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Abstract

Let G be a connected graph and S be a k element subset
of the vertex set V (G). The Steiner-k distance dG(S) between
vertices of S is the minimum size among all connected sub-
graphs whose vertex set contains S. In this paper, we have
defined the Steiner k-eccentric connectivity index and derived
a closed formula for the same in case of some standard graphs.
Also, we have used Steiner 3-eccentric connectivity index to
predict values of boiling point of some primary and secondary
amines, cross sectional area and molar refraction of alcohols.
For each, regression model is developed and statistical analysis
is conducted and these have ensured at least 97% accuracy.

c© 2024 University of Kashan Press. All rights reserved.

1 Introduction
Chemical graph theory has risen to prominence in recent times due to its crucial role in the
study of predicting molecular structure, chemical bond activity, Quantitative Structure Activ-
ity Relationships (QSAR), Quantitative Structure Property Relationships (QSPR), etc. [1–6].
Graph invariants known as topological indices are usually employed in such analyses and pre-
diction of physical/chemical/ biological activity is conducted for hydrogen-depleted chemical
structures, also known as molecular graphs [7], [8]. Today, there are thousands of indices in use
since they are useful for forecasting a molecule’s characteristics mathematically [7, 9–14].

Topological indices [6] are broadly classified into two classes, based on their own nature
viz., whether they are degree-based or distance-based indices. Various degree-based indices are
available in the literature, including the Balaban index [15], Harary index [16], Gutman index
[17], Harmonic index [18], ABC index [19], Zagreb indices [20], Hyper Zagreb indices, to name
a few. The oldest topological index known is the Wiener index [8, 21], infact the first one
to be defined and is a distance-based index. Subsequently, many distance-based indices such
as Mostar, Edge Wiener, Szeged, and Steiner Wiener indices [22, 23] were introduced, all of
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which have found numerous applications in applied chemistry, applied biology, pharmacology,
environmental sciences [7, 16, 17, 19], etc. A novel, highly discriminating index namely, the
eccentric connectivity index, was defined by Sharma et al. [24] that was based on both the
degree of a vertex and its eccentricity and hence, distance. As it depended on both degree and
distance, the eccentric connectivity index had way more applications than any index that was
based on just degree or distance.

The Steiner distance, a natural extension of graph distance, was defined by Chartrand
et al. [22]. The Steiner distance d(S) for a set S ⊂ V (G) of vertices is the smallest size of a
connected subgraph of G whose vertex set contains S. Hence, when |S| = 2, d(S) is exactly
the usual distance between two vertices. Replacing distances with Steiner distances, many
distance-based topological indices were generalized including the Wiener index [25–27].

As seen earlier, the topological indices have numerous applications in real world problems.
The generalized indices based on Steiner distances are bound to have applications. The fact that
these indices are hard to calculate, motivates researchers to obtain closed formulae, attainable
bounds, and their dependencies on other parameters of a graph. It is a well-known fact that
the "Steiner Problem" is an NP-complete and hence any parameter based on Steiner distance
is also an NP problem. To harness the richness involved in the generalized distances in the
form of Steiner distance and define topological indices based on these distances is a herculean
task. In this paper, we have attempted one such, by defining the Steiner k-eccentric connectivity
index and studying its properties in explaining/enhancing the predictability of physico/chemical
parameters of molecular structures under consideration. Eccentric connectivity index has a
proven track record in applied chemistry by determining boiling point, cross-sectional area and
many other properties of different molecular graphs [24]. Apart from these, for many classes
of graphs the eccentric connectivity index has been obtained in its closed form [28, 29]. Many
bounds also have been established [30, 31]. Motivated by these applications and challenged by
the generalization of distances to Steiner distance, introduction of a new topological index is
worthwhile and necessary. The improvements in predicting the physical/chemical properties of
some primary/secondary amines and alcohols justify the same.

2 Preliminaries
The eccentric connectivity index has been proved [24, 32] to provide a high degree of pre-

dictability of biological activities of diverse compounds. We now present a few foundational
concepts and findings that support our primary results. Unless otherwise mentioned, all of the
graphs taken into consideration here are simple, undirected and single-edged.

Definition 2.1. ([33]). The distance from a vertex u to a vertex v in a connected graph G is
defined as the length of a shortest u− v path in G.

Definition 2.2. ([33]). The eccentricity e(v) of vertex v in a connected graph G is the distance
to a vertex farthest from v. Thus e(v) = max{d(u, v) : u ∈ V }. The radius, rad(G), is
the minimum eccentricity among the vertices of G and diameter, diam(G), is the maximum
eccentricity.

Definition 2.3. ([24]). The eccentric connectivity index (ξc) of a graph G is defined as the
sum of the products of degree and eccentricity of all vertices of graph G.

ξc(G) =
∑

i∈V (G)

diei,

where di and ei are the degree and eccentricity of vertex i in a graph G.
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Definition 2.4. ([25]). The Steiner distance d(S) for a subset S of V (G), is the minimum size
(the number of edges) of a connected subgraph whose vertex set contains S.

Definition 2.5. ([25]). The Steiner k-eccentricity ek(v) of a vertex v of G is defined by
ek(v) = max{d(S)/S ⊆ V (G), |S| = k}.

Definition 2.6. ([25]). The Steiner k-radius of G is sradk(G) = min{ek(v)/v ∈ V (G)}.

Definition 2.7. ([25]). The Steiner k-diameter of G is sdiamk(G) = max{ek(v)/v ∈ V (G)}.

3 Results
As discussed above, Steiner distance is an important concept helpful in chemical graph the-

ory. To harness the richness of this generalized distance, we first define a new, novel, more
discriminating topological index that depends on Steiner k-eccentricity of a graph G.

Definition 3.1. The Steiner k-eccentric connectivity index ξck of a graph G is the sum of the
products of degree of a vertex i and Steiner k-eccentricity of i in the graph G.

Thus,
ξck(G) =

∑
i∈V (G)

dieki
. (1)

Note: The eccentric connectivity index can be obtained from Steiner k-eccentric connectivity
index by substituting k = 2. For any other k ≥ 3, we observe that ξc(G) ≤ ξck(G) for any
connected graph G.

We now derive closed-form expression for the Steiner k-eccentric connectivity index in the
case of some special classes of graphs, as the general problem of determining the Steiner k-
eccentricity itself is an open problem. We first give a result on complete graphs.

Proposition 3.2. The Steiner k-eccentric connectivity index of a complete graph Kn is given
by ξck(Kn) = n(n− 1)(k − 1).

Proof. For complete graphs Kn, we know that, d(v) = n − 1, ek(v) = k − 1, ∀v ∈ V (Kn).
Hence,

ξck(Kn) =
∑

i∈V (G)

dieki
= n(n− 1)(k − 1).

�

Proposition 3.3. The Steiner k-eccentric connectivity index of a star graph Sn, ∀n ≥ 3, is
given by

ξck(Sn) =

{
(2k − 1)(n− 1), if 2 ≤ k ≤ n− 1,

2(k − 1)(n− 1), if k = n.

Proof. In a star graph Sn, if we denote the central vertex as v0 and the rest n − 1 as v, then
d(v0) = n− 1 and d(v) = 1.
Case(i) If 2 ≤ k ≤ n− 1, we see that, ek(v0) = k − 1, ek(v) = k, then

ξck(Sn) = (n− 1)(k − 1) + (n− 1)(k) = (2k − 1)(n− 1).

Case(ii) For k = n, we observe that ek(v0) = ek(v) = k − 1, then

ξck(Sn) = (n− 1)(k − 1) + (n− 1)(k − 1) = 2(k − 1)(n− 1).

�
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Proposition 3.4. The Steiner k-eccentric connectivity index of a complete bipartite graph is
given by

ξck(Ka,b) =


2abk, if 1 ≤ k ≤ a,
(2k − 1)ab, if a < k ≤ b,
2(k − 1)ab, if b < k ≤ a+ b.

Proof. For Ka,b, we can partition the vertex set into U and W , so that d(ui) = a.
Case(i) For 1 ≤ k ≤ a, the Steiner k-eccentricity is given by ek(ui) = ek(wi) = k. Hence

ξck(Ka,b) =
∑
i∈U

dieik +
∑
i∈W

dieik = (a)bk + (b)ak = 2abk.

Case(ii) For a < k ≤ b, we see that, ek(ui) = k − 1, ek(wi) = k, giving

ξck(Ka,b) =
∑
i∈U

dieik +
∑
i∈W

dieik = a[b(k − 1)] + b[ak] = ab(2k − 1).

Case(iii) For b < k ≤ a+ b, we observe that, ek(ui) = ek(wi) = k − 1. Thus,

ξck(Ka,b) =
∑
i∈U

dieik +
∑
i∈W

dieik = a[b(k − 1)] + b[a(k − 1)] = 2ab(k − 1).

�

Proposition 3.5. The Steiner k-eccentric connectivity index of a wheel graph Wn, ∀n ≥ 4, is
given by

ξck(Wn) =

{
(4k − 1)(n− 1), if k ≤ n− 3,

4(k − 1)(n− 1), if k > n− 3.

Proof. For a wheel graph, we know that the degree of the central vertex, say, v0 = n − 1 and
degree 3 for remaining vertices, say v. We observe that for k ≤ n − 3, the k- eccentricity is
given as ek(v0) = k − 1 and ek(v) = k. Thus,

ξck(Wn) = (n− 1)3(k) + (n− 1)(k − 1) = (4k − 1)(n− 1).

For k > n− 3, we see that ek(v0) = ek(v) = k − 1. Giving

ξck(Wn) = (n− 1)3(k − 1) + 1(n− 1)(k − 1) = 4(k − 1)(n− 1).

�

Proposition 3.6. The Steiner k-eccentric connectivity index of a path Pn is given by ξck(Pn) =
2(n− 1)2, for k > 2.

Proof. For paths Pn, it is clear that the degree of end vertices is one and the remaining vertices
are two. And k-eccentricity is ek(v) = n− 1, ∀v ∈ G, k > 2. Thus,

ξck(Pn) =
∑

i∈V (G)

dieik = 2(n− 1) + (n− 2)(2)(n− 1) = 2(n− 1)2.

�
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Note: For a path graph Pn with k ≥ 3, ek(v) depends only on n, as the maximum of Steiner
distance is contributed by end vertices having distance n−1. In other words, the value of ek(v)
is determined exclusively by the length of path.

Proposition 3.7. The Steiner k-eccentric connectivity index for an even cycle is given by

ξck(Cn) =


2n(n

2 + k − 2), if 2 ≤ k ≤ n
2 − 1,

2n(n− 2), if n
2 ≤ k ≤ n− 1,

2n(n− 1), if k = n.

Proof. Clearly, the degree of each vertex in a cycle is two and each vertex has the same eccen-
tricity, making it a self-centered graph. For k = 2, we know that the Steiner 2-eccentricity of a
vertex v, or just the eccentricity is diameter of an even cycle which is equal to n

2 . Hence, cover
n
2 + 1 vertices. For 2 < k ≤ n

2 − 1, maximum distance to cover these k vertices is n
2 + k − 2.

For the case n
2 ≤ k ≤ n − 1, the maximum Steiner distance required to cover these k number

of vertices is n− 2. Therefore, Steiner k-eccentricity of every vertex for this case is n− 2.
For k = n, the maximum Steiner distance required to cover k number of vertices is n as it forms
a path. Therefore, the Steiner k-eccentricity of vertices in an even cycle is given by

ek(Cn) =


n
2 + k − 2, if 2 ≤ k ≤ n

2 − 1,

(n− 2), if n
2 ≤ k ≤ n− 1′,

(n− 1), if k = n.

Therefore, Steiner k-eccentric connectivity index for even cycles is obtained by multiplying
Steiner k-eccentricity and 2n (degree 2 and such n number of vertices are there).

ξck(Cn) =


2n(n

2 + k − 2), if 2 ≤ k ≤ n
2 − 1,

2n(n− 2), if n
2 ≤ k ≤ n− 1,

2n(n− 1), if k = n.

�

Proposition 3.8. The Steiner k-eccentric connectivity index for an odd cycle, for n−1
2 ≤ k ≤ n

is given as follows:

ξck(Cn) =


2n(n− 3), if k = n−1

2 ,

2n(n− 2), if n+1
2 ≤ k ≤ n− 1,

2n(n− 1), if k = n.

Proof. Proof is similar to the above result. �

4 Quantitative structure activity relation (QSAR) study
of some chemical compounds using Steiner 3-eccentric
connectivity index

It is a well-known fact that, to develop QSAR models with good predictive ability appropri-
ate molecular descriptors have to be chosen. A molecular descriptor aims to mathematically
characterize a molecular structure as completely as possible. The most widely used molecu-
lar descriptors are graph invariants due to their formulations from graph theory and are more
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commonly referred to as Topological Indices (TIs) as they describe the topology of a molecule.
In this section, we give an application of the newly introduced TI, the Steiner k-eccentric con-
nectivity index in the previous sections, in determining many physico chemical activities to aid
QSAR studies. We have selected various datasets encompassing physical and biological char-
acteristics to assess the practicality of the Steiner k-eccentric connectivity index. Specifically,
we are focusing on k = 3 to develop for QSAR models. Among them are the following:
1. A group of 21 primary and 13 secondary amines along with their boiling points (BPs) as
given in [24] Tables 1 and 3.
2. A group of 14 straight and branched chain alcohols along with their cross-sectional areas
(Table 5).
3. A group of 11 straight and branched chain alcohols along with their molar refraction values
(Table 7).
For all of the datasets 1-3, values for the Steiner 3-eccentric connectivity index and the eccentric
connectivity index were determined and the resulting data was then subjected to non-linear re-
gression analyses. We determined appropriate equations, correlation coefficients, average errors
(derived from the percentage error of each compound in a dataset), root mean square (RMS)
errors and their comparison plots, which are listed below in Tables 1 to 7 and Figures 1 to 3.

Table 1: Comparison of the boiling points of primary amines using Steiner 3-eccentric connec-
tivity index and eccentric connectivity index.

Predicted
BP ◦C

Compound ξc3 ξc expt ξc3 ξc

Primary amines
n-propylamine 18 18 49 50.98 58.68
2-aminopropane 11 9 33 37.09 31.11
2-amino2-methylpropane 12 12 46 39.13 40.68
2-aminobutane 27 19 63 67.44 61.54
2-methylpropylamine 27 19 69 67.44 61.54
n-butylamine 32 24 77 75.93 75.25
2-amino2-methylbutane 34 24 78 79.20 75.25
2-aminopentane 43 31 92 93.07 92.88
2-methylbutylamine 43 29 96 93.07 88.02
3-methylbutylamine 43 31 96 93.07 92.88
n-pentylamine 50 38 104 102.95 108.78
4-methylpentylamine 63 45 125 119.38 123.09
n-hexylamine 72 54 130 129.43 139.31
3-methylpentylamine 63 45 114 119.38 123.09
4-aminoheptane 87 61 139 144.07 150.37
2-aminoheptane 87 65 142 144.07 156.11
n-heptylamine 98 74 155 153.38 167.63
n-octylamine 128 96 180 174,30 188.47
n-nonylamine 180 122 201 204.53 202.26
2aminoundecane 223 168 237 235.98 206.52
3-aminopentane 43 29 91 93.07 88.02
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Table 2: Regression statistics for boiling point of primary amines.

Properties BP of primary amines from ξc3
Multiple R 0.99766
R2 0.99532
Adjusted R2 0.99480
CC(%) 99.76608
Avg error (%) 3.586394
RMS error(%) 5.119899
F 213.00250

The regression equation for BP of primary amines is

BP (Primary amines) = 13.19 + 2.293ξ3 − 1.115× 10−2ξ23 + 2.397× 10−5ξ33 . (2)

Table 3: Comparison for boiling points of secondary amines using Steiner 3-eccentric connec-
tivity index and eccentric connectivity index.

Predicted
BP ◦C

Compound ξc3 ξc expt ξc3 ξc

Secondary amines
n-methylethylamine 18 18 36 38.19 44.08
n-methyl1-methyl ethylamine 27 19 50 51.83 46.32
diethylamine 32 24 56 59 57.19
n-methyl 1-methylpropylamine 43 29 78.5 73.81 67.54
n-ethyl propylamine 50 38 80.5 82.58 84.95
bis (1-methylethyl)amine 52 38 84 85 84.95
n-methyl butylamine 50 38 90.5 82.58 84.95
n-methyl 1-methyl butylamine 63 45 105 97.66 97.44
dipropylamine 98 74 109.5 131.73 112.24
bis(2-methylpropyl)amine 100 76 139 133.45 142.9
dibutylamine 128 96 159 155.62 164.79
bis(3-methylbutyl)amine 164 126 187.5 181.32 188.67
dipentylamine 200 150 205 207.7 201.75

Table 4: Regression statistics for boiling point of secondary amines.

Properties BP of secondary amines from ξc3
Multiple R 0.98868
R2 0.97749
Adjusted R2 0.97299
CC(%) 98.86833
Avg error (%) 5.51162
RMS error(%) 7.30550
F 43.43429
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The regression equation for BP of secondary amines is

BP (Secondary amines) = 7.83 + 1.808ξ3 − 6.987× 10−3ξ23 + 1.473× 10−5ξ33 . (3)

Figure 1: Comparison plot for BP of amines using Steiner 3-eccentric connectivity index and
eccentric connectivity index.

Table 5: Comparison for cross section area of alcohols using Steiner 3-eccentric connectivity
index and eccentric connectivity index.

Predicted CSA
Compound ξc3 ξc expt ξc3 ξc

2-methyl propanol 27 19 263.8 264.53 264.29
2-butanol 27 19 264.1 264.53 264.29
2-pentanol 41 31 295.9 295.71 299.52
2-methyl 2-butanol 34 24 282.5 281.35 280.62
1-hexanol 72 54 335.7 338.75 340.14
2-methyl 2-pentanol 52 38 314.3 314.15 314.66
2-methyl 3-pentanol 51 36 314.3 312.65 310.67
4-methyl 2-pentanol 52 38 314.9 314.15 314.66
1-heptanol 98 74 367.5 365.13 368.20
2,3-dimethyl 2-pentanol 61 43 323.8 326.31 323.69
3-heptanol 87 63 357.1 353.76 352.16
2,6-dimethyl 4-heptanol 113 83 394.0 383.88 384.80
2-ethyl hexanol 108 77 371.3 377.03 373.27
3,5,5-trimethyl hexanol 113 83 376.6 383.87 384.80
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Figure 2: Comparison plot for Cross sectional area of alcohols using Steiner 3-eccentric connec-
tivity index and eccentric connectivity index.

Table 6: Regression statistics for Cross sectional area (CSA) of alcohols.

Properties CSA of alcohols from ξc3
Multiple R 0.99505
R2 0.99013
Adjusted R2 0.98834
CC(%) 99.50547
Avg error (%) 0.78752
RMS error(%) 1.07038
F 100.35839

The regression equation for Cross sectional area of alcohols is

CSA = 1.702× 102 + 4.519ξ3 − 4.25× 10−2ξ23 + 1.704× 10−4ξ33 . (4)
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Table 7: Comparison for molar refraction of alcohols using Steiner 3-eccentric connectivity
index and eccentric connectivity index.

Predicted
MR

Compound ξc3 ξc expt ξc3 ξc

3-methyl 1-butanol 41 31 26.90 28.04 28.49
2-methyl 2-butanol 34 24 26.72 26.19 27.58
2-methyl 1-pentanol 63 45 31.16 32.94 32.48
2,2-dimethyl 1-butanol 52 34 31.27 30.64 29.14
3-methyl 3-pentanol 52 34 31.18 30.64 29.14
2-methyl 1-hexanol 87 63 35.93 37.38 38.85
3-ethyl 3-pentanol 69 54 35.82 34.10 35.74
4-ethyl 4-heptanol 121 77 44.92 43.88 42.02
6-methyl 1-heptanol 115 87 40.74 42.61 41.98
3-methyl 3-heptanol 99 66 40.45 39.53 39.76
4-methyl 4-heptanol 99 68 40.44 39.53 40.30

Table 8: Regression statistics for molar refraction of alcohols.

Properties MR of alcohols from ξc3
Multiple R 0.97709
R2 0.95472
Adjusted R2 0.94339
CC(%) 97.70957
Avg error (%) 3.26285
RMS error(%) 3.53606
F 21.0829

The regression equation for molar refraction of alcohols is

MR = 14.18 + 0.443ξ3 − 3.047× 10−3ξ23 + 1.166× 10−5ξ33 . (5)

From Tables 1 to 8 we can observe that the Steiner 3-eccentric connectivity index has a very
good correlating ability due to its minimal average and RMS errors. We conclude that Steiner
3-eccentric connectivity index has better predicting ability in finding boiling points of both
primary and secondary amines, cross-sectional area and molar refraction of some alcohols than
the eccentric connectivity index. Comparison plots are given in Figures 1 to 3.
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Figure 3: Comparison plot for Molar refraction of alcohols using Steiner 3-eccentric connectivity
index and eccentric connectivity index.

5 Conclusion

In this paper, we have introduced a novel, generalized distance-based invariant named Steiner
k-eccentric connectivity index and we have derived closed-form values of many standard classes
of graphs. On the application front of the newly defined index, we have proved that the Steiner
3-eccentric connectivity index is a better predictor for finding the boiling points of considered
primary and secondary amines, cross sectional area of alcohols, molar refraction of alcohols with
correlation coefficient more than 97% for each. In the future, these analyses can be extended
for higher-order Steiner k-eccentric connectivity index to get a better prediction of the physico
chemical properties of different chemicals.

Conflicts of interest. The authors declare that they have no conflicts of interest regarding
the publication of this article.
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