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Abstract

The multiplicative first Zagreb index is the product of
the square of the degree of vertices in a graph G. The
multiplicative reformulated first Zagreb index is defined as∏

1,e(G) =
∏
x1x2∈E(G)(dG(x1) + dG(x1) − 2)2, where E(G) is

the edge set of a graph G and dG(x1) is the degree of a vertex x1
in a graph G. In this paper, we characterize the minimum and
maximum trees and unicyclic graphs with respect to matching
and perfect matching using this graph invariant

∏
1,e(G) among

the collection of all n-vertex graphs.

c© 2024 University of Kashan Press. All rights reserved.

1 Introduction

Let G be a simple, connected and finite graph that has a vertex set V (G) and an edge set E(G).
The books [1, 2] contain notation and terminology that are not specified here. Topological
indices are important in many domains, including chemistry, materials science, pharmaceutical
sciences, and engineering, since they connect with the physical and chemical characteristics
of molecules, chemical compound modeling, and biological activities. The Zagreb indices are
well-known topological indices that express chemical compounds through trees and unicyclic
graphs. They were proposed in the last decade of the 19th century. The Zagreb index was
the first degree-based topological index created in 1972. The topological indices that depend
on vertex degree are the first Zagreb index M1(G) and the second Zagreb index M2(G). In
a publication [3], Gutman and Trinajstić introduced these indices. Other well-known and
most used degree-based topological indices include the hyper-Zagreb index [4], reduced second
Zagreb index [5] and reduced first Zagreb index [6]. These indices are extensively researched
in (chemical) graph theory. In addition to Zagreb indices, readers who are interested in some
recent assessments on the topic are referred to [7]. Another invariant of the Zagreb index is the
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reformulated first Zagreb index [8], which is defined in terms of edge degrees rather than vertex
degrees. The mathematical properties of the reformulated first Zagreb indices were investigated
in this paper [9]. These indices represent the degree of branching of the molecular carbon-atom
skeleton and may thus be used to describe molecular structure. For more detail on trees and
unicyclic graphs, see [10–24]. The multiplicative definition of the first Zagreb index is defined in
[25]. The paper [26] aims to identify a graph that achieves the highest or lowest possible value
of the reformulated multiplicative first Zagreb index. The invariant

∏
1(G) is known as the

multiplicative reformulated first Zagreb index in [27]. It is denoted by
∏

1,e(G) and is defined
as: ∏

1,e

(G) =
∏

x1,x2∈E(G)

(deg(x1) + deg(x2)− 2)2.

We denote the collection of all extremal trees byMTn,α of n-vertex and α-matching number. We
further define the subclasses of trees that minimize and maximize multiplicative reformulated
first Zagreb as MTmin,n,α and MTmax,n,α. For α = 1, the collection MTn,1 has unique elements
P2, P3 and MTn,α = ∅ for bn2 c < α ≤ n. Therefore, the class of trees under consideration is
MTn,α with 2 ≤ α ≤ bn2 c and n ≥ 4. The minimal tree is the path Pn, whereas the maximal
tree is a star-like graph Sn,α. Let us suppose that MUn,α is the collection of n-order unicyclic

Figure 1: MTmax,n,α.

graph having an α-matching. The characterization of unicyclic graph that gives the minimum
MUmin,n,α and maximum value MUmax,n,α with respect to matching and perfect matching
about multiplicative reformulated first Zagreb index are discussed here. If α = 1, then MUn,1
has a unique cycle of length 3 and MUn,α = ∅ for bn2 c < α ≤ n. Let Cq be a cycle of
length q for 3 ≥ q ≥ n. For the minimum value of multiplicative reformulated first Zagreb
index, the unicyclic graph has MUmin,n,α = Cn, on the other hand, the maximum value of the
multiplicative reformulated first Zagreb index, unicyclic graph can be obtained by connecting
n− 2α+ 1 pendant vertices and α− 2 paths of length 2 to one of the three vertices of C3.

Figure 2: MUmax,n,α.
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2 Preliminaries
The order of a graph G represents the total number of vertices it contains. The number of edges
that are incident to a vertex x1 in V (G) is the degree of the vertex, which is represented by
degG(x1). If vertex x1 is an endpoint of edge e then x1 is said to be incident on e and e is incident
on x1. If there is an edge between two vertices x1 and x2, then we say that these vertices are
adjacent to each other. When the degree of a vertex is 1, then it is known as a pendant vertex.
A branching vertex is a vertex that has a degree of at least 3. Let Pn, Sn and Cn denote the
path, cycle and star of n vertices respectively. A path is a chain of distinct vertices such that
two consecutive vertices are adjacent. If one end vertex of graph G is of degree greater or equal
to 3, the other end vertex is the pendant vertex and (if an internal vertex exists), every internal
vertex with a degree of exactly 2 is known as pendant path. An undirected connected graph
is a tree that contains no cycles. If two distinct edges have a common vertex; they are said
to be adjacent edges or neighbouring point. A vertex x1 is a neighbor of x2 if x1 and x2 are
adjacent. The neighbourhood is the set of all neighbours of vertex x1 and denoted by N (x1). If
the maximum degree of a vertex of a tree is four, then it is called a chemical(molecular) tree. A
connected graph is a unicyclic graph in which it has only one cycle. In a graph G, a matching
M is a collection of distinct edges. Maximum matching is the set of the largest non-adjacent
edges. Maximal matching is the collection of the smallest possible collection of non-adjacent
edges. The number of edges in a maximum matching of a graph G is known as the matching
number. Perfect matching occurs when every vertex of a graph G is connected by exactly one
edge. If each vertex in V (G) is on an edge of M, a set of vertices in a graph G is said to be
saturated by matching M; otherwise it is M-unsaturated.

3 Results
This section discusses the structure of extremal trees and unicyclic graphs and identifies the
lower and upper bounds on multiplicative reformulated first Zagreb index in relation to perfect
matching and the matching number α.

3.1 Characterization of trees with respect to matching
We will discuss the lower and upper bounds on multiplicative reformulated first Zagreb index
for n-vertex trees with respect to perfect matching and matching number α.

Theorem 3.1. If MT ∈MTmin,n,α, where α ≥ 2 and n ≥ 4 then we have:

∏
1,e

(MT) ≥ 4n−3,

with equality if and only if MT is Pn.

Now we will discuss the cases for α ≥ 2 and n ≥ 5.

Theorem 3.2. Let MT ∈MTmin,2α,α, where α ≥ 2 then we have:

∏
1,e

(MT) ≥ 42α−3,

with equality if and only if MT is P2α.
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Proof. For α=2, only P4 is the tree of 2α=4 vertices. We have
∏

1,e(P4) = 4 and this satisfies
the given bound. Thus, this result is true for α=2. We know that for n = 2α ≥ 4 the path P2α

is only the tree with the smallest
∏

1,e index among trees with 2α vertices (using Theorem 3.1).
The path P2α has 42α−3 vertices of degree 2 and two vertices of degree 1 because P2α has a
perfect matching, P2α is the only tree having the smallest

∏
1,e index among trees with perfect

matching, therefore ∏
1,e

(MT) = 42α−3.1.1 = 42α−3.

�

Now, we characterize the structure of the maximal tree MTmax,n,α with respect to perfect
matching and matching number α of order n.

Lemma 3.3. If MT ∈MTmax,n,α, where (n ≥ 5, α ≥ 2) then MT is not a path.

Proof. Suppose on contrary that MT = x0x1...xn−1 is a path. Construct MT′ = MT+{x1x3}−
{x1x2} then MT′ ∈MTmax,n,α. For n = 5,

(a) MT (b) MT′

Figure 3: For n = 5.

∏
1,e

(MT′)−
∏
1,e

(MT) = (1 + 2− 2)2(2 + 3− 2)2(3 + 1− 2)2(3 + 1− 2)2

−(1 + 2− 2)2(2 + 2− 2)2(2 + 2− 2)2(2 + 1− 2)2

= 128 > 0,

which is a contradiction (see Figure 3). For n ≥ 6,

(a) MT (b) MT′

Figure 4: For n ≥ 6.

∏
1,e

(MT′)−
∏
1,e

(MT) = (1 + 2− 2)2(2 + 3− 2)2(2 + 3− 2)2(3 + 1− 2)2

× (2 + 2− 2)2(n−5) − (1 + 2− 2)2(2 + 2− 2)2(n−2)

= (65)(4n−4) > 0,
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which is a contradiction to our supposition (see Figure 4). Therefore MT is not a path. �

Lemma 3.4. Let P is a pendant path of MT ∈MTmax,n,α then |P| ≤ 2.

Proof. Suppose on contrary that P = x0x1...xη is a pendant path of length η ≥ 3 with
degMT(x0) = ω ≥ 3, degMT(xη) = 1 and degMT(x1)=degMT(x2) = · · · = degMT(xη−1)=2. Con-
structMT′ = MT+{x0xη}−{xη−2xη−1} (as shown in Figure 5) then we haveMT′ ∈MTmax,n,α.
For η > 3, let N0 = NMT(x0)\{x1},

(a) MT (b) MT′

Figure 5: For η > 3.

∏
1,e

(MT′)−
∏
1,e

(MT) = (2 + 1− 2)2(2 + 1− 2)2(ω + 1 + 2− 2)2(ω + 1 + 2− 2)2

×
∏

xi∈N0

(ω + 1 + dMT(xi)− 2)2 − (2 + 2− 2)2(2 + 2− 2)2

× (2 + 1− 2)2(ω + 2− 2)2
∏

xi∈N0

(ω + dMT(xi)− 2)2

= (ω + 1)4
∏

xi∈N0

(ω + dMT(xi)− 1)2 − 16ω2

×
∏

xi∈N0

(ω + dMT(xi)− 2)2 > 0.

Note that for ω ≥ 3 we obviously have:

∏
xi∈N0

(ω + dMT(xi)− 1)2 >
∏

xi∈N0

(ω + dMT(xi)− 2)2, (ω + 1)2 ≥ 16, (ω + 1)2 > ω2.

For η = 3 (see Figure 6),
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(a) MT (b) MT′

Figure 6: For η = 3.

∏
1,e

(MT′)−
∏
1,e

(MT) = (2 + 1− 2)2(ω + 1 + 2− 2)2(ω + 1 + 1− 2)2

×
∏

xi∈N0

(ω + 1 + dMT(xi)− 2)2 − (2 + 2− 2)2(2 + 1− 2)2

× (ω + 2− 2)2
∏

xi∈N0

(ω + dMT(xi)− 2)2

= ω2(ω + 1)2
∏

xi∈N0

(ω + dMT(xi)− 1)2 − 4ω2

×
∏

xi∈N0

(ω + dMT(xi)− 2)2 > 0.

In above equation, note that we used (ω + 1)2 > 4, ω ≥ 3. Thus,
∏

1,e(MT′) >
∏

1,e(MT),
which is a contradiction to our supposition. Therefore MT is a pendant path of length 2. �

Lemma 3.5. Let PI is an internal path of MT ∈MTmax,n,α then |PI | < 1.

Proof. Suppose on contrary that PI = x0x1...xκ has an internal path of length κ ≥ 1 ofMT with
degMT(x0) = t ≥ 3, degMT(xκ) = s ≥ 3 and degMT(x1)=degMT(x2) = · · · = degMT(xκ−1)=2.
Let N0 = NMT(x0)\{x1} and N1 = NMT(xκ)\{xκ−1}.
Case 1. For κ ≥ 5, construct MT′ = MT + {x0x2, x1x4} − {x1x2, x3x4} (see Figure 7) then
we have MT′ ∈MTmax,n,α and

(a) MT (b) MT′

Figure 7: For κ ≥ 5.
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∏
1,e

(MT′)−
∏
1,e

(MT) = (2 + 2− 2)2(2 + 1− 2)2(t+ 1 + 2− 2)2(t+ 1 + 2− 2)2

×
∏

xi∈N0

(t+ 1 + dMT(xi)− 2)2 − (2 + 2− 2)2(2 + 2− 2)2

× (2 + 2− 2)2(t+ 2− 2)2
∏

xi∈N0

(t+ dMT(xi)− 2)2

= 4(t+ 1)4
∏

xi∈N0

(t+ dMT(xi)− 1)2 − 64t2

×
∏

xi∈N0

(t+ dMT(xi)− 2)2 > 0,

which is a contradiction. Note that here for t ≥ 3 we obviously have 4(t + 1)2 ≥ 64 and
(t+ 1)2 > t2.

(a) Case 2. (b) Subcase 2.1

(c) Subcase 2.2

Figure 8: For κ = 4.

Case 2. For κ = 4, to prove this case there are two possibilities (see Figure 8).
Subcase 2.1. In this subcase x2 is M-unsaturated then x1 and x3 must be M-saturated. Let
MT′ = MT + {x0x2, x1x3} − {x1x2, x2x3} then we have MT′ ∈MTmax,n,α and∏

1,e

(MT′)−
∏
1,e

(MT) = (2 + 2− 2)2(t+ 1 + 2− 2)2(t+ 1 + 1− 2)2

×
∏

xi∈N0

(t+ 1 + dMT(xi)− 2)2 − (2 + 2− 2)2(2 + 2− 2)2

× (t+ 2− 2)2
∏

xi∈N0

(t+ dMT(xi)− 2)2

= 4t2(t+ 1)2
∏

xi∈N0

(t+ dMT(xi)− 1)2 − 16t2

×
∏

xi∈N0

(t+ dMT(xi)− 2)2 > 0,

which is a contradiction.
Subcase 2.2. In this subcase x2 is M-saturated and let x1x2 ∈M then let at least one from x0
and x3 is M-saturated. Define MT′ = MT + {x0x3} − {x2x3} then we have MT′ ∈ MTmax,n,α
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and

∏
1,e

(MT′)−
∏
1,e

(MT) = (2 + 1− 2)2(t+ 1 + 2− 2)2(t+ 1 + 2− 2)2

×
∏

xi∈N0

(t+ 1 + dMT(xi)− 2)2 − (2 + 2− 2)2(2 + 2− 2)2

× (t+ 2− 2)2
∏

xi∈N0

(t+ dMT(xi)− 2)2

= (t+ 1)4
∏

xi∈N0

(t+ dMT(xi)− 1)2 − 16t2

×
∏

xi∈N0

(t+ dMT(xi)− 2)2 > 0,

which is a contradiction.

(a) Case 3. (b) Subcase 3.1

(c) Subcase 3.2

Figure 9: For κ = 3.

Case 3. For κ = 3 (see Figure 9).
Subcase 3.1. x1x2 ∈M. Define MT′ = MT+{x0x3}−{x2x3} then we have MT′ ∈MTmax,n,α
and

∏
1,e

(MT′)−
∏
1,e

(MT) = (2 + 1− 2)2(t+ 1 + 2− 2)2(t+ 1 + s− 2)2

×
∏

xi∈N0

(t+ 1 + dMT(xi)− 2)2 − (2 + 2− 2)2(2 + s− 2)2

× (t+ 2− 2)2
∏

xi∈N0

(t+ dMT(xi)− 2)2

= (t+ 1)2(t+ s− 1)2
∏

xi∈N0

(t+ dMT(xi)− 1)2 − 4t2s2

×
∏

xi∈N0

(t+ dMT(xi)− 2)2 > 0.
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which is a contradiction. Note that here for t ≥ 3 and s ≥ 3 we obviously have:

∏
xi∈N0

(t+ dMT(xi)− 1)2 > 4
∏

xi∈N0

(t+ dMT(xi)− 2)2,

(t+ s− 1)2 > s2,

(t+ 1)2 > t2.

Subcase 3.2. x1x2 does not belongs to M. Define MT′ = MT+ {x0x3}−{x1x2} then we have
MT′ ∈MTmax,n,α and

∏
1,e

(MT′)−
∏
1,e

(MT) = (t+ 1 + 1− 2)2(t+ 1 + s+ 1− 2)2(1 + s+ 1− 2)2

×
∏

xi∈N0

(t+ 1 + dMT(xi)− 2)2
∏

xj∈N1

(s+ 1 + dMT(xj)− 2)2

−(2 + 2− 2)2(2 + s− 2)2(t+ 2− 2)2

×
∏

xi∈N0

(t+ dMT(xi)− 2)2
∏

xj∈N1

(s+ dMT(xj)− 2)2

= t2s2(t+ s)2
∏

xi∈N0

(t+ dMT(xi)− 1)2
∏

xj∈N1

(s+ dMT(xj)− 1)2

−4t2s2
∏

xi∈N0

(t+ dMT(xi)− 2)2
∏

xj∈N1

(s+ dMT(xj)− 2)2 > 0,

which is a contradiction. Note that here for t ≥ 3 and s ≥ 3 we obviously have:

∏
xi∈N0

(t+ dMT(xi)− 1)2 >
∏

xi∈N0

(t+ dMT(xi)− 2)2,

∏
xj∈N1

(s+ dMT(xj)− 1)2 >
∏

xj∈N1

(s+ dMT(xj)− 2)2,

(t+ s)2 > 4.

Case 4. For κ = 2 (see Figure 10).

(a) Case 4. (b) Subcase 4.1 and 4.2

Figure 10: For κ = 2.

Subcase 4.1. In this subcase, x1 is M-unsaturated then let both x0 and x2 be M-saturated.
DefineMT′ = MT+{x0x2}−{x1x2}, we haveMT′ ∈MTmax,n,α and as we knowM is maximum
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matching of MT then

∏
1,e

(MT′)−
∏
1,e

(MT) = (t+ 1 + 1− 2)2(t+ 1 + s− 2)2
∏

xi∈N0

(t+ 1 + dMT(xi)− 2)2

−(2 + s− 2)2(t+ 2− 2)2
∏

xi∈N0

(t+ dMT(xi)− 2)2

= t2(t+ s− 1)2
∏

xi∈N0

(t+ dMT(xi)− 1)2 − t2s2

×
∏

xi∈N0

(t+ dMT(xi)− 2)2 > 0,

which is a contradiction.
Subcase 4.2. Here, x1 is M-saturated then let both x0x1 is form M. To prove this subcase we
can use the same transformation as in Subcase 4.1 then also we get a contradiction.

(a) Case 5 (b) Subcase 5.1

Figure 11: For κ = 1.

Case 5. For κ = 1 (see Figure 11), at vertex x1 there exist ν ∈ N1 with degMT(ν) ≥ 1 then
we have the following possibilities.
Subcase 5.1. If ν = 1, then let

MT′ = MT +
⋃

xj∈N1\{ν}

{x0xj} −
⋃

xj∈N1\{ν}

{x1xj}.
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We have MT′ ∈MTmax,n,α and then∏
1,e

(MT′)−
∏
1,e

(MT) = (t+ s− 2 + 2− 2)2(2 + 1− 2)2

×
∏

xj∈N1\{ν}

(t+ s− 2 + dMT(xj)− 2)2

×
∏

xi∈N0

(t+ s− 2 + dMT(xi)− 2)2 − (t+ s− 2)2(s+ 1− 2)2

×
∏

xi∈N0

(t+ dMT(xi)− 2)2
∏

xj∈N1\{ν}

(s+ dMT(xj)− 2)2

= (t+ s− 2)2
∏

xi∈N0

(t+ s+ dMT(xi)− 4)2

×
∏

xj∈N1\{ν}

(t+ s+ dMT(xj)− 2)2 − (t+ s− 2)2(s− 1)2

×
∏

xi∈N0

(t+ dMT(xi)− 2)2
∏

xj∈N1\{ν}

(s+ dMT(xj)− 2)2 > 0

which is a contradiction. Note that here for t ≥ 3 and s ≥ 3 we obviously have:∏
xi∈N0

(t+ s+ dMT(xi)− 4)2 > (s− 1)2
∏

xi∈N0

(t+ dMT(xi)− 2)2,

∏
xj∈N1\{ν}

(t+ s+ dMT(xj)− 4)2 >
∏

xj∈N1\{ν}

(s+ dMT(xj)− 2)2.

Subcase 5.2. Let ν > 1. To prove this subcase we can use the same transformation as in
Subcase 5.1 then also we get a contradiction. �

Lemma 3.3, Lemma 3.4, and Lemma 3.5 characterize the structure of extremal trees that
maximize the aforementioned index.

Theorem 3.6. Let MT ∈MTmax,n,α, where α ≥2 and n ≥ 5 then we have

∏
1,e

(MT) ≤ (n− α)2(α−1)(n− α− 1)2(n−2α+1),

with equality if and only if MT has the structure of Figure 1.

Proof. If n = 2α or n > 2α, then from Lemma 3.3, Lemma 3.4, and Lemma 3.5, the extremal
tree MT is unique and∏

1,e

(MT) ≤ (n− α)2(α−1)(n− α− 1)2(n−2α+1), n > 2α,

and ∏
1,e

(MT) ≤ (α)2(α−1)(α− 1)2, n = 2α.

�
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3.2 Characterization of unicyclic graphs with respect to matching

The characterization of a unicyclic graph that gives the minimum MUmin,n,α and maximum
value MUmax,n,α with respect to perfect matching and matching number α and order n about
the multiplicative reformulated first Zagreb index is discussed here. The following results are
required to demonstrate our key findings:

Theorem 3.7. Let MU ∈MUmin,n,α, where α ≥ 2 and n ≥ 4 then we have:

∏
1,e

(MU) ≥ 4n−1,

with equality if and only if MU is Cn.

Theorem 3.8. Let MU ∈MUmin,2α,α, where α ≥2 then we have:

∏
1,e

(MU) ≥ 42α−1.

Proof. Let MU be a unicyclic graph with 2α vertices, a cycle of length p, and matching number
α with the smallest

∏
1,e index. Let Cq = c0c1c2...cqc0 be the cycle in MU. Then MU has only

cycle Cq.
For α = 2, the only unicyclic graph with 2α = 4 vertices is MU4. We have

∏
1,e(MU4) = 64

and this satisfies the given bound. Thus, this result is true for α=2. For n = 2α ≥ 4, MU2α

is the only graph with the smallest
∏

1,e index among unicyclic graphs with 2α vertices (using
Theorem 3.7). The unicyclic graph has 42α−1 vertices of degree 2 having the smallest

∏
1,e

index among trees with 2α vertices with perfect matching. Therefore,

∏
1,e

(MU) ≥ 42α−1.

�

Now, we characterize the structure of the maximum unicyclic graph MUmax,n,α with respect
to perfect matching and matching number α of order n.

Lemma 3.9. Let MU ∈MUmax,n,α then MU has an internal path of length < 1.

Proof. Let UPI be an internal path of MU. Suppose on contrary that UPI = x0x1...xκ is
an internal path of length κ ≥ 1 of MU with degMU(x0) = t ≥ 3, degMU(xκ) = s ≥ 3 and
degMU(x1)=degMU(x2) = · · · = degMU(xκ−1)=2.
Let N0 = NMU(x0)\{x1, V (C)\{x0}}, N1 = NMU(xκ)\{xκ−1} and N2 = {ym; ym ∈ V (C) which
is adjacent to x0}.
Case 1. For κ ≥ 5 (see Figure 12). Construct MU′ = MU+ {x0x2, x1x4}− {x1x2, x3x4} then
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(a) MU (b) MU′

Figure 12: For κ ≥ 5.

we have MU′ ∈MUmax,n,α and

∏
1,e

(MU′)−
∏
1,e

(MU) = (2 + 1− 2)2(2 + 2− 2)2(t+ 1 + 2− 2)2(t+ 1 + 2− 2)2

×
∏

ym∈N2

(t+ 1 + dMU(ym)− 2)2
∏

xi∈N0

(t+ 1 + dMU(xi)− 2)2

−(2 + 2− 2)2(2 + 2− 2)2(2 + 2− 2)2(t+ 2− 2)2

×
∏

ym∈N2

(t+ dMU(ym)− 2)2
∏

xi∈N0

(t+ dMU(xi)− 2)2

= 4(t+ 1)4
∏

xi∈N0

(t+ dMU(xi)− 1)2
∏

ym∈N2

(t+ dMU(ym)− 1)2

−64t2
∏

xi∈N0

(t+ dMU(xi)− 2)2
∏

ym∈N0

(t+ dMU(ym)− 2)2

> 0,

which is a contradiction. Note that for t ≥ 3 it obvious that:

∏
xi∈N0

(t+ dMU(xi)− 1)2 >
∏

xi∈N0

(t+ dMU(xi)− 2)2,

∏
ym∈N2

(t+ dMU(ym)− 1)2 >
∏

ym∈N2

(t+ dMU(ym)− 2)2,

4(t+ 1)2 ≥ 64, (t+ 1)2 > t2.

Case 2. For κ = 4 (see Figure 13). To prove this case there are two possibilities.
Subcase 2.1. In this subcase, x2 is M-unsaturated then x1 and x3 must be M-saturated. Let



216 S. Yousaf et al. / On Multiplicative Reformulated First Zagreb Index ....

(a) Case 2. (b) Subcase 2.1.

(c) Subcase 2.2.

Figure 13: For κ = 4.

MU′ = MU + {x0x2, x1x3} − {x1x2, x2x3} then we have MU′ ∈MUmax,n,α and

∏
1,e

(MU′)−
∏
1,e

(MU) = (2 + 2− 2)2(t+ 1 + 1− 2)2(t+ 1 + 2− 2)2

×
∏

ym∈N2

(t+ 1 + dMU(ym)− 2)2
∏

xi∈N0

(t+ 1 + dMU(xi)− 2)2

−(2 + 2− 2)2(2 + 2− 2)2(t+ 2− 2)2

×
∏

ym∈N2

(t+ dMU(ym)− 2)2
∏

xi∈N0

(t+ dMU(xi)− 2)2

= 4t2(t+ 1)2
∏

xi∈N0

(t+ dMU(xi)− 1)2
∏

ym∈N2

(t+ dMU(ym)− 1)2

−16t2
∏

xi∈N0

(t+ dMU(xi)− 2)2
∏

ym∈N2

(t+ dMU(ym)− 2)2

> 0,

which is a contradiction.
Subcase 2.2. In this subcase x2 is M-saturated and let x1x2 ∈M and assume that at least one
of x0 or x3 isM-saturated. DefineMU′ = MU+{x0x3}−{x2x3} then we haveMU′ ∈MUmax,n,α
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and

∏
1,e

(MU′)−
∏
1,e

(MU) = (2 + 1− 2)2(t+ 1 + 2− 2)2(t+ 1 + 2− 2)2

×
∏

ym∈N2

(t+ 1 + dMU(ym)− 2)2
∏

xi∈N0

(t+ 1 + dMU(xi)− 2)2

−(2 + 2− 2)2(2 + 2− 2)2(t+ 2− 2)2

×
∏

ym∈N2

(t+ dMU(ym)− 2)2
∏

xi∈N0

(t+ dMU(xi)− 2)2

= (t+ 1)4
∏

xi∈N0

(t+ dMU(xi)− 1)2
∏

ym∈N2

(t+ dMU(ym)− 1)2

−16t2
∏

xi∈N0

(t+ dMU(xi)− 2)2
∏

ym∈N2

(t+ dMU(ym)− 2)2

> 0,

which is a contradiction.
Case 3. For κ = 3 (see Figure 14).
Subcase 3.1. x1x2 ∈M. DefineMU′ = MU+{x0x3}−{x2x3} then we haveMU′ ∈MUmax,n,α

(a) Case 3. (b) Subcase 3.1.

(c) Subcase 3.2.

Figure 14: For κ = 3.
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and ∏
1,e

(MU′)−
∏
1,e

(MU) = (2 + 1− 2)2(t+ 1 + 2− 2)2(t+ 1 + s− 2)2

×
∏

ym∈N2

(t+ 1 + dMU(ym)− 2)2
∏

xi∈N0

(t+ 1 + dMU(xi)− 2)2

−(2 + 2− 2)2(2 + s− 2)2(t+ 2− 2)2

×
∏

ym∈N2

(t+ dMU(ym)− 2)2
∏

xi∈N0

(t+ dMU(xi)− 2)2

= (t+ 1)2(t+ s− 1)2
∏

xi∈N0

(t+ dMU(xi)− 1)2

×
∏

ym∈N2

(t+ dMU(ym)− 1)2 − 4t2s2
∏

xi∈N0

(t+ dMU(xi)− 2)2

×
∏

ym∈N2

(t+ dMU(ym)− 2)2 > 0,

which is a contradiction. Note that for t ≥ 3 and s ≥ 3 it is obvious that∏
xi∈N0

(t+ dMU(xi)− 1)2 > 4
∏

xi∈N0

(t+ dMU(xi)− 2)2,

∏
ym∈N2

(t+ dMU(ym)− 1)2 >
∏

ym∈N2

(t+ dMU(ym)− 2)2,

(t+ s− 1)2 > s2, (t+ 1)2 > t2.

Subcase 3.2. x1x2 does not belongs to M. Define MU′ = MU+ {x0x3}−{x1x2} then we have
MU′ ∈MUmax,n,α and∏

1,e

(MU′)−
∏
1,e

(MU) = (t+ 1 + 1− 2)2(t+ 1 + s+ 1− 2)2(1 + s+ 1− 2)2

×
∏

ym∈N2

(t+ 1 + dMU(ym)− 2)2
∏

xi∈N0

(t+ 1 + dMU(xi)− 2)2

×
∏

xj∈N1

(s+ 1 + dMU(xj)− 2)2 − (2 + 2− 2)2(2 + s− 2)2

× (t+ 2− 2)2
∏

xi∈N0

(t+ dMU(xi)− 2)2

×
∏

ym∈N2

(t+ dMU(ym)− 2)2
∏

xj∈N1

(s+ dMU(xj)− 2)2

= t2s2(t+ s)2
∏

xi∈N0

(t+ dMU(xi)− 1)2
∏

xj∈N1

(s+ dMU(xj)− 1)2

×
∏

ym∈N2

(t+ dMU(ym)− 1)2 − 4t2s2
∏

xi∈N0

(t+ dMU(xi)− 2)2

×
∏

xj∈N1

(s+ dMU(xj)− 2)2
∏

ym∈N2

(t+ dMU(ym)− 2)2 > 0,

which is a contradiction.
Case 4. For κ = 2 (see Figure 15).



Iranian Journal of Mathematical Chemistry 15 (3) (2024) 203− 225 219

(a) Case 4. (b) Subcase 4.1 and 4.2.

Figure 15: For κ = 2.

Subcase 4.1. In this subcase x1 be M-unsaturated then let both x0 and x2 is M-saturated.
Define MU′ = MU + {x0x2} − {x1x2}, we have MU′ ∈ MUmax,n,α and as we know M is
maximum matching of MU then

∏
1,e

(MU′)−
∏
1,e

(MU) = (t+ 1 + 1− 2)2(t+ 1 + s− 2)2

×
∏

xi∈N0

(t+ 1 + dMU(xi)− 2)2
∏

ym∈N2

(t+ 1 + dMU(ym)− 2)2

−(2 + s− 2)2(t+ 2− 2)2
∏

ym∈N2

(t+ dMU(ym)− 1)2

×
∏

xi∈N0

(t+ dMU(xi)− 2)2

= t2(t+ s− 1)2
∏

xi∈N0

(t+ dMU(xi)− 1)2

×
∏

ym∈N2

(t+ dMU(ym)− 1)2 − t2s2
∏

xi∈N0

(t+ dMU(xi)− 2)2

×
∏

ym∈N2

(t+ dMU(ym)− 2)2 > 0,

which is a contradiction.
Subcase 4.2. x1 is M-saturated then let both x0x1 is form M. To prove this subcase we can
use the same transformation as in Subcase 4.1 then also we get a contradiction.

Case 5. For κ = 1 (see Figure 16), at vertex x1 there exist ν ∈ N1 with degMU(ν) ≥ 1 then
we have the following possibilities.
Subcase 5.1. If ν = 1. Let

MU′ = MU +
⋃

xj∈N1\{ν}

{x0xj} −
⋃

xj∈N1\{ν}

{x1xj},
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(a) Case 5. (b) Subcase 5.1.

Figure 16: For κ = 1.

we have MU′ ∈MUmax,n,α and then

∏
1,e

(MU′)−
∏
1,e

(MU) = (t+ s− 2 + 2− 2)2(2 + 1− 2)2

×
∏

ym∈N2

(t+ s− 2 + dMU(ym)− 2)2

×
∏

xi∈N0

(t+ s− 2 + dMU(xi)− 2)2

×
∏

xj∈N1\{ν}

(t+ s− 2 + dMU(xj)− 2)2

−(t+ s− 2)2(s+ 1− 2)2
∏

xi∈N0

(t+ +dMU(xi)− 2)2

×
∏

ym∈N2

(t+ dMU(ym)− 2)2
∏

xj∈N1\{ν}

(s+ dMU(xj)− 2)2

= (t+ s− 2)2
∏

xi∈N0

(t+ s+ dMU(xi)− 4)2,

×
∏

xj∈N1\{ν}

(t+ s+ dMU(xj)− 4)2

×
∏

ym∈N2

(t+ s+ dMU(ym)− 4)2 − (t+ s− 2)2(s− 1)2

×
∏

xi∈N0

(t+ dMU(xi)− 2)2
∏

xj∈N1\{ν}

(s+ dMU(xj)− 2)2

×
∏

ym∈N2

(t+ dMU(ym)− 2)2 > 0,
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which is a contradiction. Note that for t ≥ 3 and s ≥ 3 we obviously have:

∏
xi∈N0

(t+ s+ dMU(xi)− 4)2 > (s− 1)2
∏

xi∈N0

(t+ dMU(xi)− 2)2,

∏
xj∈N1\{ν}

(t+ s+ dMU(xj)− 4)2 >
∏

xj∈N1\{ν}

(s+ dMU(xj)− 2)2,

∏
ym∈N2

(t+ s+ dMU(ym)− 4)2 >
∏

ym∈N2

(t+ dMU(ym)− 2)2,

Subcase 5.2. If ν > 1, to prove this subcase, we can use the same transformation as in Subcase
5.1. Then also we get a contradiction. �

Lemma 3.10. If MU ∈ MUmax,n,α, then the pendant path is attached to most one end vertex
of the cycle having a maximum length of 2.

Proof. Let UP is the pendant path of MU. Suppose on contrary that UP = x0x1...xη is a
pendant path of length η ≥ 3 with degMU(x0) = ω ≥ 3, degMU(xη) = 1 and
degMU(x1)=degMU(x2)=...=degMU(xη−1)=2. Construct

(a) MU. (b) MU′.

Figure 17: For η > 3.

MU′ = MU + {x0xη} − {xη−2xη−1},

then we have MU′ ∈MUn,α.
For η > 3 (see Figure 17), let N0 = NMU(x0)\{x1, V (C)\{x0}}, where N2 = {ym; ym ∈ V (C)
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which is adjacent to x0}.

∏
1,e

(MU′)−
∏
1,e

(MU) = (2 + 1− 2)2(2 + 1− 2)2(ω + 1 + 2− 2)2(ω + 1 + 2− 2)2

×
∏

ym∈N2

(ω + 1 + dMU(ym)− 2)2
∏

xi∈N0

(ω + 1 + dMU(xi)− 2)2

−(2 + 2− 2)2(2 + 2− 2)2(2 + 1− 2)2(ω + 2− 2)2

×
∏

ym∈N2

(ω + dMU(ym)− 2)2
∏

xi∈N0

(ω + dMU(xi)− 2)2

= (ω + 1)4
∏

xi∈N0

(ω + dMU(xi)− 1)2
∏

ym∈N2

(ω + dMU(ym)− 1)2

−16ω2
∏

xi∈N0

(ω + dMU(xi)− 2)2
∏

ym∈N2

(ω + dMU(ym)− 2)2

> 0.

Note that for ω ≥ 3, we obviously have (ω + 1)2 > ω2 and (ω + 1)2 ≥ 16.

(a) MU. (b) MU′.

Figure 18: For η = 3.
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For η = 3, (see Figure 18),∏
1,e

(MU′)−
∏
1,e

(MU) = (2 + 1− 2)2(ω + 1 + 2− 2)2(ω + 1 + 1− 2)2

×
∏

ym∈N2

(ω + 1 + dMU(ym)− 2)2

×
∏

xi∈N0

(ω + 1 + dMU(xi)− 2)2 − (2 + 2− 2)2(2 + 1− 2)2

× (ω + 2− 2)2
∏

ym∈N2

(ω + dMU(ym)− 2)2

×
∏

xi∈N0

(ω + dMU(xi)− 2)2

= ω2(ω + 1)2
∏

xi∈N0

(ω + dMU(xi)− 1)2,

×
∏

ym∈N2

(ω + dMU(ym)− 1)2 − 4ω2

×
∏

xi∈N0

(ω + dMU(xi)− 2)2
∏

ym∈N2

(ω + dMU(ym)− 2)2 > 0,

which is a contradiction to our supposition. Therefore MU has a pendant path of length 2. �

Lemma 3.10 and Lemma 3.9 characterize the structure of extremal unicyclic graph that
maximizes aforementioned index.

Theorem 3.11. Let MU ∈MUmax,n,α, where α ≥2 and n ≥ 5 then we have

∏
1,e

(MU) ≤ (n− α)2(n−2α+1)(n− α+ 1)2(n),

with equality if and only if MU has the structure of Figure 2.

Proof. If n = 2α or n > 2α, then from Lemma 3.10 and Lemma 3.9, the extremal unicyclic
graph MU is unique and∏

1,e

(MU) ≤ (n− α)2(n−2α+1)(n− α+ 1)2(n), n > 2α,

and ∏
1,e

(MU) ≤ (α)2(α+ 1)2α, n = 2α.

�

4 Conclusion
The study focuses on characterizing the extremal in the collection of all n-vertex trees using
multiplicative reformulated first Zagreb index and under specific conditions. It provides sharp
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lower and upper bounds for the multiplicative reformulated first Zagreb index among trees with
a given order n, matching number α and perfect matching.
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[8] A. Miličević, S. Nikolić and N. Trinajstić, On reformulated Zagreb indices, Mol. Divers 8
(2004) 393–399, https://doi.org/10.1023/B:MODI.0000047504.14261.2a.

[9] K. C. Das, On comparing Zagreb indices of graphs, MATCH Commun. Math. Comput.
Chem. 63 (2010) 433–440.

[10] K. Xu and H. Hua, A unified approach to extremal multiplicative Zagreb indices for trees,
unicyclic and bicyclic graphs, MATCH Commun. Math. Comput. Chem. 68 (2012) 241–256.

[11] Z. Yan, H. Liu and H. Liu, Sharp bounds for the second Zagreb index of unicyclic graphs,
J. Math. Chem. 42 (2007) 565–574, https://doi.org/10.1007/s10910-006-9132-7.

[12] A. Chang and F. Tian, On the spectral radius of unicyclic graphs with perfect matchings,
Linear Algebra Appl. 370 (2003) 237–250, https://doi.org/10.1016/S0024-3795(03)00394-X.

[13] X. Li and J. Wang, On the ABC spectra radius of unicyclic graphs, Linear Algebra Appl.
596 (2020) 71–81, https://doi.org/10.1016/j.laa.2020.03.007.

[14] H. Liu, M. Lu and F. Tian, On the spectral radius of unicyclic graphs with fixed diameter,
Linear Algebra Appl. 420 (2007) 449–457, https://doi.org/10.1016/j.laa.2006.08.002.

[15] J. B. Lv, J. Li and W. C. Shiu, The harmonic index of unicyclic graphs with given matching
number, Kragujevac J. Math. 38 (2014) 173–183.



Iranian Journal of Mathematical Chemistry 15 (3) (2024) 203− 225 225

[16] L. Zhong, The harmonic index for unicyclic and bicyclic graphs with given matching num-
ber, Miskolc Math. Notes 16 (2015) 587–605, https://doi.org/10.18514/MMN.2015.1033.

[17] T. Zhou, Z. Lin and L. Miao, The extremal Sombor index of trees and unicyclic
graphs with given matching number, J. Discrete Math. Sci. Cryptogr. (2022) 1–12,
https://doi.org/10.1080/09720529.2021.2015090.

[18] A. Alidadi, A. Parsian and H. Arianpoor, The minimum Sombor index for unicyclic
graphs with fixed diameter, MATCH Commun. Math. Comput. Chem. 88 (2022) 561–572,
https://doi.org/10.46793/match.88-3.561A.

[19] S. Yousaf, A. A. Bhatti and A. Ali, On the minimum variable connectivity index of uni-
cyclic graphs with a given order, Discrete Dyn. Nat. Soc. 2020 (2020) Article ID 1217567,
https://doi.org/10.1155/2020/1217567.

[20] S. Adeel and A. A. Bhatti, On the extremal total irregularity index of n-
vertex trees with fixed maximum degree, Commun. Comb. Optim. 6 (2021) 113–121,
https://doi.org/10.22049/CCO.2020.26965.1168.

[21] S. Yousaf and A. A. Bhatti, Maximum variable connectivity index of n-vertex trees, Iranian
J. Math. Chem. 13 (2022) 33–44, https://doi.org/10.22052/IJMC.2022.243077.1584.

[22] S. Yousaf, A. A. Bhatti and A. Ali, On total irregularity index of trees with given num-
ber of segments or branching vertices, Chaos Solitons Fractals 157 (2022) p. 111925,
https://doi.org/10.1016/j.chaos.2022.111925.

[23] S. Yousaf and A. A. Bhatti, Maximum total irregularity index of some families
of graph with maximum degree n − 1, Asian-Eur. J. Math. 15 (2022) p. 2250069,
https://doi.org/10.1142/S1793557122500693.

[24] S. Yousaf and A. A. Bhatti, On the minimal unicyclic and bicyclic graphs with re-
spect to the neighborhood first Zagreb index, Iranian J. Math. Chem. 13 (2022) 109–128,
https://doi.org/10.22052/IJMC.2022.242939.1571.

[25] I. Gutman, Multiplicative Zagreb indices of trees, Bull. Soc. Math. Banja Luka. 18 (2011)
17–23.

[26] A. Ali, A. Nadeem, Z. Raza, W. W. Mohammed and E. M. Elsayed, On the reformulated
multiplicative first Zagreb index of trees and Unicyclic graphs, Discrete Dyn. Nat. Soc. 2021
(2021) Article ID 3324357, https://doi.org/10.1155/2021/3324357.

[27] M. Aruvi, The multiplicative reformulated first Zagreb index of some graph operations,
Malaya J. Mat. 8 (2020) 1189–1195, https://doi.org/10.26637/MJM0803/0079.


	Introduction
	Preliminaries
	Results
	Characterization of trees with respect to matching
	Characterization of unicyclic graphs with respect to matching

	Conclusion

