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Abstract

Here, we present a composition method for solving time-
fractional convection-diffusion equations (TF-CDEs). The main
aims of the technique are to use Pell wavelets and convert the
considered problem into fractional partial integro-differential
equations, utilizing the Riemann-Liouville fractional integra-
tion (RL). For this approach, we consider Pell wavelets as
an efficient tool to develop the method. We compute the RL
pseudo-operational matrix for these functions. Taking RL
for the considered problem and using the properties of RL,
with the help of a pseudo-operational matrix and optimization
scheme, we present the framework of the suggested scheme.
Moreover, for approximate results, we evaluate the upper
bound of errors. As a result, we apply the method by solving
some numerical samples. Our approximate results illustrate
that the computational scheme is powerful and applicable to
solve the mentioned problems, and we can implement this to
solve different kinds of fractional problems.

c© 2024 University of Kashan Press. All rights reserved.

1 Introduction
In recent decades, with the expansion of science and the introduction of fractional calculus, frac-
tional operators have been used widely to model various phenomena in science and mathematics
because they provide new interpretations for classical models, as well as enabling alternatives in
the formulation of phenomena models, whether they come from physics, chemistry, biology, or
engineering [1–4]. The computational complexity in obtaining the analytical solution of some
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fractional problems caused the researchers to present various numerical methods according to
the conditions and physics of the problem. For example, the authors proposed the fractional
linear multi-step method for solving a class of fractional delay differential equations [5]. An
operational matrix was designed to find the approximate solution of distributed order fractional
differential equation [6].

Also, the effect of Caputo fractional derivative on polynomiography was studied in [7]. At the
same time, convection-diffusion equations (CDEs) are a combination of the diffusion equation
and convection, and describe some phenomena in which particles, electricity, and other physical
quantities are transmitted in a physical structure through two methods; diffusion and convection
[8–10].

Here, we aim to propose a hybrid computational method based on Pell wavelets and an
optimization technique for TF-CDEs. We consider TF-CDE as follows [11]:

cD
α
t G(x, t) + b(x)Gx(x, t) + c(x)Gxx(x, t) = g(x, t), (1)

subject to
G(x, 0) = µ(x),

and
G(0, t) = η0(t), G(1, t) = η1(t),

for (x, t) ∈ [0, 1] × (0, 1], in which b(x), c(x) are continuous functions, and 0 < α ≤ 1. In this
problem, Caputo fractional derivative is used, which is defined in [12].

For investigation, we utilize the main keyword, mentioned below, for searching in the Scopus
database: (TITLE (diffusion AND equation) AND TITLE (convection) AND TITLE (frac-
tional) AND TITLE (time)).

1.1 Existence and uniqueness solution

To study in existence and unique solution of this set of equations, some research existed. Hendy
and Zaky [13] investigated existence, considered a class of TF-CDEs, and established the unique-
ness and regularity properties of a weak solution. Also, Sun et al. [14] proved the existence,
and uniqueness of the solution of using the fixed point theorem.

1.2 Applications

By applying the mentioned query in Scopus, the plot of the subject area of the problem is
shown in Figure 1. Due to this figure, we can see that the most common use of this problem is
in mathematics and engineering.

Convection diffusion equations (CDEs) are a combination of the diffusion equation and con-
vection, and describe some natural events that electricity, particles, and some physical quantities
are supplied in a physical structure through two methods; diffusion and convection [15]. Ad-
ditionally, with the introduction and expansion of fractional calculus, fractional-order CDEs
also appeared in the modeling of some phenomena to describe their behavior more accurately
in engineering, physics, chemistry, and medicine. For instance, these types of equations have
appeared in the modeling of mass transfer [16], gas transfer via heterogeneous soil and gas reser-
voirs [17], image processing [18], cholera spatial dynamics [19], continuous intestinal absorption
model [20], gas desorption via a homogeneous membrane by Kalman filtering [21], chemical
reactions [22], environmental science [23], liquid or pollutant transfer in heat conduction, and
complex media [24], and global weather production in special case [25].



Iranian Journal of Mathematical Chemistry 15 (4) (2024) 239− 258 241

Figure 1: The subject area of the considered problems in Scopus.

1.3 Numerical studies
According to the considered keyword, the trend of annual published documents in Scopus is
plotted in Figure 2. This data was collected on 16th May 2022. The existence and uniqueness

Figure 2: The trend of annual published documents in Scopus.

of the weak solution of space TF-CDE were investigated in [26]. The authors in [27] studied the
existence, uniqueness, and regularity of the solution of TF-CDE. The stability and convergence
of the different methods for the mentioned problems were perused in [28]. The convergence anal-
ysis of the shifted Chebyshev collocation of the fourth kind to solving the mentioned equation
was investigated in [29].

Solution of TF-CDE has been investigated by some researchers and numerical techniques
in this regard. For example, Sokhanvar et al. [30] presented a numerical scheme via Legendre
multiwavelets to find a solution for multi-term fractional time-space CDEs. Two-dimensional
TF-CDE was solved using Meshless simulation [31]. Authors [32] proposed a spectral method
to solve the mentioned problems. Generalized polynomials were implemented to solve a class
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of TF-CDEs [33]. Authors [34] studied a computational method via Jacobi polynomials. Lubo
and Duressa [35] proposed a method based on the finite element method to solve the delay
reaction-diffusion equation.

On the other hand, wavelets are effective and efficient tools to solve various kinds of problems
with smooth or non-smooth solutions. Among of wavelet functions used to solve problems are
Bernoulli wavelets [36], Fibonacci wavelets [37], Touchard wavelets [38], Taylor wavelets [39],
and so on.

Finally, due to the efficiency of wavelet functions and the above discussion, we present a
new computational technique by Pell wavelets. Due to the framework of the present method
and RL pseudo-operational matrix, with an optimization scheme, we compute more accurate
approximate solutions in comparing with some existing methods. Actually, the main aim of
this manuscript is to transform the time-fractional diffusion equations into the fractional partial
integro-differential equation by implementing the properties of the Caputo fractional derivative
and the Riemann-Liouville integral. To do this, we proposed a new Riemann-Liouville pseudo-
operational matrix for Pell wavelets. In the procedure of the matrix, we used the properties
of the Riemann-Liouville integral, and the accuracy of this matrix affects the accuracy of the
method directly. Moreover, applying an optimization method to derive the unknown coefficients
affects the accuracy of the method, too.

1.4 Paper’s structure
The study is structured as follows: Section 2 deals with recalling Pell polynomials, and wavelets
and their properties. Section 3 provides a new RL pseudo-operational matrix applying char-
acteristic functions. Section 4 presents the description of the suggested method. Section 5
proposes a discussion on error estimation. Section 6 provides some approximated experiments
to illustrate the accuracy and effectiveness of the developed technique. Finally, Section 7 in-
cludes the conclusions of this manuscript.

2 Pell wavelets and their properties
Here, we recall the Pell polynomial and wavelet features.

2.1 Pell polynomials
Pell polynomials are defined as the following recurrence relation [40] Pm(t) = 2tPm−1(t) + Pm−2(t),

P0(t) = 0,
P1(t) = 1, m ≥ 2.

(2)

These polynomials can be rewritten in the following form [41]

Pm(t) =

bm−1
2 c∑

n=0

(
m− n− 1
n

)
(2t)m−2n−1, (3)

with the following property for m ≥ 0 [42]

tm =

(
1

2

)m bm2 c∑
r=0

(−1)r
(
m
r

)
m− 2r + 1

m− r + 1
Pm+1−2r(t). (4)
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Lemma 2.1. For the Pell polynomials, we have the following feature [43]

∫ 1

0

Pm(t)Pm′(t)dt =

bm−1
2 c∑

n=0

bm
′−1
2 c∑

n′=0

(
m− n− 1
n

)(
m′ − n′ − 1
n′

)
2m+m′−2n−2n′−2

m+m′ − 2n− 2n′ − 1
.

(5)

2.2 Wavelet functions

Here, we consider the Pell wavelets in the following form [43]

ψn,m(t) =

 2
k−1
2 P̃m(2k−1t− ñ), t ∈ [ ñ

2k−1 ,
ñ+1
2k−1 ),

0, otherwise,
(6)

in which, m = 1, 2, · · · ,M, n = 1, 2, · · · , 2k−1, P̃m(t) = 1√
ωm

Pm(t), and ωm is derived using
Equation (5).

In this part, we can approximate a square-integrable function u(x, t) utilizing Pell wavelets
in the following formula:

u(x, t) ≈
2k−1∑
n=1

M∑
m=1

2k̃−1∑
ñ=1

M̃∑
m̃=1

un,m,ñ,m̃ψn,m(x)ψñ,m̃(t) (7)

=
(
ΨM
k (x)

)T
UΨM̃

k̃
(t),

in which

ΨM
k (x) =

[
ψ1,1(x), · · · , ψ1,M (x), · · · , ψ2k−1,1(x), · · · , ψ2k−1,M (x)

]T
,

ΨM̃
k̃

(t) =
[
ψ1,1(t), · · · , ψ1,M̃ (t), · · · , ψ2k̃−1,1(t), · · · , ψ2k̃−1,M̃ (t)

]T
,

and we calculate the unknown matrix U via the following formula:

U =
〈ΨM

k (x), 〈u(x, t),ΨM̃
k̃

(t)〉〉

〈ΨM
k (x),ΨM

k (x)〉〈ΨM̃
k̃

(t),ΨM̃
k̃

(t)〉
.

3 RL pseudo-operational matrix

RL integration is one of the most applicable concepts in fractional calculus. To find the definition
and some existing properties, Refs. [12, 44] are suitable.

Here, we describe the method to compute a fractional pseudo-operational matrix for Pell
wavelets. Suppose that

Iαt ΨM
k (t) ≈ tαΛ(α)ΨM

k (t), (8)

where tαΛ(α) , Λ(α, t) denotes the RL pseudo-operational matrix. The strategy to calculate
the components of the mentioned matrix is discussed below.



244 Y. Ordokhani et al. / Pell Wavelet Optimization Method for Solving Time-Fractional....

Theorem 3.1. Suppose that ψn,m(t) is the component of the Pell wavelets vector. Then, the
RL of the component of order n− 1 ≤ α < n is obtained as:

Iαt ψn,m(t) ≈ tα
2k−1∑
i=1

M∑
j=1

ξm,ni,j ψi,j(t), (9)

where

ξm,ni,j =
2
k−1
2

√
ωm

bm−1
2 c∑
s=0

m−2s−1∑
r=0

(
m− s− 1
s

)(
m− 2s− 1
r

)
2kr(2− 2n)m−2s−1−rai,j .

Proof. Due to the definition of ψn,m(t) in Equation (6), we can rewrite this relation as:

ψn,m(t) = 2
k−1
2 P̃m(2k−1t− ñ)χ[ ñ

2k−1 ,
ñ+1

2k−1 )(t), (10)

in which χ[a,b)(t) is the characteristic function. Next, according to Equation (3) and the afore-
said representation, the following expression is derived

Iαt ψn,m(t) = Iαt

(
2
k−1
2 P̃m(2k−1t− ñ)χ[ ñ

2k−1 ,
ñ+1

2k−1 )(t)
)

(11)

=
2
k−1
2

√
ωm

Iαt

bm−1
2 c∑
s=0

(
m− s− 1
s

)
(2kt− 2n+ 2)m−2s−1χ[ n−1

2k−1 ,
n

2k−1 )(t)


=

2
k−1
2

√
ωm

bm−1
2 c∑
s=0

m−2s−1∑
r=0

(
m− s− 1
s

)(
m− 2s− 1
r

)
2kr(2− 2n)m−2s−1−r

× Iαt

(
trχ[ n−1

2k−1 ,
n

2k−1 )(t)
)

=
2
k−1
2

√
ωm

bm−1
2 c∑
s=0

m−2s−1∑
r=0

(
m− s− 1
s

)(
m− 2s− 1
r

)
2kr(2− 2n)m−2s−1−rθr(t),

we approximate θr(t) using the Pell wavelets as:

θr(t) = Iαt

(
trχ[ n−1

2k−1 ,
n

2k−1 )(t)
)

(12)

≈ tα
2k−1∑
i=1

M∑
j=1

ai,jψi,j(t).

Then, we insert the above equation in Equation (11), so we get

Iαt ψn,m(t) ≈ tα
2k−1∑
i=1

M∑
j=1

ξm,ni,j ψi,j(t),

where

ξm,ni,j =
2
k−1
2

√
ωm

bm−1
2 c∑
s=0

m−2s−1∑
r=0

(
m− s− 1
s

)(
m− 2s− 1
r

)
2kr(2− 2n)m−2s−1−rai,j .

�
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4 Construction of algorithm

In this portion, we establish our required relations for computation of solution of Equation (1).
To this aim, we consider Equation (1). For the first step, with respect to t (Iαt ), we apply RL
integration in order α in the both sides of equation, then we get

G(x, t) + b(x)Iαt (Gx(x, t)) + c(x)Iαt (Gxx(x, t)) = Iαt (g(x, t)) + G(x, 0), (13)

in the next step, we approximate Gxx(x, t), which has the highest order of derivative using the
Pell wavelets as:

Gxx(x, t) ≈ ΨMT
k (x)UΨM̃

k̃
(t), (14)

and U = [un,m], n = 1, 2, · · · , 2k−1, m = 1, 2, · · · ,M . By taking integral of order 1 with
respect to x in Equation (14), and implement the boundary conditions, the following relation
is achieved.

Gx(x, t) ≈ ΨMT
k (x)Λ(1, x)TUΨM̃

k̃
(t) + Gx(0, t), (15)

and, Gx(0, t) is unknown function. Similarly, we achieve

G(x, t) ≈ ΨMT
k (x)Λ(2, x)TUΨM̃

k̃
(t) + xGx(0, t) + G(0, t) (16)

= ΨMT
k (x)Λ(2, x)TUΨM̃

k̃
(t) + xGx(0, t) + η0(t).

Now, to compute the unknown function Gx(0, t), we take the integral from Equation (15) on
the interval [0, 1], thus we get

Gx(0, t) ≈ η1(t)− η0(t)−
[∫ 1

0

ΨMT
k (x)Λ(1, x)Tdx

]
UΨM̃

k̃
(t). (17)

In the following, due to Equation (13) and Equations (14)-(17), we take the RL fractional
integration of order α, from Equations (14)-(16). Thus, the following relation are achieved.

Iαt (Gxx(x, t)) ≈ ΨMT
k (x)UΛ(α, t)ΨM̃

k̃
(t), (18)

Iαt (Gx(x, t)) ≈ ΨMT
k (x)Λ(1, x)TUΛ(α, t)ΨM̃

k̃
(t) + Iαt (Gx(0, t)) (19)

≈ ΨMT
k (x)Λ(1, x)TUΛ(α, t)ΨM̃

k̃
(t) +

(
Iαt (η1(t))− Iαt (η0(t))

−
[∫ 1

0

ΨMT
k (x)Λ(1, x)Tdx

]
UΛ(α, t)ΨM̃

k̃
(t)

)
,

Iαt (G(x, t)) ≈ ΨMT
k (x)Λ(2, x)TUΛ(α, t)ΨM̃

k̃
(t) + x Iαt (Gx(0, t)) + Iαt (η0(t))

≈ ΨMT
k (x)Λ(2, x)TUΛ(α, t)ΨM̃

k̃
(t) + x

(
Iαt (η1(t))− Iαt (η0(t))

−
[∫ 1

0

ΨMT
k (x)Λ(1, x)Tdx

]
UΛ(α, t)ΨM̃

k̃
(t)

)
+Iαt (η0(t)) . (20)
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Consequently, inserting Equations (14)-(20) in Equation (13), we have

R(x, t) , ΨMT
k (x)Λ(2, x)TUΨM̃

k̃
(t) + x

(
η1(t)− η0(t)−

[∫ 1

0

ΨMT
k (x)Λ(1, x)Tdx

]
UΨM̃

k̃
(t)

)
+ η0(t) + b(x)

(
ΨMT
k (x)Λ(1, x)TUΛ(α, t)ΨM̃

k̃
(t) +

[
Iαt (η1(t))− Iαt (η0(t))

−
[∫ 1

0

ΨMT
k (x)Λ(1, x)Tdx

]
UΛ(α, t)ΨM̃

k̃
(t)

])
+c(x)

(
ΨMT
k (x)UΛ(α, t)ΨM̃

k̃
(t)

)
(21)

− Iαt (g(x, t)) + µ(x).

Finally, we can find the unknown matrix U , equivalently, in the optimization problem

J =

∫ 1

0

∫ 1

0

R2(x, t)dxdt, (22)

for the extremum of J, the necessary conditions are computed as:

∂J

∂U
= 0.

We solve the aforesaid system via mathematica software packages. After calculating U , we
obtain the numerical solution through Equation (16).

5 Error analysis
In this section, the approximation error bound is proposed. The Sobolev norm concept is
presented in [45]. We consider this norm in Ω = (a, b)s ∈ R, s = 2, 3. Moreover, the following
seminorms are required to achieve the aim [45].

|u|Hν;M (a,b) =

 ν∑
i=min(ν,M+1)

‖u(i)‖2L2(a,b)

 1
2

, (23)

and

|u|Hr,ν;M,N (a,b) =

 ν∑
i=min(ν,M+1)

N2r−2i‖u(i)‖2L2(a,b)

 1
2

, (24)

where, u ∈ Hν(a, b), 0 ≤ r ≤ ν, M ≥ 1 and N ≥ 1. Also, according to the mentioned
seminorms, we have

|u|Hr,ν;M,N (a,b) = Nr−ν‖u(ν)‖L2(a,b).

Remark 1. The following relation named Sobolev inequality, is established [46]

‖u‖L∞(a,b) ≤
[

1

b− a
+ 2

] 1
2

‖u‖
1
2

L2(a,b)‖u‖
1
2

H1(a,b). (25)

Lemma 5.1. Suppose that u ∈ Hν(0, 1), ν ≥ 1, then we have [47]

ũ ≈
2k−1∑
n=1

M̃∑
m̃=1

cn,m̃ψn,m̃(t),
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where, ũ is the best approximation of u, therefore

‖u− ũ‖L2(0,1) ≤ %M̃−ν |u|H0,ν;M̃,2k−1 (0, 1),

also, we get
‖u− ũ‖Hr(0,1) ≤ %M̃σ(r)−ν |u|

Hr,ν;M̃,2k−1 (0, 1),

where 1 ≤ r ≤ ν, % depends on ν, and

σ(r) =

{
2r − 1

2 , r > 0,
0, r = 0.

Lemma 5.2. If the hypothesis of the above lemma holds, we get:

‖u− ũ‖L∞(0,1) ≤
√

3%M̃
3
4−ν2

k−1
2 |u|

H0,ν;M̃,2k−1 (0,1)
. (26)

Proof. Due to Remark 1, and Lemma 5.2, we obtain:

‖u− ũ‖L∞(0,1) ≤
√

3‖u− ũ‖
1
2

L2(0,1)‖u− ũ‖
1
2

H1(0,1)

≤
√

3%M̃
3
4−ν |u|

1
2

H1,ν;M̃,2k−1 (0, 1)|u|
1
2

H0,ν;M̃,2k−1

=
√

3%M̃
3
4−ν

 ν∑
min(ν,M̃+1)

(2k−1)2−2i‖u(i)‖2L2(0,1)

 1
4

×

 ν∑
min(ν,M̃+1)

(2k−1)−2i‖u(i)‖2L2(0,1)

 1
4

=
√

3%M̃
3
4−ν2

k−1
2

 ν∑
min(ν,M̃+1)

(2k−1)−2i‖u(i)‖2L2(0,1)

 1
2

=
√

3%M̃
3
4−ν2

k−1
2 |u|

H0,ν;M̃,2k−1 (0,1)
.

Then, the proof is comeplete. �

Theorem 5.3. Let ûM̃ is the approximation of UM̃ where

UM̃ (x, t) =

2k−1∑
n=1

∞∑
m̂=1

an,m̂,M̃ψn,M̃ (x)ψn,m̂(t),

and

ûM̃ (x, t) =

2k−1∑
n=1

M̃∑
m̂=1

an,m̂,M̃ψn,M̃ (x)ψn,m̂(t),

so, the following relation is derived.

‖UM̃ − ûM̃‖L∞(0,1) ≤
√

3%MM̃M̂
3
4−ν2

k−1
2 |u|

H0,ν;M̃,2k−1 (0,1)
, (27)

where, MM̃ = supx∈[0,1]

∣∣∣∣∑2k−1

n=1 ψn,M̃ (x)

∣∣∣∣.
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Proof. Due to the hypotheses, Lemma 5.2, and Λ = [0, 1]× [0, 1], we achieve

‖UM̃ − ûM̃‖L∞(0,1)

= sup
(x,t)∈Λ

∣∣∣∣2
k−1∑
n=1

∞∑
m̂=1

an,m̂,M̂ψn,M̃ (x)ψn,m̂(t)−
2k−1∑
n=1

M̂∑
m̂=1

an,m̂,M̃ψn,M̃ (x)ψn,m̂(t)

∣∣∣∣
= sup

(x,t)∈Λ

∣∣∣∣
2k−1∑
n=1

∞∑
m̂=1

an,m̂,M̃ψn,m̂(t)−
2k−1∑
n=1

M̂∑
m̂=1

an,m̂,M̃ψn,m̂(t)

2k−1∑
n=1

ψn,M̃ (x)

∣∣∣∣
≤ sup

t∈[0,1]

∣∣∣∣2
k−1∑
n=1

∞∑
m̂=1

an,m̂,M̃ψn,m̂(t)−
2k−1∑
n=1

M̂∑
m̂=1

an,m̂,M̃ψn,m̂(t)

∣∣∣∣ sup
x∈[0,1]

∣∣∣∣2
k−1∑
n=1

ψn,M̃ (x)

∣∣∣∣
= MM̃‖

2k−1∑
n=1

∞∑
m̂=1

an,m̂,M̃ψn,m̂(t)−
2k−1∑
n=1

M̂∑
m̂=1

an,m̂,M̃ψn,m̂(t)‖L∞(0,1)

≤
√

3%MM̃M̂
3
4−ν2

k−1
2 |u|

H0,ν;M̃,2k−1 (0,1)
.

where, MM̃ = supx∈[0,1]

∣∣∣∣∑2k−1

n=1 ψn,M̃ (x)

∣∣∣∣. �

Remark 2. According to the above theorem, we can consider ûM̂ is the approximation of UM̂ ,
where

UM̂ (x, t) =

2k−1∑
n=1

∞∑
m̂=1

an,m̂,M̂ψn,m̂(x)ψn,M̂ (t),

and

ûM̂ (x, t) =

2k−1∑
n=1

M̃∑
m̂=1

an,m̂,M̂ψn,m̂(x)ψn,M̂ (t),

then, we have

‖UM̂ − ûM̂‖L∞(0,1) ≤
√

3%MM̂M̃
3
4−ν2

k−1
2 |u|

H0,ν;M̃,2k−1 (0,1)
, (28)

where, MM̂ = supt∈[0,1]

∣∣∣∣∑2k−1

n=1 ψn,M̂ (t)

∣∣∣∣.
Corollary 5.4. Considering the above lemmas, theorem, and remark, and by considering
M̂, M̃ > ν − 1, ν ≥ 1, we conclude

‖UM̃ − ûM̃‖L∞(0,1) ≤
√

3%MM̃M̂
3
4−ν(2

k−1
2 )

1
2−ν‖U(ν)

M̃
‖L2(0,1), (29)

and
‖UM̂ − ûM̂‖L∞(0,1) ≤

√
3%MM̂M̃

3
4−ν(2

k−1
2 )

1
2−ν‖U(ν)

M̂
‖L2(0,1). (30)

Therefore, increasing the amount of M̃, M̂ and k, the above error bound tends to zero.
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6 Test sample
Some samples are given to display the superiority and accuracy properties of the developed
scheme.

Sample 1: The following TF-CDE is considered

cD
α
t G(x, t) + xGx(x, t)−Gxx(x, t) = g(x, t),

where
G(0, t) = G(1, t) = 0, G(x, 0) = x2 − x3,

and

g(x, t) =
2t2−alpha

Γ(3− α)
(x2 − x3) + (t2 + 1)(2x2 − 3x3 + 6x− 2).

G(x, t) = (x2 − x3)(t2 + 1) is the analytic solution of this problem.
Using the present method, the absolute errors (AEs) for α = 1, 0.5 with k = k̃ = 1,M =

M̃ = 3 are displayed in Figure 3. Besides, the absolute errors with k = k̃ = 2,M = M̃ = 3 at
t = 0.2 for some values of α are demonstrated in Figure 4.

Figure 3: AE for Sample 1 with k = k̃ = 1,M = M̃ = 3, α = 0.5 (left) and ν = 1 (right).

Sample 2: The following TF-CDE is considered

cD
α
t G(x, t) + Gx(x, t)− xGxx(x, t) = g(x, t),

subject to
G(0, t) = (t2 + 1)(1− t), G(1, t) = (t2 + 1)(e− t), G(x, 0) = ex,

and

g(x, t) =
2t2−α

γ(3− α)
ex − t1−α

γ(2− α)
− 6t3−α

γ(4− α)
+ (t2 + 1)(1− x)ex.

The exact solution for this sample is

G(x, t) = (t2 + 1)(ex − t).

We apply the developed scheme to solve this problem and the numerical results are proposed
in Table 1, Figures 5 and 6. The comparison derived results of the proposed technique with the
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Figure 4: AE for Sample 1 with k = k̃ = 2,M = M̃ = 3, t = 0.2 and different values of α.

Table 1: AEs obtained by Tk-ChWs and our scheme for Sample 2.

(x, t) α = 0.9 α = 0.3

Tk-ChWs Our method Tk-ChWs Our method
(k = 2,M = 6) (k = k̃ = 1,M = M̃ = 6) (k = 2,M = 6) (k = k̃ = 1,M = M̃ = 6)

(0.1, 0.1) 2.5576 e−5 1.4602 e−9 7.7516 e−6 1.8787 e−9

(0.2, 0.2) 3.5050 e−5 6.7131 e−9 1.7024 e−5 4.6047 e−9

(0.3, 0.3) 3.3778 e−5 1.9372 e−9 2.4422 e−5 5.2454 e−10

(0.4, 0.4) 2.7183 e−5 1.2652 e−9 2.8796 e−5 3.4321 e−9

(0.5, 0.5) 2.0780 e−5 1.6367 e−9 3.0385 e−5 1.4401 e−10

(0.6, 0.6) 1.5150 e−5 3.6819 e−9 2.8824 e−5 2.5257 e−9

(0.7, 0.7) 1.0310 e−5 4.5087 e−10 2.4550 e−5 1.7513 e−10

(0.8, 0.8) 6.2760 e−6 2.4375 e−9 1.7352 e−5 2.1079 e−9

(0.9, 0.9) 2.9178 e−6 1.3009 e−10 9.5897 e−6 2.2314 e−10

scheme based on the third kind Chebyshev wavelets (Tk-ChWs) [48] are reported in Table 1.
This table shows that the suggested method is more accurate than the Tk-ChWs. Indeed, a
small number of Pell wavelets is utilized to derive satisfactory results. Moreover, the exact and
numerical solution for k = 1, k̃ = 2,M = 10, M̃ = 6 and α = 1 are shown in Figure 5. Besides,
the density of the exact and numerical solution over slice surface x for k = 1, k̃ = 2,M =
10, M̃ = 6 and α = 1 are displayed in Figure 6.

Sample 3: We consider the following TF-CDE

cD
α
t G(x, t) + xGx(x, t) + Gxx(x, t) = g(x, t),

in which

G(0, t) =
2γ(α+ 1)

γ(2α+ 1)
t2α, G(1, t) = 1 +

2γ(α+ 1)

γ(2α+ 1)
, G(x, 0) = x2,

and g(x, t) = 2tα + 2x2 + 2. The exact solution of the sample is G(x, t) = x2 + 2γ(α+1)
γ(2α+1) t

2α.
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Figure 5: (a) The exact solution and (b) approximate solution with k = 1, k̃ = 2,M = 10, M̃ =
6, and α = 1 in Sample 2.

We implement the proposed technique to find the approximate solution of the considered
sample. In Table 2, the comparison of the absolute errors of the Haar wavelet method [49],
Sinc-Legendre method [11], and the developed scheme are listed. In this table, it’s clear that
the suggested scheme is more accurate than the mentioned methods. Additionally, AEs of the
problem derived by the proposed scheme for k = k̃ = M = M̃ = 2 and α = 0.5, 0.3 are plotted
in Figure 7.

Table 2: Comparison of AEs obtained by the present and other schemes for α = 0.5 in Sample
3.

(x, t) Haar wavelet method Sinc-Legendre wavelet method Present method
(m = 64) (m = 25) (k = k̃ = 1,M = M̃ = 2)

(0.1, 0.5) 1.210 e−3 6.462 e−6 4.45511 e−18

(0.2, 0.5) 1.259 e−3 1.578 e−5 7.17304 e−18

(0.3, 0.5) 1.865 e−3 2.272 e−5 8.49590 e−18

(0.4, 0.5) 7.412 e−3 2.674 e−5 8.76575 e−18

(0.5, 0.5) 1.000 e−6 2.759 e−5 8.32471 e−18

(0.6, 0.5) 7.460 e−3 2.534 e−4 7.51485 e−18

(0.7, 0.5) 1.724 e−3 2.035 e−4 6.67827 e−18

(0.8, 0.5) 4.990 e−3 1.320 e−4 6.15705 e−18

(0.9, 0.5) 1.678 e−2 4.653 e−6 6.29329 e−18

Sample 4: We consider the following TF-CDE

cD
α
t G(x, t)−Gxx(x, t) + Gx(x, t) = g(x, t),

in which
G(0, t) = G(1, t) = G(x, 0) = 0,

and g(x, t) = Γ(4+α)t3

6 sin(πx) + π2t3+α sin(πx) + πt3+α cos(πx). The analytical solution of this
problem is G(x, t) = t3+α sin(πx). The approximate solution and AEs with k = k̃ = 1,M =
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Figure 6: The density of (c) exact solution and (d) approximate solution with k = 1, k̃ = 2,M =
10, M̃ = 6, and α = 1 in Sample 2.

Figure 7: AEs with k = k̃ = 2,M = M̃ = 2, (a) α = 0.5 and (b) α = 0.3 in Sample 3.

8, M̃ = 5,for α = 1 is plotted in Figure 8. Moreover, a comparison of the exact solution with
the approximate solution for some values of α, with k = 1, k̃ = 2,M = M̃ = 5 at t = 0.5 are
shown in Figure 9. In α = 0.6, the maximum error of the numerical solution derived by the
present technique (k = 1, k̃ = 2,M = M̃ = 5) and finite difference method [50] are listed in
Table 3.
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Figure 8: (a) The approximate solution and (b) AEs with k = k̃ = 1,M = 8, M̃ = 5,for α = 1
in Sample 4.
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Figure 9: Comparison of the exact solution with the approximate solution for some values of
α, with k = 1, k̃ = 2,M = M̃ = 5 at t = 0.5, in Sample 4.

7 Conclusion

This manuscript focused on suggesting an optimization technique to solve time-
fractional convection-diffusion equations. Our aim was achieved by converting the
considered problem to time-fractional partial integro-differential equations using the properties
of Riemann-Liouville fractional integration. This process was used to improve the accuracy of
the developed method. To develop the method, we used the Pell wavelets. Then, a new
fractional integration pseudo-operational matrix had been obtained. Next, by implementing of
an optimization method, the converted problem is solved, numerically.

Despite utilizing a few terms of the Pell wavelets, the numerical results display the excel-
lent behavior of the optimization scheme to obtain the approximate solution. Also, the figures
and tables verified the effectiveness of the established method. As a future work, due to the
advantage of the proposed method, we can combine this method with some potential numerical
methods such as the least square, and the Ritz-Galerkin method to solve different kinds of frac-
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Table 3: Comparison of the maximum errors obtained by the present and finite difference
method for α = 0.8 in Sample 4.

Methods
Finite difference method (M = 20, N = 20) 1.0563 e−2

Finite difference method (M = 40, N = 40) 4.3954 e−3

Finite difference method (M = 80, N = 80) 1.8610 e−3

Finite difference method (M = 160, N = 160) 7.9719 e−4

Present method (k = k̃ = 1,M = 8, M̃ = 5) 1.5000 e−4

tional differential problems arising in some mathematical models of phenomena in engineering,
physics, and biology.
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