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Abstract

Mathematical chemistry is a field of mathematics where
chemical compounds are studied by associating a graph to
it. A topological index serves as a mathematical invariant
that elucidates the underlying topological arrangement of
molecules or networks. This paper explores the neighborhood
M-Polynomial concerning various graph operations of reg-
ular graphs. Additionally, it addresses and rectifies several
erroneous results pertaining to cycle-related graphs that were
previously reported. Furthermore, we examine the applica-
tions of the neighborhood M-Polynomial to the VPHX[m, n]
nanotubes and VPHY[m, n] nanotori, presenting their poten-
tial in real-world. Through this comprehensive investigation,
we aim to advance the understanding of topological indices
and their practical implications.

c© 2024 University of Kashan Press. All rights reserved.

1 Introduction

Topological indices serve as concise mathematical descriptors that provide quantitative in-
sights into the topological characteristics and structural properties of molecules or networks.
The exploration of topological indices can be traced back to 1947, when H. Wiener introduced
the Wiener index, a graph invariant recognized for its ability to model the physical proper-
ties of alkanes [1]. Over the past few decades, an extensive range of topological indices has
been formulated and employed in correlation analysis across diverse fields such as theoretical
chemistry, pharmacology, toxicology, and environmental chemistry.
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Despite the wide adoption of topological indices, calculating these indices directly for ev-
ery molecule can be a formidable task. The complexity escalates as molecules or networks
increase in size and intricacy. Consequently, researchers have turned to leveraging graph poly-
nomials as a popular and valuable strategy to derive topological indices. This approach offers
a more efficient and manageable pathway to extract valuable information about the topologi-
cal arrangements and structural properties of molecules or networks.

The concept of topological indices has played a pivotal role in providing quantitative in-
formation about the topological characteristics and structural properties of molecules or net-
works. In 2015, Deutsch and Klavžar introduced the M-polynomial, which laid the founda-
tion for determining numerous degree-based topological indices [2]. Building upon this idea,
Mondal et al. further expanded the scope of the M-polynomial by introducing the concept
of the neighborhood M-polynomial in 2020 [3]. Their groundbreaking work successfully de-
rived the neighborhood M-polynomial and related topological indices based on the sum of
neighborhood degrees for the molecular graph of bismuth tri-iodide (BiI3) chain and sheets.
This breakthrough paved the way for mathematicians to generate topological indices based on
neighborhood degrees, as exemplified by applications to Cuprous Oxide’s (Cu2O) crystalline
structure and the face-centered cubic lattice [4–6].

The effectiveness of a topological index lies in its ability to accurately predict molecules
properties or activities. Notably, the study conducted by Mondal et al. identified the neigh-
borhood second modified Zagreb index as the optimal choice for predicting molar refractivity
and polarizability in COVID-19 drugs [4]. Similarly, Havare determined the neighborhood
harmonic index as the most suitable option for predicting the molar volume of cancer drugs
[7]. These findings underscore the critical importance of selecting the appropriate index tai-
lored to specific properties of interest.

Carbon nanotubes (CNTs) are small cylindrical carbon structures endowed with excep-
tional properties, including high strength, conductivity, and a large surface area. These unique
attributes make CNTs highly versatile for numerous applications in pharmacy and medicine.
In the pharmaceutical domain, CNTs have proven to be effective in targeted drug delivery
and gene therapy through efficient adsorption or conjugation with therapeutic and diagnostic
agents. Additionally, CNTs have found utility in tissue regeneration, biosensors, drug separa-
tion techniques, pollutant analysis, and have even shown promise as antioxidants.

The primary objectives of our work are threefold. Firstly, in Section 3 of this paper, we
derive the neighborhood M-polynomials for some classical graph operations such as cartesian
product, composition, Kronecker product, etc. of regular graphs. These operations hold sig-
nificance in graph theory and find practical applications in network analysis and optimization.
Secondly, we address and rectify erroneous results of specific cycle-related graphs in Section 4.
The accuracy of topological indices heavily relies on precise calculations, necessitating the cor-
rection of any inconsistencies. Furthermore, we determine the neighborhood M-polynomial
and associated topological indices for novel cycle-related graphs, expanding the understand-
ing of their properties. Lastly, in Section 5, we apply our findings to obtain the neighbor-
hood M-polynomial and associated topological indices for the VPHX[m, n] nanotubes and
VPHY[m, n] nanotori structures. These applications demonstrate the practical implications
of our research in fields such as chemistry, molecular property prediction, drug design, net-
work optimization, and vulnerability identification [8, 9]. We have also thoughtfully included
preliminaries in Section 2 to assist the reader in better comprehending the content.
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2 Preliminaries

Definition 2.1. The neighborhood M-polynomial for a graph G is represented as NM(G; x, y)
and can be defined as follows:

NM(G; x, y) = ∑
i≤j

mijxiyj,

here, mij refers to the count of edges uv ∈ E(G) in the graph such that {γ(u), γ(v)} = {i, j}
and x and y are arbitrary variables. The coefficients mij perform an edge partition. It creates
the equivalence classes of edges such that their end vertices have the same neighborhood
degree sum. For example, in the case of a Wheel graph Wn on n + 1 vertices, the edges can be
partitioned as mn+6,n+6 and mn+6,3n. Each equivalence class contains n number of edges. By
analyzing the coefficients of neighborhood M-polynomial, one can gain insights into a graph’s
complexity, connectivity and combinatorial properties. γ(u) denotes the neighborhood degree
sum of vertex u in graph G. The neighborhood degree sum can be calculated using the given
MATLAB code in the appendix.

A graph product is a creative fusion where the vertices and edges of the original graphs
intertwine, unveiling new patterns and relationships within the resulting graph. Graph prod-
ucts provide a powerful framework for analyzing complex systems, modeling interactions,
and uncovering hidden connections, enabling us to explore the intricate web of relationships
that exist in diverse domains, from social networks to quantum information theory. In what
follows, we define various types of graph operations :

Definition 2.2. Let G1 and G2 be two graphs with vertex sets V(G1) and V(G2), respectively.
Let ai ∈ V(G1), bi ∈ V(G2), and (ai, bi) ∈ V(G1) × V(G2) for i = 1, 2. Graph products are
defined on the vertex set V(G1)×V(G2) as follows:

• Cartesian product (G1×G2): (a1, b1) ∼ (a2, b2) if and only if a1 = a2 ; b1 ∼ b2 or a1 ∼ a2;
b1 = b2.

• Lexicographic Product or Composition of Graphs (G1[G2]): (a1, b1) ∼ (a2, b2) if and
only if a1 ∼ a2 or a1 = a2; b1 ∼ b2.

• Direct Product or Kronecker Product (G1 ⊗ G2): (a1, b1) ∼ (a2, b2) if and only if a1 ∼ a2
and b1 ∼ b2.

• Strong Product (G1 · G2): (a1, b1) ∼ (a2, b2) if and only if a1 ∼ a2; b1 = b2 or a1 = a2;
b1 ∼ b2 or a1 ∼ a2; b1 ∼ b2.

For a comprehensive understanding of these graph operations, we kindly refer the reader to
the relevant literature [10].

A cycle-related graph is a graph representation where cycles, or closed paths are presented.
It is commonly used to model molecular structures and network systems, providing insights
into connectivity patterns, stability, and properties of the system. The study of cycle-related
graphs plays a vital role in graph theory, chemistry, and network analysis. For more one can
refer to [11].

The general expression of the neighborhood degree sum based indices of a graph G is

TI(G) = ∑
e=uv∈E(G)

f (γ(u), γ(v)).
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Table 1: Operators to derive neighborhood degree-based topological indices from neighbor-
hood M-polynomial.

Topological Index Notation f (γ(u), γ(v)) Derivation from NM(G)

Third version of Zagreb M′1(G) γ(u) + γ(v) (Dx + Dy)(NM(G; x, y))x=y=1

Neighborhood Harmonic H́(G) 2
γ(u)+γ(v) 2Sx J(NM(G; x, y))x=1

Neighborhood second
Zagreb

M′2(G) γ(u)γ(v) DxDy(NM(G; x, y))x=y=1

Neighborhood inverse
sum

IŚI(G) γ(u)γ(v)
γ(u)+γ(v)

Sx JDxDy(NM(G; x, y))x=1

Neighborhood forgotten F́(G) γ(u)2 + γ(v)2 (D2
x + D2

y)x=y=1

Third NDe NDe3(G)
γ(u)γ(v){γ(u) +
γ(v)} DxDy(Dx + Dy)x=y=1

Fifth NDe ND5(G) γ(u)
γ(v) +

γ(v)
γ(u)

(DxSy + SxDy)x=y=1

Neighborhood second
modified Zagreb

mḾ2(G) 1
γ(u)γ(v) SxSy(NM(G; x, y))x=y=1

The computation of these topological indices involves an appropriately chosen function f (x, y).
Table 1 provides several examples of such indices.
Here, Dx = x ∂ f (x,y)

∂x , Dy = y ∂ f (x,y)
∂y , Sx =

∫ x
0

f (t,y)
t dt, Sy =

∫ y
0

f (x,t)
t dt,

J( f (x, y)) = f (x, x) are the operators.

3 Neighborhood M-polynomial of some graph operations

This section focuses on finding the neighborhood M-polynomial for different graph opera-
tions of regular graphs. Additionally, we calculate the neighborhood M-polynomial for the
complete bipartite graph Km,n.

Lemma 3.1. Let G be any r-regular graph of order n and size m. Then the neighborhood M-polynomial
of G is given by

NM(G; x, y) = mxr2
yr2

.

Proof. Since graph G is r-regular for all u ∈ V(G)

γ(u) = r + r + . . . + r = r2.

Hence, the required neighborhood M-polynomial is

NM(G; x, y) = ∑
i≤j

mijxiyj,

thus,

NM(G; x, y) = mxr2
yr2

.

�
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Theorem 3.2. Let G1 be an r1-regular graph of order n1 and G2 be an r2-regular graph of order n2.
Then

NM(G1 × G2; x, y) =
n1n2(r1 + r2)

2
x(r1+r2)

2
y(r1+r2)

2
.

Proof. Since G1 is r1-regular and G2 is r2-regular of order n1 and n2, respectively, the neighbor-
hood degree sum of each vertex is (r1 + r2)

2 in G1 × G2. The order and the size of G1 × G2 are
n1n2 and n1n2(r1+r2)

2 , respectively. Hence by Lemma 3.1

NM(G1 × G2; x, y) =
n1n2(r1 + r2)

2
x(r1+r2)

2
y(r1+r2)

2
.

�

Theorem 3.3. Let G1 be an r1-regular graph of order n1 and G2 be an r2-regular graph of order n2.
Then

NM(G1[G2]; x, y) =
n1n2

2r1 + n1n2r2

2
(xy)(n2r1+r2)

2
.

Proof. Since G1 is r1-regular of order n1 and G2 is r2-regular of order n2, the degree of each
vertex is (n2r1 + r2) and neighborhood degree sum of each vertex in G1[G2] is (n2r1 + r2)

2.

Size of G1[G2] is n1n2
2r1+n1n2r2

2 . So by Lemma 3.1 we get

NM(G1[G2]; x, y) =
n1n2

2r1 + n1n2r2

2
(xy)(n2r1+r2)

2
.

�

Theorem 3.4. Let G1 be an r1-regular graph of order n1 and G2 be an r2-regular graph of order n2.
Then

NM(G1 ⊗ G2; x, y) =
n1n2r1r2

2
(xy)(r1r2)

2
.

Proof. Since G1 is r1-regular of order n1 and G2 is r2-regular of order n2, the degree of each
vertex is (r1r2) and neighborhood degree sum of each vertex in G1 ⊗ G2 is (r1r2)

2. Size of
G1 ⊗ G2 is n1n2r1r2

2 . Using Lemma 3.1 we get

NM(G1 ⊗ G2; x, y) =
n1n2r1r2

2
(xy)(r1r2)

2
.

�

Theorem 3.5. Let G1 be an r1-regular graph of order n1 and G2 be an r2-regular graph of order n2.
Then

NM(G1 · G2; x, y) =
n1n2(r1 + r2 + r1r2)

2
(xy)(r1+r2+r1r2)

2
.

Proof. Since G1 is r1-regular of order n1 and G2 is r2-regular of order n2, the degree of each
vertex in G1.G2 is (r1 + r2 + r1r2) and neighborhood degree sum of each vertex is (r1 + r2 +

r1r2)
2. Size of G1 · G2 is n1n2(r1+r2+r1r2)

2 . Using Lemma 3.1 we get

NM(G1 · G2; x, y) =
n1n2(r1 + r2 + r1r2)

2
(xy)(r1+r2+r1r2)

2
.

�
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Theorem 3.6. Let G1 be an r1-regular graph of order n1 and G2 be an r2-regular graph of order n2.
Then

NM(G1 + G2; x, y) =
n1r1

2
(xy)r1(r1+n2) +

n2r2

2
(xy)r2(r2+n1)

+ n1n2xr1(r1+n2)yr2(r2+n1).

Proof. If u ∈ V(G1) then d(u) = r1 + n2. Similarly, d(u) = r2 + n1 whenever u ∈ V(G2).
So, γ(u) = r1(r1 + n2) for all u ∈ V(G1). Also, γ(u) = r2(r2 + n1) for all u ∈ V(G2).
The number of edges whose both the end vertices are in V(G1) are n1r1

2 . Similarly, the number
of edges whose both the end vertices are in V(G2) are n2r2

2 .
And the number of edges whose one end vertex is in V(G1) and another end vertex is in V(G2)
are n1n2. Hence the neighborhood M-polynomial of join of G1 and G2 is

NM(G1 + G2; x, y) =
n1r1

2
(xy)r1(r1+n2) +

n2r2

2
(xy)r2(r2+n1)

+ n1n2xr1(r1+n2)yr2(r2+n1).

�

Theorem 3.7. Let Km,n be the complete bipartite graph. Then the neighborhood M-polynomial of Km,n
is

NM(Km,n; x, y) = mn(xy)mn.

Proof. Let V(Km,n) = V1 ∪V2, where |V1| = m and |V2| = n. Then γ(u) = mn for any u ∈ V(G).
Hence neighborhood M-polynomial of Km,n is

NM(Km,n; x, y) = mn(xy)mn.

�

Theorem 3.8. If G is a r-regular graph with order n and size m, then neighborhood M-polynomial of
the complement of G is

NM(Gc; x, y) =
n(n− r)

2
(xy)(n−r)2

.

Proof. Since G is r-regular graph so the degree of each vertex of Gc is (n− r), the neighborhood
degree of each vertex of Gc is (n− r)2. By Handshaking theorem the size of Gc is n(n−r)

2 . Hence

NM(Gc; x, y) =
n(n− r)

2
(xy)(n−r)2

.

�

4 Some remarks on cycle related graphs

Several results presented in [12] were found to be erroneous upon thorough examination. The
author erroneously employed vertex degrees to compute the neighborhood M-polynomial,
instead of properly assessing the sum of neighborhood degrees for each vertex, which is the
correct approach. We have diligently verified and rectified these inaccuracies, providing the
corrected and accurate results in this section.
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Theorem 4.1. Let Wn be a wheel of order (n + 1) and size 2n. Then

NM(Wn; x, y) = n(xy)n+6 + nxn+6y3n.

Proof. The edges of Wn can be divided as

mn+6,n+6 = n,
mn+6,3n = n.

Hence, the neighborhood M-polynomial of Wn can be expressed as:

NM(Wn; x, y) = n(xy)n+6 + nxn+6y3n.

�

Corollary 4.2. The significant topological indices based on the neighborhood M-polynomial of Wn are

1. M′1(Wn) = 6n2 + 18n,

2. H́(Wn) =
3n2+9n

(n+6)(2n+3) ,

3. M′2(Wn) = 4n3 + 30n2 + 36n,

4. IŚI(Wn) =
n(n+6)

2 + 3n2(n+6)
4n+6 ,

5. F́(Wn) = 20n4 + 96n3 + 180n2,

6. NDe3(Wn) = 14n4 + 126n3 + 324n2 + 432n,

7. ND5(Wn) =
16n2+48n+36

3(n+6) ,

8. mḾ2(Wn) =
4n+6

3(n+6)2 .

Proof. From the neighborhood M-polynomial of Wn we get

Dx = x ∂ f (x,y)
∂x = n(n + 6)xx+6yn+6 + n(n + 6)xn+6y3n,

Dy = y ∂ f (x,y)
∂y = n(n + 6)xn+6yn+6 + 3n2xn+6y3n,

Sx =
∫ x

0
f (t,y)

t dt = n
n+6 (xy)n+6 + n

n+6 xn+6y3n,

Sy =
∫ y

0
f (x,t)

t dt = n
n+6 (xy)n+6 + 1

3 xn+6y3n,
J( f (x, y)) = f (x, x) = nx2n+12 + nx4n+6.

Therefore,

1. M′1(Wn) = (Dx + Dy)(NM(Wn; x, y))|x=1=y = 6n2 + 18n,

2. H́(Wn) = (2Sx J)(NM(Wn; x, y))|x=1 = 3n2+9n
(n+6)(2n+3) ,

3. M′2(Wn) = (DxDy)(NM(Wn; x, y))|x=1=y = 4n3 + 30n2 + 36n,

4. IŚI(Wn) = (Sx JDxDy)(NM(Wn; x, y))|x=1 = n(n+6)
2 + 3n2(n+6)

4n+6 ,
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5. F́(Wn) = (D2
x + D2

y)(NM(Wn; x, y))|x=1=y = 20n4 + 96n3 + 180n2,

6. NDe3(Wn) = (DxDy(Dx + Dy))(NM(Wn; x, y))|x=1=y = 14n4 + 126n3 + 324n2 + 432n,

7. ND5(Wn) = (DxSy + SxDy)(NM(Wn; x, y))|x=1=y = 16n2+48n+36
3(n+6) ,

8. mḾ2(Wn) = (SxSy)(NM(Wn; x, y))|x=1=y = 4n+6
3(n+6)2 .

�

Theorem 4.3. Let Fn be a fan graph of order (n + 1) and size (2n− 1). Then

NM(Fn; x, y) = 2xn+3yn+5 + 2xn+5yn+6 + 2xn+3y3n−2 + 2xn+5y3n−2

+ (n− 4)xn+6y3n−2 + (n− 4)xn+6yn+6.

Proof. The fan Fn has n + 1 vertices and 2n− 1 edges. It is easy to see that

mn+3,n+5 = 2,
mn+5,n+6 = 2,

mn+3,3n−2 = 2,
mn+5,3n−2 = 2,
mn+6,3n−2 = n− 4,
mn+6,n+6 = n− 4.

So the neighborhood M-polynomial of Fn is

NM(Fn; x, y) = 2xn+3yn+5 + 2xn+5yn+6 + 2xn+3y3n−2 + 2xn+5y3n−2

+ (n− 4)xn+6y3n−2 + (n− 4)xn+6yn+6.

�

Corollary 4.4. The topological indices derived from the neighborhood M-polynomial of fan graph Fn
are

1. M′1(Fn) = 6n2 + 16n− 18,

2. H́(Fn) =
96n6+1264n5+6114n4+13731n3+15868n2+14700n+5592

2(n+4)(n+1)(n+6)(4n+1)(4n+3)(2n+11) ,

3. M′2(Fn) = 4n3 + 28n2 − 10n− 38,

4. IŚI(Fn) =
160n7+2640n6+14254n5+25321n4+266n3−4700n2−6540n−4996

4(n+4)(n+1)(4n+1)(4n+3)(2n+11) ,

5. F́(Fn) = 20n4 + 80n3 + 80n2 − 400n + 260,

6. NDe3(Fn) = 14n4 + 112n3 + 82n2 − 30n− 708,

7. ND5(Fn) =
10n+14

n+5 + 3n2−12n+18
n+6 + n2+6n−8

3n−2 + 8n+6
n+3 + 2n− 8,

8. mḾ2(Fn) =
4n4+36n3+130n2+268n+120
(n+3)(n+5)(n+6)2(3n−2) .
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Proof. From the neighborhood M-polynomial of Fn we get

Dx = x ∂ f (x,y)
∂x = 2(n+ 3)xn+3yn+5 + 2(n+ 5)xn+5yn+6 + 2(n+ 3)xn+3y3n−2 + 2(n+ 5)xn+5y3n−2 +

(n− 4)(n + 6)xn+6y3n−2 + (n− 4)(n + 6)xn+6yn+6,

Dy = y ∂ f (x,y)
∂y = 2(n+ 5)xn+3yn+5 + 2(n+ 6)xn+5yn+6 + 2(3n− 2)xn+3y3n−2 + 2(3n− 2)xx+5y3n−2 +

(n− 4)(3n− 2)xn+6y3n−2 + (n− 4)(n + 6)xn+6yn+6,
Sx =

∫ x
0

f (t,y)
t dt = 2

n+3 xn+3yn+5 + 2
n+5 xn+5yn+6 + 2

n+3 xn+3y3n−2

+ n−4
n+5 xn+5y3n−2 + n−4

n+6 xn+6yn+6 + 2
n+5 xn+5y3n−2,

Sy =
∫ y

0
f (x,t)

t dt = 2
n+5 xn+3yn+5 + 2

n+6 xn+5yn+6 + 2
3n−2 xn+3y3n−2

+ n−4
3n−2 xn+6y3n−2 + n−4

n+6 (xy)n+6 + 2
3n−2 xn+5y3n−2,

J( f (x, y)) = f (x, x) = 2x2n+8 + 2x2n+11 + 2x4n+1 + 2x4n+3 + (n− 4)x4n+4 + (n− 4)x2n+12.

Therefore,

1. M′1(Fn) = (Dx + Dy)(NM(Fn; x, y))|x=1=y = 6n2 + 16n− 18,

2. H́(Fn) = (2Sx J)(NM(Fn; x, y))|x=1 = 96n6+1264n5+6114n4+13731n3+15868n2

2(n+4)(n+1)(n+6)(4n+1)(4n+3)(2n+11) +
14700n+5592

2(n+4)(n+1)(n+6)(4n+1)(4n+3)(2n+11) ,

3. M′2(Fn) = (DxDy)(NM(Fn; x, y))|x=1=y = 4n3 + 28n2 − 10n− 38,

4. IŚI(Fn) = (Sx JDxDy)(NM(Fn; x, y))|x=1 = 160n7+2640n6+14254n5+25321n4

4(n+4)(n+1)(4n+1)(4n+3)(2n+11) +

266n3−4700n2−6540n−4996
4(n+4)(n+1)(4n+1)(4n+3)(2n+11) ,

5. F́(Fn) = (D2
x + D2

y)(NM(Fn; x, y))|x=1=y = 20n4 + 80n3 + 80n2 − 400n + 260,

6. NDe3(Fn) = (DxDy(Dx + Dy))(NM(Fn; x, y))|x=1=y = 14n4 + 112n3 + 82n2 − 30n−
708,

7. ND5(Fn) = (DxSy + SxDy)(NM(Fn; x, y))|x=1=y = 10n+14
n+5 + 3n2−12n+18

n+6 + n2+6n−8
3n−2 +

8n+6
n+3 + 2n− 8,

8. mḾ2(Fn) = (SxSy)(NM(Fn; x, y))|x=1=y = 4n4+36n3+130n2+268n+120
(n+3)(n+5)(n+6)2(3n−2) .

�

Theorem 4.5. Let Gn be a gear graph. Then the neighborhood M-polynomial of Gn is

NM(Gn; x, y) = 2nx6yn+4 + nxn+4y3n.

Proof. The edges of Gn can be divided as:

m6,n+4 = 2n,
mn+4,3n = n.

So the neighborhood M-polynomial is

NM(Gn; x, y) = 2nx6yn+4 + nxn+4y3n.

�
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Corollary 4.6. Let Gn be a gear graph. Then the neighborhood degree based topological indices of Gn
are

1. M′1(Gn) = 6n2 + 24n,

2. H́(Gn) =
9n2+18n

2(n+1)(n+10) ,

3. M′2(Gn) = 3n3 + 24n2 + 48n,

4. IŚI(Gn) =
12n(n+4)

n+10 + 3n2(n+4)
4(n+1) ,

5. F́(Gn) = 24n4 + 112n3 + 320n2,

6. NDe3(Gn) = 12n4 + 72n3 + 216n2 + 480n,

7. ND5(Gn) =
n2+14n+4

3 ,

8. mḾ2(Gn) =
n+1

3(n+4) .

Proof. From the neighborhood M-polynomial of Gn we get

Dx = x ∂ f (x,y)
∂x = 12nx6yn+4 + n(n + 4)xn+4y3n,

Dy = y ∂ f (x,y)
∂y = 2n(n + 4)x6yn+4 + 3n2xn+4y3n,

Sx =
∫ x

0
f (t,y)

t dt = n
3 x6yn+4 + n

n+4 xn+4y3n,

Sy =
∫ y

0
f (x,t)

t dt = 2n
n+4 x6yn+4 + 1

3 xn+4y3n,
J( f (x, y)) = f (x, x) = 2nxn+10 + nx4n+4.

Therefore,

1. M′1(Gn) = (Dx + Dy)(NM(Fn; x, y))|x=1=y = 6n2 + 24n,

2. H́(Gn) = (2Sx J)(NM(Fn; x, y))|x=1 = 9n2+18n
2(n+1)(n+10) ,

3. M′2(Gn) = (DxDy)(NM(Fn; x, y))|x=1=y = 3n3 + 24n2 + 48n,

4. IŚI(Gn) = (Sx JDxDy)(NM(Gn; x, y))|x=1 = 12n(n+4)
n+10 + 3n2(n+4)

4(n+1) ,

5. F́(Gn) = (D2
x + D2

y)(NM(Gn; x, y))|x=1=y = 24n4 + 112n3 + 320n2,

6. NDe3(Gn) = (DxDy(Dx + Dy))(NM(Gn; x, y))|x=1=y = 12n4 + 72n3 + 216n2 + 480n,

7. ND5(Gn) = (DxSy + SxDy)(NM(Gn; x, y))|x=1=y = n2+14n+4
3 ,

8. mḾ2(Gn) = (SxSy)(NM(Gn; x, y))|x=1=y = n+1
3(n+4) .

�

Theorem 4.7. Let FDn be a friendship graph. Then neighborhood M-polynomial of FDn is

NM(FDn; x, y) = 2nx2ny2n+2 + nx2n+2y2n+2.
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Proof. The edges of FDn can be divided as

m2n+2,2n = 2n,
m2n+2,2n+2 = n.

Hence the neighborhood M-polynomial is

NM(FDn; x, y) = 2nx2ny2n+2 + nx2n+2y2n+2.

�

Corollary 4.8. If FDn is a friendship graph, then the neighborhood degree based topological indices
are:

1. M′1(FDn) = 12n2 + 8n,

2. H́(FDn) =
6n2+5n

2(n+1)(2n+1) ,

3. M′2(FDn) = 12n3 + 16n2 + 4n,

4. IŚI(FDn) =
n(n+1)(6n+1)

2n+1 ,

5. F́(FDn) = 72n4 + 96n3 + 40n2,

6. NDe3(FDn) = 48n4 + 96n3 + 64n2 + 16n,

7. ND5(FDn) =
6n2+6n+2

n+1 ,

8. mḾ2(FDn) =
3n+2

(2n+2)2 .

Theorem 4.9. Let Hn be a helm graph. Then the neighborhood M-polynomial of Hn is

NM(Hn; x, y) = nxn+9y4n + nxn+9yn+9 + nx4yn+9.

Proof. The partition of the edges based on the neighborhood degree sum can be done as:

m4,n+9 = n,
mn+9,4n = n,

mn+9,n+9 = n.

So the neighborhood M-polynomial is

NM(Hn; x, y) = nxn+9y4n + nxn+9yn+9 + nx4yn+9.

�

Corollary 4.10. If Hn is a helm, then

1. M′1(Hn) = 8n2 + 40n,

2. H́(Hn) =
17n3+226n2+513n
(n+9)(5n+9)(n+13) ,

3. M′2(Hn) = 5n3 + 58n2 + 117n,
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4. IŚI(Hn) =
4n2(n+9)

5n+9 + n(n+9)
2 + 4n(n+9)

n+13 ,

5. F́(Hn) = 40n4 + 304n3 + 808n2,

6. NDe3(Hn) = 22n4 + 274n3 + 898n2 + 1926n,

7. ND5(Hn) =
n3+43n2+187n+81

4(n+9) ,

8. mḾ2(Hn) =
n2+14n+9

4(n2+18n+81) .

Theorem 4.11. If C H n is a closed helm, then the neighborhood M-polynomial of C H n is

NM(C H n; x, y) = n(xy)10 + n(xy)n+11 + nx10yn+11 + n(xyn)n+11.

Proof. The edges of the closed helm C H n can be divided as:

m10,10 = n,
m10,n+11 = n,

mn+11,n+11 = n,
mn+11,n(n+11) = n.

Hence the neighborhood M-polynomial is

NM(C H n; x, y) = n(xy)10 + n(xy)n+11 + nx10yn+11 + n(xyn)n+11.

�

Corollary 4.12. If C H n is a closed helm, then

1. M′1(C H n) = n3 + 15n2 + 74n,

2. H́(C H n) =
n4+63n3+743n2+1081n
10(n+1)(n+11)(n+21) ,

3. M′2(C H n) = n4 + 23n3 + 153n2 + 331n,

4. IŚI(C H n) = 5n + n(n+1)
2 + 10n(n+11)

n+21 + n2(n+11)
n+1 ,

5. F́(C H n) = n6 + 26n5 + 237n4 + 1000n3 + 2788n2,

6. NDe3(C H n) = n6 + 34n5 + 398n4 + 1770n3 + 2377n2 + 6972n,

7. ND5(C H n) =
11n3+172n2+671n+110

10(n+11) ,

8. mḾ2(C H n) =
n3+32n2+331n+100

100(n+11)2 .

Theorem 4.13. Let C W n be a crown. Then the neighborhood M-polynomial of C W n is

NM(C W n; x, y) = nx3y7 + n(xy)7.
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Proof. The edges of C W n can be divided as:

m3,7 = n,
m7,7 = n.

Hence the required polynomial is

NM(C W n; x, y) = nx3y7 + n(xy)7.

�

Corollary 4.14. If C W n is a crown, then

1. M′1(C W n) = 24n,

2. H́(C W n) =
12n
35 ,

3. M′2(C W n) = 70n,

4. IŚI(C W n) =
28n

5 ,

5. F́(C W n) = 296n2,

6. NDe3(C W n) = 896n,

7. ND5(C W n) =
100n

21 ,

8. mḾ2(C W n) =
10n
147 .

Theorem 4.15. Let FL n be a flower graph. Then the neighborhood M-polynomial of FL n is

NM(FL n; x, y) = n(xy)2n+10 + nx2n+10y6n + nx2n+4y6n.

Proof. The edges can be partitioned as

m2n+4,6n = n,
m2n+10,6n = n,

m2n+10,2n+10 = n.

Hence the neighborhood M-polynomial is

NM(FL n; x, y) = n(xy)2n+10 + nx2n+10y6n + nx2n+4y6n.

�

Corollary 4.16. If FL n is a flower graph, then

1. M′1(FL n) = 20n2 + 34n,

2. H́(FL n) =
16n3+61n2+40n

2(n+5)(4n+5)(2n+1) ,

3. M′2(FL n) = 28n3 + 124n2 + 100n,

4. IŚI(FL n) =
n(32n3+159n2+135n+250)

(4n+5)(2n+1) ,
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5. F́(FL n) = 232n4 + 568n3 + 676n2,

6. NDe3(FL n) = 208n4 + 1080n3 + 1896n2 + 2000n,

7. ND5(FL n) =
26n3+126n2+129n+70

3(n+5)(n+2) ,

8. mḾ2(FL n) =
5n2+23n+35

3(2n+10)2(n+2) .

5 Applications to nanotubes and nanotori

In this section, we focus on the computation of the several topological indices (TIs) of carbon
nanotubes and nanotori. TIs serve as numerical indicators that provide valuable insights into
a compound’s characteristics, forming a crucial link between physio-chemical properties and
mathematics. Our research focuses explicitly on carbon nanostructures. Referring to impor-
tant sources like [13–15], we have seen that topological indices play a crucial role in figuring
out details about these carbon nanostructures’ physical and chemical properties. Consider-
ing the widespread use of carbon nanostructures in various physical applications, as high-
lighted in [16–21], the evaluation of topological indices becomes pivotal. This assessment aids
in streamlining the selection process for compounds in practical applications, determining
which ones are better suited for specific purposes.

Among carbon nanomaterials, carbon nanotubes and nanotori are widely utilized in var-
ious applications. The primary uses of these nanostructures encompass biomolecule and
drug delivery to targeted organs, biosensor diagnostics, and analysis. They demonstrate out-
standing chemical and physical characteristics, including high tensile strength, extremely low
weight, unique electronic structures, elevated chemical and thermal stability, extensive surface
area, numerous antibacterial and antifungal properties, capacity to serve as protein carriers,
and possession of exposed functional groups. These remarkable attributes have sparked sig-
nificant interest in these nanomaterials among scientists. The considerable potential of multi-
walled carbon nanotubes (MWCNT) in biosensors arises from their ability to facilitate protein
immobilization with ease while preserving the inherent activity of the proteins. Some signifi-
cant applications are as follows:
In a study by Beden et al. [16], they created an electrochemical sensor using MWCNTs and
Gold Nanoparticles (AuNPs) to detect dopamine at very low levels. This was achieved by
including electroactive adducts, which improved the sensor’s analytical capabilities. Addi-
tionally, Gutierrez et al. [17] used MWCNTs on a glassy carbon electrode (GCE) to detect albu-
min, glucose, and amino acids both qualitatively and quantitatively. The sensor could identify
glucose with a limit as low as 182 nM. It also successfully recognized carbohydrates, amino
acids, and albumin in real samples, indicating its practical usefulness and suggesting potential
commercial applications. For a more in-depth understanding of how carbon nanotubes and
nanotori are applied, we recommend checking out [18–21].

5.1 Computational aspects of VPHX[m,n]

In this sub-section, we obtain the general forms of neighborhood M-polynomials of V-Phenylenic
nanotubes VPHX[m, n] with m and n taking only positive integral value and rapidly compute
some topological indices from the polynomial obtained.
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Figure 1: V-Phenylenic nan-
otubes VPHX[m,n].

Figure 2: V-Phenylenic nan-
otori VPHY[m,n].

Theorem 5.1. Let G = VPHX[m, n] be the V-Phenylenic nanotube. Then the neighborhood M-
polynomial is given by

NM(G; x, y) = 4mx6y8 + 2(m− 1)(xy)8 + 4mx8y9 + (9mn− 11m− 2n + 2)(xy)9.

Proof. We see from Figure 1 that the graph has 6mn number of vertices and 9mn number of
edges. The edge partition of the graph G can be realized as:

m6,8 = 4m,
m8,9 = 4m,
m8,8 = 2(m− 1),
m9,9 = 9mn− 11m− 2n + 2.

Hence the neighborhood M-polynomial of G is

NM(G; x, y) = 4mx6y8 + 2(m− 1)(xy)8 + 4mx8y9 + (9mn− 11m− 2n + 2)(xy)9.

�

Corollary 5.2. If G is the graph of VPHX[m, n], then

1. M′1(G) = −42m + 162mn− 36n + 4,

2. H́(G) = − 35
612 m + 9mn−2n

9 − 1
36 ,

3. M′2(G) = −283m + 729mn− 162n + 34,

4. IŚI(G) = −2581m+9639mn−2142n+238
238 ,

5. F́(G) = 954m2− 6804m2n+ 2160mn− 168m+ 13122m2n2− 5832mn2 + 648n2− 144n+ 8,

6. NDe3(G) = 1613m + 6561mn− 1458n− 590,

7. ND5(G) = 493
18 m + 18mn− 4n− 14,

8. mḾ2(G) = − 367
36 m + 9mn− 2n + 571

324 .



170 G. Saharia et al. / Neighborhood M-Polynomial of Graph Operations: ....

5.2 Computational aspects of VPHY[m, n]

In this sub-section, we obtain the general forms of neighborhood M-polynomials of V-Phenylenic
nanotubes VPHY[m, n] with m and n taking only positive integral value and rapidly compute
some topological indices from this polynomial.

Theorem 5.3. Let G = VPHY[m, n] be the V-Phenylenic nanotorus. Then the neighborhood M-
polynomial is given by

NM(G; x, y) = 9mn(xy)9.

Proof. We see from Figure 2 that the graph has 6mn number of vertices and 9mn number of
edges. The edge partition of the graph G can be realized as

m9,9 = 9mn.

Hence the neighborhood M-polynomial is

NM(G; x, y) = 9mn(xy)9.

�

Corollary 5.4. If G is the graph of VPHY[m, n], then

1. M′1(G) = 162mn,

2. H́(G) = mn,

3. M′2(G) = 9mn,

4. IŚI(G) = 81mn
2 ,

5. F́(G) = 13122(mn)2,

6. NDe3(G) = 13122mn,

7. ND5(G) = 18mn,

8. mḾ2(G) = mn
9 .

5.3 Graph representation of VPHX[1, 1] and VPHY[1, 1]

The surface of the neighborhood M-polynomial of VPHX[1, 1] and VPHY[1, 1] have been
plotted using Maple 13. This implies that the values derived from the neighborhood M-
polynomial exhibit distinct patterns corresponding to varying parameters x and y. These
values can be controlled through parameters. Clearly, Figure 3 shows the hyperboloid of
two sheets and Figure 4 indicates that on one side, the intercept forms an upward-opening
parabola, while on the other side, it forms a downward-opening parabola. Moreover, we see
that all indices are linearly related with the structural parameters m and n as the following
Figure 5 and Figure 6 suggests. It is observed that this index increases as m and n increase.
We also tried to compare different topological indices keeping one parameter constant. The
following Figures 7 and 8 demonstrate the comparison.
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Figure 3: Plotting of neigh-
borhood M-polynomial of
VPHX[1, 1].

Figure 4: Plotting of neigh-
borhood M-polynomial of
VPHY[1, 1].

Figure 5: Linear relationship
between M′1 and m.

Figure 6: Linear relationship
between M′1 and n.

6 Discussions

To sum up, our work has successfully achieved its three main objectives. Through the deriva-
tion of neighborhood M-polynomials for classical graph operations of regular graphs, we have
provided valuable tools for network analysis and optimization, which have practical signifi-
cance in various domains. The primary benefit of utilizing graph products lies in their ability
to decompose intricate graphs into simpler, familiar graphs while simultaneously forming
more complex network structures.

Moreover, by addressing and rectifying inaccuracies in specific results of cycle-related
graphs, we have enhanced the accuracy and reliability of topological indices, ensuring their
precise calculations. Additionally, our investigation into novel cycle-related graphs has ex-
panded our understanding of their properties, offering new insights into their structures.

Finally, by applying our findings to real-world structures such as nanotubes and nanotori
structures, we have demonstrated the practical applicability of the derived indices. By unrav-
eling the connections between neighborhood M-polynomials, topological indices, and struc-
tural parameters, our work provides valuable insights for future research and applications in
the realm of nanostructure analysis.
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Figure 7: Comparing M′1, H′

and M′2 of VPHX[m, 1].
Figure 8: Comparing M′1, H′

and M′2 of VPHX[1, n].
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Appendix

In this appendix, we provide a MATLAB code to find neighborhood degree sum of vertices in
a graph.

function neighborhood_degree_sum(graph)
num_vertices = size(graph, 1);
degree_sums = zeros(1, num_vertices);

for vertex = 1:num_vertices
neighbors = find(graph(vertex, :));
degree_sums(vertex) = sum(graph(vertex, neighbors));

end
disp(’Neighborhood degree sums of all vertices:’);
disp(degree_sums);

end
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