[17], Bernoulli operationals [18], Euler polynomials [19] and other basis functions and polyno-
mials have been applied to obtain the approximate solution of SIEs. The behavior of SPDEs
has been simulated via meshless method based on RBFs [20], Galerkin approximation [21], and
the dual reciprocity method [22]. Meshless method [23] and combination of finite difference
and meshless method [24] have been developed to solve stochastic advection-diffusion equation,
while wavelet Galerkin method has been used to estimate the solution of stochastic heat equa-
tion [25]. Unlike many applications of the telegraph equation, this equation has not been solved
numerically so far. The authors have tried for the first time in this article to provide a suit-
able numerical method to approximate the solution of 2D stochastic space fractional telegraph
equation.
Many approximate schemes have been employed to solve time-dependent PDEs numerically. In
one of the numerical methods, space variables are discretized via different techniques such as
finite difference, spectral, or meshless method but the time variable is leaved. This approach
which converts time-dependent PDEs to a system of ODEs with appropriate initial conditions
is called MOL. MOL is sometime considered as special finite difference method, but it is better
than this method and has situated at semi-analytical method. MOL has been applied to obtain
the numerical solution of some problems such as fractional diffusion equation [26, 27], parabolic
equations [28] and Boussinesq equations [29].
2D stochastic space fractional telegraph equation is formulated as follows:

∂2u(x, y, t)

∂t2
+ 2µ

∂u(x, y, t)

∂t
+ θ2u(x, y, t) =

∂αu(x, y, t)

∂xα

+
∂βu(x, y, t)

∂yβ
+ k(x, y, t) + σ

dB(t)

dt
, (1)

where (x, y, t) ∈ Ω× [0, T ], Ω = [0, 1]× [0, 1] is the space domain and [0, T ] is the time interval.
µ, θ and σ are given constant numbers, B(t) denotes Brownian motion process that is nowhere
differentiable, dB(t)

dt is called White Noise process that it dose note exist as a function of t. The
function k(x, y, t) is a known function while u(x, y, t) is an unknown function which should be
determined. ∂αu(x,y,t)

∂xα and ∂βu(x,y,t)
∂yβ

are the Caputo fractional derivatives of order α and β,
(1 < α, β ≤ 2), that are respectively defined as follows [30, 31]:

∂αu(x, y, t)

∂xα
=

1

Γ(2− α)

∫ x

0

(x− η)1−α ∂
2u(η, y, t)

∂η2
dη, (2)

and
∂βu(x, y, t)

∂yβ
=

1

Γ(2− β)

∫ y

0

(y − η)1−β ∂
2u(x, η, t)

∂η2
dη. (3)

The initial conditions are given by{
u(x, y, 0) = f1(x, y), (x, y) ∈ Ω,

ut(x, y, 0) = f2(x, y), (x, y) ∈ Ω,
(4)

and the Dirichlet boundary conditions are:{
u(0, y, t) = g1(y, t), u(1, y, t) = g2(y, t),

u(x, 0, t) = h1(x, t), u(x, 1, t) = h2(x, t),
(5)

where fi, gi and hi for i = 1, 2 are known functions. Most important obstacle in solving
Equation (1) is computational complexity due to stochastic term, fractional derivatives and
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high dimension. In this article, a computational idea based on MOL and spline approximation
is presented to derive the numerical solution of Equation (1) and then its error analysis is
investigated.

The continuation of this work is as follows: A numerical method is expressed to solve 2D
stochastic space fractional telegraph equation with appropriate initial and boundary conditions
in Section 2. Error analysis of the mentioned scheme has been investigated in Section 3. Test
problems and numerical results of the expressed method are carried out in Section 4. Finally,
the conclusion of this study is collected in Section 5.

2 Numerical scheme
In this section, a numerical scheme is presented to approximate the solution of Equation (1)
under the initial conditions (4) and the Dirichlet boundary conditions (5). In this approach,
first consider two positive constant numbersM and N , then define the equidistance mesh points
xi and yj as follows:

xi = i∆x, i = 0, 1, . . . , N,

yj = j∆y, j = 0, 1, . . . ,M,

where ∆x = 1
N and ∆y = 1

M denote the spatial step sizes in x and y directions, respectively.
By installing collocation points x = xi and y = yj into Equation (1), conclude

∂2u(xi, yj , t)

∂t2
+ 2µ

∂u(xi, yj , t)

∂t
+ θ2u(xi, yj , t) =

∂αu(xi, yj , t)

∂xα
+
∂βu(xi, yj , t)

∂yβ

+ k(xi, yj , t) + σ
dB(t)

dt
, i = 1, 2, . . . , N − 1, j = 1, 2, . . . ,M − 1. (6)

Furthermore, the initial and boundary conditions are converted to
u(xi, yj , 0) = f1(xi, yj),

ut(xi, yj , 0) = f2(xi, yj),

u(x0, yj , t) = g1(yj , t), u(xN , yj , t) = g2(yj , t),

u(xi, y0, t) = h1(xi, t), u(xi, yM , t) = h2(xi, t).

(7)

Let ui,j(t) = u(xi, yj , t) and ki,j(t) = k(xi, yj , t) which i = 0, 1, . . . , N, j = 0, 1, . . . ,M . By
using these notations, Equation (6) can be written as follows:

u′′i,j(t) + 2µu′i,j(t) + θ2ui,j(t) =
∂αu(xi, yj , t)

∂xα
+
∂βu(xi, yj , t)

∂yβ
+ ki,j(t) + σ

dB(t)

dt
, (8)

subject to the following initial conditions{
ui,j(0) = f1(xi, yj), i = 1, 2, . . . , N − 1, j = 1, 2, . . . ,M − 1,

u′i,j(0) = f2(xi, yj), i = 1, 2, . . . , N − 1, j = 1, 2, . . . ,M − 1.
(9)

Let Ki,j =
∂αu(xi,yj ,t)

∂xα , i = 1, 2, . . . , N − 1, j = 1, 2, . . . ,M − 1. Equation (2) yields

Ki,j =
∂αu(xi, yj , t)

∂xα
=

1

Γ(2− α)

∫ xi

0

(xi − η)1−α ∂
2u(η, yj , t)

∂η2
dη

=
1

Γ(2− α)

i−1∑
k=0

∫ xk+1

xk

(xi − η)1−α ∂
2u(η, yj , t)

∂η2
dη. (10)
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The linear spline approximation of ∂
2u(η,yj ,t)
∂η2 where xk ≤ η ≤ xk+1 is denoted by ξk,j(η, t), and

is as follows:

∂2u(η, yj , t)

∂η2
' ξk,j(η, t) =

η − xk
∆x

∂2u(xk+1, yj , t)

∂η2
+
xk+1 − η

∆x

∂2u(xk, yj , t)

∂η2
.

Under continuity condition of ∂
4u(x,y,t)
∂x4 yields [26]:

∂2u(η, yj , t)

∂η2
= ξk,j(η, t) +O(∆x2). (11)

Inserting Equation (11) into Equation (10) yields:

Ki,j =
1

Γ(2− α)

i−1∑
k=0

∫ xk+1

xk

(xi − η)1−α
[
ξk,j(η, t) +O(∆x2)

]
dη

=
∆x2−α

Γ(4− α)

i∑
k=0

ai,k
∂2u(xk, yj , t)

∂η2
+

x2−α
i

Γ(3− α)
O(∆x2), (12)

where the constant coefficients ai,k where k = 0, 1, . . . , i are computed as follows:

ai,k =


(i− 1)3−α − i2−α(i− 3 + α), k = 0,

(i− k + 1)3−α − 2(i− k)3−α + (i− k − 1)3−α, 1 ≤ k ≤ i− 1,

1, k = i.

Theorem 2.1. The definition of the constant coefficients ai,k imply that:

i∑
k=0

ai,k = (3− α)i2−α. (13)

Proof. It follows from the definition of coefficients ai,k that

i∑
k=0

ai,k = (i− 1)3−α − i2−α(i− 3 + α) +

i−1∑
k=1

(i− k + 1)3−α

− 2(i− k)3−α + (i− k − 1)3−α + 1 = (i− 1)3−α − i2−α(i− 3 + α)

+

i−1∑
k=1

(i− k + 1)3−α − (i− k)3−α −
i−1∑
k=1

(i− k)3−α − (i− k − 1)3−α + 1.

From telescoping sum rule can be concluded that

i∑
k=0

ai,k = (i− 1)3−α − i2−α(i− 3 + α) + i3−α − 1− (i− 1)3−α + 1

= (3− α)i2−α.

�
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Now, we should find an appropriate approximation for second-order derivative ∂2u(xk,yj ,t)
∂η2

in Equation (12). For k = 0, use forward finite difference formula to estimate second-order
derivative, i.e.,

∂2u(x0, yj , t)

∂η2
=
−u(x3, yj , t) + 4u(x2, yj , t)− 5u(x1, yj , t) + 2u(x0, yj , t)

∆x2
+O(∆x2)

=
−u3,j(t) + 4u2,j(t)− 5u1,j(t) + 2u0,j(t)

∆x2
+O(∆x2)

= δ0,j(t) +O(∆x2).

For k = 1, 2, . . . , N − 1, use central finite difference formula, i.e.,

∂2u(xk, yj , t)

∂η2
=
u(xk+1, yj , t)− 2u(xk, yj , t) + u(xk−1, yj , t)

∆x2
+O(∆x2)

=
uk+1,j(t)− 2uk,j(t) + uk−1,j(t)

∆x2
+O(∆x2) = δk,j(t) +O(∆x2). (14)

Inserting Equation (14) into Equation (12) yields:

Ki,j =
∆x2−α

Γ(4− α)

i∑
k=0

ai,k

[
δk,j(t) +O(∆x2)

]
+

x2−α
i

Γ(3− α)
O(∆x2)

=
∆x2−α

Γ(4− α)

i∑
k=0

ai,kδk,j(t) +
∆x2−αO(∆x2)

Γ(4− α)

i∑
k=0

ai,k +
x2−α
i

Γ(3− α)
O(∆x2). (15)

It follows from Theorem 2.1 and Equation (15) that:

Ki,j =
∆x2−α

Γ(4− α)

i∑
k=0

ai,kδk,j(t) +
2x2−α

i

Γ(3− α)
O(∆x2). (16)

In the next step, we should provide an appropriate approximation for ∂βu(xi,yj ,t)
∂yβ

in Equation

(8). Let Hi,j =
∂βu(xi,yj ,t)

∂yβ
, i = 1, 2, . . . , N − 1, j = 1, 2, . . . ,M − 1. Using Equation (3)

yields:

Hi,j =
∂βu(xi, yj , t)

∂yβ
=

1

Γ(2− β)

∫ yj

0

(yj − η)1−β ∂
2u(xi, η, t)

∂η2
dη

=
1

Γ(2− β)

j−1∑
k=0

∫ yk+1

yk

(yj − η)1−β ∂
2u(xi, η, t)

∂η2
dη. (17)

Let ζi,k(η, t) as the linear spline approximation of ∂
2u(xi,η,t)
∂η2 where yk ≤ η ≤ yk+1. Thus

∂2u(xi, η, t)

∂η2
' ζi,k(η, t) =

η − yk
∆y

∂2u(xi, yk+1, t)

∂η2
+
yk+1 − η

∆y

∂2u(xi, yk, t)

∂η2
.

Similarly, under continuity condition of ∂
4u(x,y,t)
∂y4 , we obtain [26]:

∂2u(xi, η, t)

∂η2
= ζi,k(η, t) +O(∆y2). (18)
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Substituting Equation (18) into Equation (17) yields:

Hi,j =
1

Γ(2− β)

j−1∑
k=0

∫ yk+1

yk

(yj − η)1−β
[
ζi,k(η, t) +O(∆y2)

]
dη

=
∆y2−β

Γ(4− β)

j∑
k=0

bj,k
∂2u(xi, yk, t)

∂η2
+

y2−β
j

Γ(3− β)
O(∆y2), (19)

where the constant coefficients bj,k where k = 0, 1, . . . , j are calculated as follows:

bj,k =


(j − 1)3−β − j2−β(j − 3 + β), k = 0,

(j − k + 1)3−β − 2(j − k)3−β + (j − k − 1)3−β , 1 ≤ k ≤ j − 1,

1, k = j.

Theorem 2.2. The definition of the constant coefficients bj,k imply that:

j∑
k=0

bj,k = (3− β)j2−β . (20)

Proof. The proof of this theorem is done similar to the proof of Theorem 2.1. �

In this stage, estimate the second order derivative ∂2u(xi,yk,t)
∂η2 for k = 0, 1, . . . ,M − 1.

Similarly, use forward formula for k = 0 and yields

∂2u(xi, y0, t)

∂η2
=
−u(xi, y3, t) + 4u(xi, y2, t)− 5u(xi, y1, t) + 2u(xi, y0, t)

∆y2
+O(∆y2)

=
−ui,3(t) + 4ui,2(t)− 5ui,1(t) + 2ui,0(t)

∆y2
+O(∆y2)

= γi,0(t) +O(∆y2).

Furthermore, central formula is used for k = 1, 2, . . . ,M − 1, i.e.,

∂2u(xi, yk, t)

∂η2
=
u(xi, yk+1, t)− 2u(xi, yk, t) + u(xi, yk−1, t)

∆y2
+O(∆y2)

=
ui,k+1(t)− 2ui,k(t) + ui,k−1(t)

∆y2
+O(∆y2) = γi,k(t) +O(∆y2). (21)

Substituting Equation (21) into Equation (19) and using Theorem 2.2 yields:

Hi,j =
∆y2−β

Γ(4− β)

j∑
k=0

bj,k

[
γi,k(t) +O(∆y2)

]
+

y2−β
j

Γ(3− β)
O(∆y2)

=
∆y2−β

Γ(4− β)

j∑
k=0

bj,kγi,k(t) +
∆y2−βO(∆y2)

Γ(4− β)

j∑
k=0

bj,k +
y2−β
j

Γ(3− β)
O(∆y2)

=
∆y2−β

Γ(4− β)

j∑
k=0

bj,kγi,k(t) +
2y2−β
j

Γ(3− β)
O(∆y2). (22)
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Now, insert approximations of Ki,j and Hi,j , which provided in Equation (16) and Equation
(22) respectively, into Equation(8), and get the following system of L = (N−1)× (M−1) IVPs

u′′i,j(t) + 2µu′i,j(t) + θ2ui,j(t) =
∆x2−α

Γ(4− α)

i∑
k=0

ai,kδk,j(t) +
2x2−α

i

Γ(3− α)
O(∆x2)

+
∆y2−β

Γ(4− β)

j∑
k=0

bj,kγi,k(t) +
2y2−β
j

Γ(3− β)
O(∆y2) + ki,j(t) + σ

dB(t)

dt
, (23)

subject to the initial conditions which are given in Equation (9).
For i = 1, 2, . . . , N − 1 and j = 1, 2, . . . ,M − 1, define ρi(t), %j(t) and ωi,j(t) as follows:

ρi(t) =
∆y2−β

Γ(4− β)
bM−1,M−1h2(xi, t), %j(t) =

∆x2−α

Γ(4− α)
aN−1,N−1g2(yj , t),

and

ωi,j(t) = (2ai,0 + ai,1)
∆x−α

Γ(4− α)
g1(yj , t) + (2bj,0 + bj,1)

∆y−β

Γ(4− β)
h1(xi, t),

and put
−→
W (t) = [ω1,1(t), ω1,2(t), . . . , ω1,M−1(t) + ρ1, ω2,1(t), ω2,2(t), . . . , ω2,M−1(t) + ρ2

, . . . , ωN−1,1(t) + %1, ωN−1,2(t) + %2, . . . , ωN−1,M−1(t) + ρN−1 + %M−1]T .

For i = 1, 2, . . . , N − 1 and j = 1, 2, . . . ,M − 1, let

υi,j =
2x2−α

i

Γ(3− α)
O(∆x2) +

2y2−β
j

Γ(3− β)
O(∆y2),

and define vector
−→
V as follows

−→
V = [υ1,1, υ1,2, . . . , υ1,M−1, . . . , υN−1,1, υN−1,2, . . . , υN−1,M−1]T .

Furthermore, define the following vectors and matrix

−→
U (t) =


u1,1(t)
u1,2(t)

...
uN−1,M−1(t)


L×1

,
−→
K(t) =


k1,1(t) + σ dB(t)

dt

k1,2(t) + σ dB(t)
dt

...
kN−1,M−1(t) + σ dB(t)

dt


L×1

,

M =


2µ

2µ
. . .

2µ


L×L

.

By using the above definitions, the system of L IVPs (23) with initial conditions (9) can be
written in the following matrix form:

−→
U ′′(t) +M

−→
U ′(t) +N

−→
U (t) =

−→
V +

−→
K(t) +

−→
W (t),

−→
U (0) =

−→
F1,−→

U ′(0) =
−→
F2,

(24)



Iranian Journal of Mathematical Chemistry 16 (1) (2025) 13− 31 21

where
−→
F1 and

−→
F2 are two vectors of order L × 1 as follows:

−→
F1 = [f1(x1, y1), f1(x1, y2), . . . , f1(x1, yM−1), . . . , f1(xN−1, y1), . . . , f1(xN−1, yM−1)]T ,
−→
F2 = [f2(x1, y1), f2(x1, y2), . . . , f2(x1, yM−1), . . . , f2(xN−1, y1), . . . , f2(xN−1, yM−1)]T .

The matrix N in Equation (24) is a block matrix of order L × L defined as:

N =


A1,1 + C A1,2 A1,3 O . . . O
A2,1 A2,2 + C A2,3 O . . . O
...

...
...

...
. . .

...
AN−1,1 AN−1,2 AN−1,3 AN−1,4 . . . AN−1,N−1 + C

 , (25)

where O is zero matrix of order (M − 1)× (M − 1), the matrix C is defined as:

C =
∆y−β

Γ(4− β)
BX +

∆y−β

Γ(4− β)
D + Θ,

where X, B, D and Θ are matrices of order (M − 1)× (M − 1) and are defined as:

X =


2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2

 , D =


5b1,0 −4b1,0 b1,0 0 . . . 0
5b2,0 −4b2,0 b2,0 0 . . . 0
...

...
...

...
. . .

...
5bM−1,0 −4bM−1,0 bM−1,0 0 . . . 0

 ,

Θ =


θ2

θ2

. . .
θ2

 ,

and B is a lower triangular matrix which is defined as:

B = [bij ], bij =

{
0, i < j,

bi,j , i ≥ j.

Furthermore Ai,j in Equation (25) is diagonal matrix of order (M − 1) × (M − 1) which its
diagonal elements are ij th element of matrix E, and matrix E is defined as:

E =
∆x−α

Γ(4− α)
AX +

∆x−α

Γ(4− α)
F,

where A and F are matrices of order (M − 1)× (M − 1) and are defined as:

F =


5a1,0 −4a1,0 a1,0 0 . . . 0
5a2,0 −4a2,0 a2,0 0 . . . 0
...

...
...

...
. . .

...
5aM−1,0 −4aM−1,0 aM−1,0 0 . . . 0

 , A = [aij ], aij =

{
0, i < j,

ai,j , i ≥ j.

To determine the exact values of u0,j(t), uN,j(t), ui,0(t) and ui,M (t) for i = 0, 1, . . . , N and j =
0, 1, . . . ,M , employ boundary conditions given in Equation (7). Furthermore, the approximate
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values of ui,j(t) for i = 1, 2, . . . , N − 1 and j = 1, 2, . . . ,M − 1 can be obtained by solving the
system of IVPs (24), numerically. Since the vector

−→
V in system (24) contains the unknown

error term O(∆x2 + ∆y2), we ignore this vector and solve the following system of IVPs to
approximate the values of ui,j(t),

−→
Ũ ′′(t) +M

−→
Ũ ′(t) +N

−→
Ũ (t) =

−→
K(t) +

−→
W (t),

−→
Ũ (0) =

−→
F1,−→

Ũ ′(0) =
−→
F2.

(26)

3 Error analysis

In this section, we investigate that how ignoring the unknown error therm
−→
V can affect the

numerical solution of Equation (1). Define −→e (t) =
−→
U (t)−

−→
Ũ (t). By subtracting Equation (24)

from Equation (26), one see that the error function −→e (t) satisfies in the following linear system
of IVPs with zero initial conditions

−→
e′′(t) +M

−→
e′ (t) +N−→e (t) =

−→
V ,

−→
ẽ (0) = 0,
−→
ẽ′ (0) = 0.

(27)

Let −→e (t) = ψ1(t) and
−→
e′ (t) = ψ2(t), then the homogenous second order IVPs system (27) can

be written as the following linear system of IVPs of first order

d

dt

(
ψ1(t)
ψ2(t)

)
=

(
O I
−N −M

)
︸ ︷︷ ︸

Υ

(
ψ1(t)
ψ2(t)

)
. (28)

Define Ψ(t) =

(
ψ1(t)
ψ2(t)

)
. So, the following linear system of IVPs of the first order can be

obtained: {
Ψ′(t) = ΥΨ(t),

Ψ(0) = 0.
(29)

Suppose that λ1, λ2, . . . , λ2L be the distinct eigenvalues of matrix Υ with the corresponding
eigenvectors −→v 1,

−→v 2, . . . ,
−→v 2L. Hence, the exact solution of linear system of IVPs (29) can be

written as:
−→
Ψ(t) =

2L∑
i=1

ci exp(λit)
−→v i, (30)

where the unknown coefficients ci for i = 1, 2, . . . , 2L are determined via using initial value
conditions. The first L rows of

−→
Ψ(t) denote the obtained solution for −→e (t) = ψ1(t). Suppose

that vectors −→z 1,
−→z 2, . . . ,

−→z 2L are truncated vectors of vectors −→v 1,
−→v 2, . . . ,

−→v 2L of order L×1.
Thus, the exact solution of second-order linear system of IVPs (27) can be expanded as follows:

−→e (t) =

2L∑
i=1

ci exp(λit)
−→z i +−→a 1 +−→a 2t, (31)
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Table 1: Values of ‖N−1‖∞ for different values of M,N and α, β with θ = 1.

M = N α = β = 1.3 α = β = 1.4 α = β = 1.5 α = β = 1.6 α = β = 1.8 α = β = 2

40 0.1405 0.0236 0.0103 0.0061 0.0022 0.0012
50 0.1146 0.0174 0.0074 0.0043 0.0015 0.0007
60 0.0952 0.0135 0.0056 0.0032 0.0011 0.0005
70 0.0804 0.0109 0.0045 0.0025 0.0008 0.0004
80 0.0690 0.0090 0.0037 0.0020 0.0006 0.0003
90 0.0599 0.0077 0.0031 0.0017 0.0005 0.0002
100 0.0527 0.0060 0.0026 0.0014 0.0004 0.0001

where the initial conditions are used to determine the unknown coefficients ci, i = 1, 2, . . . , 2L,
and the vectors −→a 1 and −→a 2 are unknown constant vectors such that:

N−→a 2 = 0, N−→a 1 =
−→
V −M−→a 2.

Non-singularity properties of matrix N yields:

−→a 2 = 0, −→a 1 = N−1−→V . (32)

Inserting Equation (32) into Equation (31) conclude:

−→e (t) =

2L∑
i=1

ci exp(λit)
−→z i +N−1−→V , (33)

where
−→
V ' O(∆x2 + ∆y2). So

−→e (t) =

2L∑
i=1

ci exp(λit)
−→z i +N−1O(∆x2 + ∆y2). (34)

From Equation (34), we have:

‖−→e (t)‖∞ ≤ ε+ ‖N−1‖∞O(∆x2 + ∆y2), t > 0,

such that as t increases, ε tends to zero with exponential order. On the other hand, we numer-
ically demonstrate in Table 1 that the infinity norm of N−1, which dependent only on α and
β, is bounded. Thus

‖−→e (t)‖∞ ≤ ε+ κO(∆x2 + ∆y2),

where κ denotes the upper error bound of ‖N−1‖∞. Hence, for sufficiently small values of ∆x
and ∆y, we have:

‖
−→
U (t)−

−→
Ũ (t)‖∞ ' O(∆x2 + ∆y2).

4 Test problems
In this section, two test problems are given to test the maximum error and computational
convergence order of the proposed technique on these problems. The effect of increasingM and
N on accuracy of the described method are checked by performing the mentioned method for
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different values of M and N . Our criterion to measure accuracy of this scheme is maximum
error which is defined as follows:

L∞(x, y, t) = ‖u(x, y, t)− ũ(x, y, t)‖∞ = max
0≤i≤N
0≤j≤M

|u(xi, yj , t)− ũ(xi, yj , t)|,

where t is fixed time, u(x, y, t) and ũ(x, y, t) denote the exact solution and approximate solution
of 2D stochastic space fractional telegraph equation, respectively. Also, the computational order
of the presented method have been calculated as follows:

Cx − order = log2

(L∞(2∆x,∆y, t)

L∞(∆x,∆y, t)

)
, Cy − order = log2

(L∞(∆x, 2∆y, t)

L∞(∆x,∆y, t)

)
.

All the numerical calculations are performed on an Intel CORE i7 laptop by running a code
written in MATLAB 7.11.0.584 (R2010b) software.

Example 4.1. Consider the telegraph Equation (1) defined on the domain Ω× [0, 1], and

k(x, y, t) = 2µ+ θ2(x2 + y2 + t)− 2x2−α

Γ(3− α)
− 2y2−β

Γ(3− β)
− σdB(t)

dt
.

The initial and boundary conditions are given by{
u(x, y, 0) = x2 + y2,

ut(x, y, 0) = 1,

and {
u(0, y, t) = y2 + t, u(1, y, t) = 1 + y2 + t,

u(x, 0, t) = x2 + t, u(x, 1, t) = x2 + 1 + t.

The exact solution of this problem is u(x, y, t) = x2 + y2 + t. This example has been solved
for µ = θ = σ = 1 and different values of α, β, M and N and obtained results have been
reported in tables and figures. To investigate the effect of increasing the value of N on the
approximate solution, consider a constant value for M = 20 and run the Matlab codes for
different values of N and different values of fractional derivatives α and β, and report the
obtained results in Table 2. Also, the error figures for M = 20, N = 160 and different values
of α and β have been plotted in Figure 1. The effect of increasing M in approximate solution
have been investigated in Table 3. From the reported results in Tables 2 and 3 can be conclude
that by increasing the values of M and N , and consequently decreasing the values of spatial
step sizes in x and y directions, the values of maximum error are reduced and more accurate
results are provided. Also, it conclude that the computational convergence order is about 2.
The behaviour of absolute error of described method for u(0.5, 0.5, t) are depicted in Figure 2,
where 0 ≤ t ≤ 1 and M = N = 10 and α = β = 1.1, 1.2 (left) and α = β = 1.9, 2 (Right).

Example 4.2. Consider the telegraph Equation (1) defined on the domain Ω× [0, 1], and

k(x, y, t) = −π2x2y3 sin(πt) + 2µπx2y3 cos(πt) + θ2x2y3 sin(πt)

− 2x2−αy3 sin(πt)

Γ(3− α)
− 6x2y3−β sin(πt)

Γ(4− β)
− σdB(t)

dt
.

The initial and boundary conditions are given by{
u(x, y, 0) = 0,

ut(x, y, 0) = πx2y3,
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Table 2: Numerical results of Example 4.1 with M = 20 at final time T = 1.

α = β = 1.1 α = β = 1.2 α = β = 1.9 α = β = 2
N L∞-error Cx-order L∞-error Cx-order L∞-error Cx-order L∞-error Cx-order
10 2.3547× 10−3 ——– 1.0842× 10−3 ——– 8.5234× 10−4 ——– 4.5281× 10−4 ———
20 6.0172× 10−4 1.9684 2.5901× 10−4 2.0655 2.1236× 10−4 2.0049 1.1486× 10−4 1.9790
40 1.4532× 10−4 2.0499 6.5542× 10−5 1.9825 5.4428× 10−5 1.9640 3.0541× 10−5 1.9110
80 3.4205× 10−5 2.0870 1.5367× 10−5 2.0925 1.2074× 10−5 2.1724 7.1227× 10−6 2.1002
160 7.9530× 10−6 2.1046 4.0504× 10−6 1.9236 2.8110× 10−6 2.1027 1.7582× 10−6 2.0183

Table 3: Numerical results of Example 4.1 with N = 10 at final time T = 1.

α = β = 1.1 α = β = 1.2 α = β = 1.9 α = β = 2
M L∞-error Cy-order L∞-error Cy-order L∞-error Cy-order L∞-error Cy-order
10 3.2571× 10−2 ——– 2.5427× 10−2 ——– 9.4735× 10−3 ——– 6.2541× 10−3 ———
20 8.5461× 10−3 1.9302 5.9704× 10−3 2.0905 2.1928× 10−3 2.1111 1.4129× 10−3 2.1461
40 2.0281× 10−3 2.0751 1.5453× 10−3 1.9499 6.0598× 10−4 1.8554 3.7149× 10−4 1.9273
80 5.0703× 10−4 2.0000 3.4147× 10−4 2.1781 1.5735× 10−4 1.9453 9.5412× 10−5 1.9611
160 1.2849× 10−4 1.9804 9.0893× 10−5 1.9095 4.1031× 10−5 1.9392 2.1204× 10−5 2.1698
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Figure 1: Absolute error of Example 4.1 for M = 20, N = 160 and different values of α and β
at final time T = 1.
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Figure 2: Absolute error at x = y = 0.5 of Example 4.1 for different values of α and β with
M = N = 10.

Table 4: Numerical results of Example 4.2 with M = 20 at final time T = 1.

α = β = 1.1 α = β = 1.2 α = β = 1.9 α = β = 2
N L∞-error Cx-order L∞-error Cx-order L∞-error Cx-order L∞-error Cx-order
10 4.9542× 10−3 ——– 1.8935× 10−3 ——– 1.2039× 10−3 ——– 2.9546× 10−4 ———
20 1.1284× 10−3 2.1343 3.9497× 10−4 2.2612 3.2548× 10−4 1.8870 7.6642× 10−5 1.9467
40 2.8243× 10−4 1.9983 8.9543× 10−5 2.1410 7.4512× 10−5 2.1270 2.1245× 10−5 1.8510
80 6.2204× 10−5 2.1828 2.5548× 10−5 1.8093 1.5842× 10−5 2.2337 5.9912× 10−6 1.8262
160 1.3263× 10−5 2.2296 5.4918× 10−6 2.2178 3.9018× 10−6 2.0215 1.5311× 10−6 1.9682

and {
u(0, y, t) = 0, u(1, y, t) = y3 sin(πt),

u(x, 0, t) = 0, u(x, 1, t) = x2 sin(πt).

The exact solution of this problem is u(x, y, t) = x2y3 sin(πt). This example has been solved for
µ = θ = σ = 1 and different values of α, β, M and N and obtained results have been reported
in tables and figures. To investigate the effect of increasing the value of N on the approximate
solution, consider a constant value for M = 20 and run the Matlab codes for different values
of N and different values of fractional derivatives α and β, and report the obtained results in
Table 4. Also, the error figures for M = 20, N = 160 and different values of α and β have been
plotted in Figure 3. The effect of increasing M in approximate solution have been investigated
in Table 5. From the reported results in Tables 4 and 5, it conclude that by increasing the values
of M and N , and consequently decreasing the values of spatial step sizes in x and y directions,
the values of maximum error are reduced and more accurate results are provided. Also, it
follows that the computational convergence order is about 2. The behaviour of absolute error
of described method for u(0.5, 0.5, t) are depicted in Figure 4, where 0 ≤ t ≤ 1 andM = N = 10
and α = β = 1.1, 1.2 (left) and α = β = 1.9, 2 (Right).

5 Conclusion

In this article, the Caputo fractional derivatives of order α and β are estimated via linear spline
approximation, and then some finite difference formulas of order 2 are used to approximate
the second-order derivatives with respect to x and y. Therefore, the solution of 2D stochastic
space fractional telegraph equation is transformed into the solution of a system of IVPs with
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Table 5: Numerical results of Example 4.2 with N = 10 at final time T = 1.

α = β = 1.1 α = β = 1.2 α = β = 1.9 α = β = 2
M L∞-error Cy-order L∞-error Cy-order L∞-error Cy-order L∞-error Cy-order
10 6.5431× 10−2 ——– 4.0081× 10−2 ——– 1.2743× 10−2 ——– 8.0425× 10−3 ———
20 1.6872× 10−2 1.9553 1.0254× 10−2 1.9667 3.1435× 10−3 2.0192 2.1486× 10−3 1.9042
40 3.9436× 10−3 2.0970 2.6437× 10−3 1.9555 7.9427× 10−4 1.9846 5.4612× 10−4 1.9761
80 9.8274× 10−4 2.0046 6.2412× 10−4 2.0826 1.8402× 10−4 2.1097 1.2937× 10−4 2.0777
160 2.3681× 10−4 2.0530 1.5437× 10−4 2.0154 4.5842× 10−5 2.0051 3.2702× 10−5 1.9840
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Figure 3: Absolute error of Example 4.2 for M = 20, N = 160 and different values of α and β
at final time T = 1.
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Figure 4: Absolute error at x = y = 0.5 of Example 4.2 for different values of α and β with
M = N = 10.

unknown error term
−→
V ' O(∆x2 + ∆y2). By neglecting unknown error term

−→
V and using

ODEs solver in Matlab software, the numerical solution is achieved. Although Matlab software
is used to implement our programming codes, any other mathematical software with a library
ODEs solver can be applied. The accuracy, efficiency and applicability of the mentioned method
are checked via two test problems. In these examples, the effect of increasing M and N , or
decreasing spatial step size ∆x and ∆y has been investigated. The numerical results reported in
tables reveal that by increasing the number of mesh points in x and y directions, more accurate
solution is obtained and the values of maximum error are reduced. Also, the influence of values
of α and β in approximate solution have been tested and have been demonstrated that as α
and β approach to 2, the values of maximum error is reduced.
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