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Abstract

In this paper, we define the zero-divisor graph of a meet-
hyperlattice with respect to a hyperideal. We prove the diameter
of a P−hyperlattice and Nakano hyperlattice are at most 3 and 4
respectively. We obtain that the zero-divisor graph with respect
to the intersection of two prime hyperideals is complete bipar-
tite. We prove certain properties of these zero-divisor graphs
with suitable examples.
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1 Introduction
In recent years, researchers [1–3] have explored the construction of graphs from algebraic struc-
tures such as rings, groups, and modules. Ehsan and Khashyarmanesh [4] have studied the
zero-divisor graphs of lattices and characterized them in terms of atoms in a lattice. Joshi et
al. [5] described zero-divisor graphs of lattices with respect to an ideal, and computed their di-
ameter, girth, and characterized bipartite zero-divisor graphs. Joshi and Khishte [6] examined
the zero-divisor graph of lattices using the spectrum of a lattice and provided conditions for ad-
jacency. Domination in lattices using atoms in lattices was studied by Chelvam and Nithya [7].
Tapatee et al. [8, 9] studied the graph of a lattice with respect to superfluous elements and es-
sential elements and established related properties. In [10], the authors studied the zero-divisor
graphs of posets.
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The idea of hyperoperation, ◦ : H2 → P∗(H), where H is a non-empty set and P∗(H) is the set of
non-empty subsets of H extends the concept of binary operations in a classical algebraic system.
A binary operation deals with cases where the combination of two elements yields one outcome.
However, this is a limitation, as in most instances found in natural phenomena, the combination
of two elements can yield multiple outcomes. Konstantinidou [11] generated hyperlattices from
lattices and investigated their distributivity. The notion of complete join hyperlattices was
studied by Lashkenari and Davvaz [12]. Ameri et al. [13] investigated join hyperlattices and
established the relationship between prime hyperideals and prime hyperfilters. Bideshki et
al. [14] analyzed the properties of hyperideals and hyperfilters in a meet-hyperlattice. In [15]
Pallavi et al. defined various generalizations of prime hyperideals in a meet-hyperlattice. The
idea of a fundamental relation on a hyperlattice was introduced by Rasouli and Davvaz [16].

In Section 2 of the paper, we give necessary preliminaries on hyperlattices from [11–13, 17]
and we refer to [18] for preliminaries in graph theory. In Section 3, we define the notion of an
element prime to a hyperideal in a meet-hyperlattice. Using these elements, we establish the
definition of a zero-divisor graph of a meet-hyperlattice with respect to hyperideals. We prove
that the diameter of a P -hyperlattice and Nakano hyperlattice are at most 3 and 4, respectively.
Finally, we show that the zero-divisor graph with respect to the intersection of two prime
hyperideals is complete bipartite. In Section 4, we provide examples of meet-hyperlattices of
chemical compounds.

2 Preliminaries
We use the following notations in the paper:

∧
denotes a meet-hyperoperation, ∧ denotes a

meet (binary) operation, ∨ denotes a join (binary) operation, u denotes Nakano hyperoperation
and

∧P denotes P -hyperoperation.

Definition 2.1. ([11]). An algebraic system (L,
∧
,∨) where ∨ is a binary operation and

∧
is

a hyperoperation, is called a meet-hyperlattice (
∧
) if it satisfies:

1. l1 ∈ l1
∧
l1 and l1 = l1 ∨ l1,

2. l1
∧
(l2

∧
l3) = (l1

∧
l2)

∧
l3 and l1 ∨ (l2 ∨ l3) = (l1 ∨ l2) ∨ l3,

3. l1
∧
l2 = l2

∧
l1 and l1 ∨ l2 = l2 ∨ l1,

4. l2 ∈ l2
∧
(l1 ∨ l2) ∩ l2 ∨ (l2

∧
l1),

for all l1, l2, l3 ∈ L.
Further, a meet-hyperlattice L is called a strong meet-hyperlattice if for all l1, b ∈ L with
l1 ∈ l1

∧
b implies l1 ∨ b = b.

Throughout, L denotes a strong meet-hyperlattice.
Remark 1. Let (L,

∧
,∨) be a meet-hyperlattice. For l1, l2 ∈ L, the relation

l1 ≤ l2 if and only if l2 = l1 ∨ l2,

is a partial order on L.

Example 2.2. ([12]). Let L be a modular lattice. For all a, b ∈ L, we define

a u b = {c ∈ L : c ∧ a = c ∧ b = a ∧ b}.

Then (L,u,∨) is a strong meet-hyperlattice. This hyperlattice is called Nakano hyperlattice.
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Example 2.3. ([15]). Let L = {0, a1, a2, a3, 1}. Let the hyperoperation
∧

and the classical
operation ∨ be defined as in the following tables:∧

0 a1 a2 a3 1
0 {0} {0} {0} {0} {0}
a1 {0} {a1} {0} {0} {a1}
a2 {0} {0} {0, a2} {0} {0, a2}
a3 {0} {0} {0} {0, a3} {0, a3}
1 {0} {a1} {0, a2} {0, a3} {a1, 1}

∨ 0 a1 a2 a3 1
0 0 a1 a2 a3 1
a1 a1 a1 1 1 1
a2 a2 1 a2 1 1
a3 a3 1 1 a3 1
1 1 1 1 1 1

{a1,1}
1

{a3,0}
a3

{a2,0}
a2

{a1}
a1

{0}
0

Figure 1: Lattice diagram of the hyperlattice (L,
∧
,∨).

It can be seen that (L,
∧
,∨) is a strong meet-hyperlattice (see Figure 1).

In [19, 20], the authors studied inheritance examples of algebraic hyperstuctures, partic-
ularly of hypergroups. Accordingly, in [15] the authors have constructed the following meet-
hyperlattices.
Let “parents” be denoted by P , “filial generation” be denoted by f and mating by ×.

Example 2.4. ([15]). Consider the process of dihybrid crossing of pea plant. Let a1 denote the
phenotype tall and round, a2 denote the phenotype short and round, a3 denote the phenotype
tall and wrinkled, and a4 denote the phenotype short and wrinkled.

P : Round, Tall × Wrinkled, Short
(RRTT ) (rrtt)

↓
f1 : Round, Tall

(RrTt)
f1 × f1 : Round, Tall × Round, Tall

(RrTt) (RrTt)
↓

f2 : a1, a2, a3, a4

Take K = {a1, a2, a3, a4}. Let
∧

be the crossing between the phenotypes, and ∨ be the relation
of dominance between the phenotypes, given by the following tables.
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∧
a1 a2 a3 a4

a1 K K K K
a2 K {a2, a4} K {a2, a4}
a3 K K {a3, a4} {a3, a4}
a4 K {a2, a4} {a3, a4} {a4}

∨ a1 a2 a3 a4
a1 a1 a1 a1 a1
a2 a1 a2 a1 a2
a3 a1 a1 a3 a3
a4 a1 a2 a3 a4

Then (K,
∧
,∨) is a meet-hyperlattice.

Lemma 2.5. ([12]). For any l1, l2 ∈ L, there exist x, y ∈ l1
∧
l2 such that x ≤ l1 and y ≤ l2.

3 Zero-divisor graph with respect to a hyperideal
Definition 3.1. 1. ∅ 6= J ⊆ L is called a semi hyperideal if for i1 ∈ L, i2 ∈ J with i1 ≤ i2

implies i1 ∈ J.

2. A semi hyperideal J is called a hyperideal if i1, i2 ∈ J implies i1 ∨ i2 ∈ J.

3. A proper semi hyperideal (hyperideal) J is called prime if for im ∈ L,m = 1, 2, (i1
∧
i2)∩

J 6= ∅ implies either i1 ∈ J or i2 ∈ J.

We denote the set of all hyperideals of L by I(L).

Theorem 3.2. ([15]). Let (L,∧,∨) be a lattice and ∅ 6= P ⊆ L be such that for each l1 ∈ L

there exists p ∈ P be such that l1 ≤ p. We define a hyperoperation
∧P by

l1

P∧
l2 = l1 ∧ l2 ∧ P = {l1 ∧ l2 ∧ p : p ∈ P}.

Then (L,
∧P

,∨) is a meet-hyperlattice.

For a lattice L and P ⊆ L, satisfying the conditions given in Theorem 3.2, we call the
hyperlattice (L,

∧P
,∨) as a P -hyperlattice.

Definition 3.3. Let J ∈ I(L).

1. For A ⊆ L, we define the subset (J : A) = {y ∈ L : (y
∧

a) ∩ J 6= ∅ for all a ∈ A}. If
A = {a}, then we simply write (J : A) as (J : a). A is said to be prime to J if (J : A) = J.

2. a ∈ L is said to be prime to J if (J : a) = J. We denote by S(J), the set of all elements
that are not prime to J.

3. J is called primal if S(J) ∈ I(L).

Lemma 3.4. Let I ∈ I(L) with I 6= L. Then I = S(I) if and only if I is prime.

Proof. Suppose that I is prime. Then clearly I ⊆ S(I). Now let a ∈ S(I). Then (I : a) 6= I,
and so there exists y ∈ (I : a) \ I such that (a

∧
y) ∩ I 6= ∅. Since I is prime, we must have

a ∈ I. Conversely suppose that I = S(I). Let am ∈ L,m = 1, 2, with (a1
∧
a2) ∩ I 6= ∅ and

a1 /∈ I. Then a2 ∈ S(I) = I. �

Definition 3.5. For J ∈ I(L), we define

Z(J) = {r ∈ L \ J : (r
∧

i) ∩ J 6= ∅ for some i /∈ J}.
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Remark 2. For J ∈ I(L), Z(J) = {r /∈ J : (J : r) 6= J}.

Lemma 3.6. For J ∈ I(L), Z(J) = S(J) \ J.

Proof. Let l1 ∈ Z(J). Then there exists y ∈ Jc such that (l1
∧

y) ∩ J 6= ∅, and so y ∈ (J : l1)
yielding J 6= (J : l1). So l1 ∈ S(J) \ J. Conversely, let u ∈ S(J) \ J. Then (J : u) 6= J, and so
there exists w ∈ (J : u) \ J such that (u

∧
w) ∩ J 6= ∅. This shows that u ∈ Z(J). �

Remark 3. For I ∈ I(L) Z(I) = ∅ if and only if I = L or I is prime.

Definition 3.7. Let J ∈ I(L). We define an undirected graph called the zero-divisor graph of
L with respect to the hyperideal J, denoted by GJ(L), whose vertex set is V (GJ(L)) = Z(J)
and x, y ∈ Z(J) are adjacent if x 6= y and (x

∧
y) ∩ J 6= ∅.

For a connected graph G, we denote d(x, y) as the distance between the vertices x and y in G.

Example 3.8. Let L = {0, a1, a2, a3, 1}. Let the hyperoperation
∧

and the classical operation
∨ be defined by the following tables.

∧
0 a1 a2 a3 1

0 {0} {0} {0} {0} {0}
a1 {0} {0, a1} {0, a1} {0} {0, a1}
a2 {0} {0, a1} {0, a2} {0} {0, a2}
a3 {0} {0} {0} {a3} {a3}
1 {0} {0, a1} {0, a2} {a3} {a3, 1}

∨ 0 a1 a2 a3 1
0 0 a1 a2 a3 1
a1 a1 a1 a2 1 1
a2 a2 a2 a2 1 1
a3 a3 1 1 a3 1
1 1 1 1 1 1

{a3,1}
1

{0, a2}
a2

{0, a1}
a1

{a3}
a3

{0}
0

Figure 2: Lattice diagram of the hyperlattice (L,
∧
,∨).

Then (L,
∧
,∨) is a meet-hyperlattice as shown in Figure 2 and I = {0} and J = {0, a1} (shown

in Figure 5) are hyperideals of L whose zero-divisor graphs are given in Figure 3 and Figure 4,
respectively.
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a1

a2

a3 1

Figure 3: Zero-divisor graph with respect to the hyperideal I = {0}.

{a3,1}
1

{0, a2}
a2

{0, a1}
a1

{a3}
a3

{0}
0

Figure 4: Hyperideal J = {0, a1} is represented by the dotted lines.

a2

a3 1

Figure 5: Graph with respect to the hyperideal J = {0, a1}.

Remark 4. In Definition 3.7, if we drop the condition x 6= y, then we may have a graph with
loops. For example, the zero-divisor graph of L with respect to the hyperideal I = 0 given in
Example 3.8, by allowing the condition x = y in the definition, is given in Figure 6.
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a1

a2

a3 1

Figure 6: Zero-divisor graph with respect to the hyperideal I = {0}.

Theorem 3.9. 1. Let (L,∧,∨) be a lattice, and P ⊆ L such that (L,
∧P

,∨) is a P -hyperlattice.
Then for J ∈ I(L), the graph GJ(L) is connected and diam(GJ(L)) ≤ 3.

2. If L is modular, and (L,u,∨) is the Nakano hyperlattice, then for J ∈ I(L), the graph
GJ(L) is connected and diam(GJ(L)) ≤ 4.

Proof. 1. Let L be a P -hyperlattice and I be hyperideal of L. Let l1, l2 ∈ Z(I). Suppose
(l1

∧P
l2) ∩ I 6= ∅, then l1l2 is an edge. Otherwise if (l1

∧P
l2) ∩ I = ∅, then since

l1, l2 ∈ Z(I), there exist x, y ∈ Z(I) such that l1x and l2y are edges.
Case 1: Suppose x = y. Then l1xl2 constitutes a path.
Case 2: Suppose that x 6= y. If l1y is an edge then l1yl2 is a path. If l2x is an edge, then
l1xl2 is a path, and hence d(l1, l2) = 2.
Case 3: Suppose that x 6= y and l2x and l1y are not edges in GJ(L). Since L is a P -
hyperlattice, (x

∧P
l1) ∩ I 6= ∅, so there is p1 ∈ P such that x ∧ l1 ∧ p1 ∈ I. Similarly,

there is p2 ∈ P such that y ∧ l2 ∧ p2 ∈ I. Now take u = l2 ∧ x ∧ p1, v = l1 ∧ y ∧ p2.
Since (l2

∧P
x) ∩ I = ∅, and (l1

∧P
y) ∩ I = ∅, it follows that u, v /∈ I. Now l1 ∧ u =

x ∧ l1 ∧ l2 ∧ p1 ≤ x ∧ l1 ∧ p1, implies l1u is an edge. Similarly, l2v is an edge. As
u ∧ v = l1 ∧ l2 ∧ x ∧ y ∧ p1 ∧ p2 ≤ l1 ∧ p1 ∈ I. There exists p′ ∈ P such that u ∧ v ≤ p′

and so u ∧ u ∈ u
∧P

v, which shows that (u
∧P

v) ∩ I 6= ∅, whence uv is an edge. Thus
l1uvl2 is a path, and so d(l1, l2) ≤ 3.

2. Let L be a Nakano hyperlattice and I be a hyperideal of L. Let l1, l2 ∈ Z(I). Suppose
(l1 u l2) ∩ I 6= ∅. Then l1l2 is an edge. Suppose that (l1 u l2) ∩ I = ∅. Since l1, l2 ∈ Z(I),
there exist x, y ∈ Z(I) and there exist u, v ∈ L such that

l1 ∧ u = u ∧ x = l1 ∧ x, u ∈ I, so that l1x is an edge,

and

l2 ∧ v = y ∧ v = l2 ∧ y, v ∈ I, so that l2y is an edge.

Suppose that x = y. Then l1xy is a path. Suppose that x 6= y. Now t = l1 ∧ l2 /∈ I. Then
x ∧ t = x ∧ l1 ∧ l2 ≤ u ∧ l2 ≤ u ∈ I, and so (x u t) ∩ I 6= ∅. In a similar way, we can get
(y u t) ∩ I 6= ∅. Hence l1xtyl2 is a path and d(l1, l2) ≤ 4.

�
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Example 3.10. Let L = {0, a1, a2, · · · , a10, 1}. Define the hyperoperation
∧

and the classical
operation ∨ on L as given in the following tables:

∧
0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 1

0 {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0}
a1 {0} {a1} {0} {0} {a1} {a1} {0} {0} {a1} {a1} {0} {a1}
a2 {0} {0} {a2} {0} {a2} {0} {a2} {0} {a2} {0} {a2} {a2}
a3 {0} {0} {0} {a3} {0} {a3} {a3} {a3} {a3} {a3} {a3} {a3}
a4 {0} {a1} {a2} {0} {a4} {a1} {a2} {0} {a4} {a1} {a2} {a4}
a5 {0} {a1} {0} {a3} {a1} {a5} {a3} {a3} {a5} {a5} {a3} {a5}
a6 {0} {0} {a2} {a3} {a2} {a3} {a6} {a3} {a6} {a3} {a6} {a6}
a7 {0} {0} {0} {a3} {0} {a3} {a3} {a3, a7} {a3} {a3, a7} {a3, a7} {a3, a7}
a8 {0} {a1} {a2} {a3} {a4} {a5} {a6} {a3} {a8} {a5} {a6} {a8}
a9 {0} {a1} {0} {a3} {a1} {a5} {a3} {a3, a7} {a5} {a5, a9} {a3, a7} {a5, a9}
a10 {0} {0} {a2} {a3} {a2} {a3} {a6} {a3, a7} {a6} {a3, a7} {a6, a10} {a6, a10}
1 {0} {a1} {a2} {a3} {a4} {a5} {a6} {a3, a7} {a8} {a5, a9} {a6, a10} {a8, 1}

∨ 0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 1
0 0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 1
a1 a1 a1 a4 a5 a4 a5 a8 a9 a8 a9 1 1
a2 a2 a4 a2 a6 a4 a8 a6 a10 a8 1 a10 1
a3 a3 a5 a6 a3 a8 a5 a6 a7 a8 a9 a10 1
a4 a4 a4 a4 a8 a4 a8 a8 1 a8 1 1 1
a5 a5 a5 a8 a5 a8 a5 a8 a9 a8 a9 1 1
a6 a6 a8 a6 a6 a8 a8 a6 a10 a8 1 a10 1
a7 a7 a9 a10 a7 1 a9 a10 a7 1 a9 a10 1
a8 a8 a8 a8 a8 a8 a8 a8 1 a8 1 1 1
a9 a9 a9 1 a9 1 a9 1 a9 1 a9 1 1
a10 a10 1 a10 a10 1 1 a10 a10 1 1 a10 1
1 1 1 1 1 1 1 1 1 1 1 1 1

Then L is a meet-hyperlattice (see Figure 7) and I = {0, a2, a3, a6} is a hyperideal of L and the
zero-divisor graph of L with respect to the hyperideal I is given in Figure 8.

{a6, a10}
a10

{a8,1}
1

{a9, a5}
a9

{a8}
a8

{a3, a7}
a7

{a4}
a4

{a5}
a5

{a6}
a6

{a1}
a1

{a2}
a2

{a3}
a3

{0}
0

Figure 7: Hyperideal {0, a2, a3, a6} of L in dotted lines.
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a9

a8

a5

a4

a1

a10

a7

Figure 8: Zero-divisor graph with respect to the hyperideal I = {0, a2, a3, a6} is isomorphic to
K2,5.

Definition 3.11. J ∈ I(L) is called semiprime, if (l1
∧
l2)∩J 6= ∅ and (l1

∧
l3)∩J 6= ∅ implies

(l1
∧
(l2 ∨ l3)) ∩ J 6= ∅ for all l1, l2, l3 ∈ L.

Example 3.12. In Example 3.8, the hyperideal J = {0, a1} is a semiprime hyperideal. But J
is not a prime hyperideal as (1

∧
1) ∩ J 6= ∅, but 1 /∈ J.

Proposition 3.13. Let J ∈ I(L) be semiprime. Suppose GJ(L) is a complete bipartite graph
with J1 and J2 as partitions. If for i = 1, 2, Pi = J ∪Ji are semi hyperideals, then Pi = J ∪Ji ∈
I(L).

Proof. Let l1, l2 ∈ P1. If l1, l2 ∈ J, then clearly l1 ∨ l2 ∈ J ⊆ P1. If l1, l2 ∈ J1, then for any
l′ ∈ J2, we have (li

∧
l′) ∩ J 6= ∅, i = 1, 2. Since J is semiprime, we get ((l1 ∨ l2)

∧
l′) ∩ J 6= ∅.

As l1∨ l2 /∈ J, we must have l1∨ l2 ∈ J1 ⊆ P1. Suppose l1 ∈ J and l2 ∈ J1. Then for any l′ ∈ J2,
(l2

∧
l′)∩ J 6= ∅. Also (l1

∧
l′)∩ J 6= ∅. Since J is semiprime, we get ((l1 ∨ l2)

∧
l′)∩ J 6= ∅, and

so l1 ∨ l2 ∈ P1. �

Lower bound property (l.b. property): ([15]). We say that a strong meet-hyperlattice L
satisfies l. b. property, if for all x, y ∈ L, there exists u ∈ x

∧
y with u ≤ x and u ≤ y.

For the following result, we assume that L satisfies l.b. property.

Theorem 3.14. Let P1, P2 ∈ I(L) such that P1 and P2 are distinct Primes with P1 \ P2 6= ∅
and P2 \ P1 6= ∅. Let also J = P1 ∩ P2. Then GJ(L) ' K|P1\P2|,|P2\P1|.

Proof. Suppose that l1l2 is an edge. Then l1, l2 ∈ Z(J) and (l1
∧

l2)∩J 6= ∅. Take P1\P2 = X1,
and P2 \ P1 = X2. Since P1 is prime, we get l1 ∈ P1 or l2 ∈ P1. Assume that l1 ∈ P1. Then
as l1 /∈ J, l1 ∈ X1, and since P2 is prime, we must have l2 ∈ P2. Further, as l2 /∈ J, we get
l2 ∈ X2. Hence Z(I) = X1 ∪X2. Now for any l′1 ∈ X1 and l′2 ∈ X2, we have l′i ∈ Pi(i = 1, 2).
As L satisfies l.b. property, there exists x ∈ l′1

∧
l′2 such that x ≤ l′1, l

′
2, and so (l′1

∧
l′2)∩J 6= ∅.

Hence l′1l
′
2 is an edge, showing that GJ(L) is a complete bipartite graph. �

Example 3.15. Let L = {1, 2, 3, 5, 6, 10, 15, 30}, (the positive divisors of 30) and let the hy-
peroperation and the binary operation be defined as follows:
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u 1 2 3 5 6 10 15 30
0 L {1, 5} {1, 2} {1, 3} {1, 5} {1, 3} {1, 2} {1}
2 {1, 5} {2, 6, 10, 30} {1, 5} {1, 3} {2, 10} {6, 2} {1} {2}
3 {1, 2} {1, 5} {3, 6, 15, 30} {1, 2} {15, 3} {1} {6, 3} {3}
5 {1, 3} {1, 3} {1, 2} {5, 10, 15, 30} {1} {15, 5} {10, 5} {5}
6 {1, 5} {2, 10} {15, 3} {1} {6} {2} {3} {6}
10 {1, 3} {6, 2} {1} {15, 5} {2, 10} {10} {5} {10}
15 {1, 2} {1} {6, 3} {10, 5} {3} {5} {15} {15}
30 {1} {2} {3} {5} {6} {10} {15} {30}

∨ 1 2 3 5 6 10 15 30
1 1 2 3 5 6 10 15 30
2 a a 6 10 6 10 30 30
3 3 6 3 15 6 30 15 30
5 5 10 15 5 30 10 15 30
6 6 6 6 30 6 30 30 30
10 10 10 30 10 30 10 30 30
15 15 30 15 15 30 30 15 30
30 30 30 30 30 30 30 30 30

Then (L,u,∨) is a Nakano hyperlattice. The zero-divisor graph of L with respect to the
hyperideals I = {1} and I = {1, 2} are shown in Figure 9 and Figure 10, respectively.

6

5

2 3

15 10

Figure 9: Zero-divisor graph of L with re-
spect to the hyperideal I = {1}.

10

6 5

3

Figure 10: Zero-divisor graph of L with re-
spect to the hyperideal I = {1, 2}.

The following Proposition concerns non-primal semiprime hyperideals, which is useful for
further studies related to the diameter of zero-divisor graphs.

Proposition 3.16. Let J 6= L be a non-primal semiprime hyperideal of L such that S(J) is a
semi hyperideal. Then there exist l1, l2 ∈ Z(J) such that (J : l1 ∨ l2) = J.

Proof. Suppose that S(J) /∈ I(L). Then there exist l1, l2 ∈ S(J) such that l1 ∨ l2 /∈ S(J). This
means (J : l1 ∨ l2) = J. It remains to show that l1, l2 /∈ J. Clearly, atmost one among l1 and l2
belongs to J. Without loss of generality we may assume that l1 ∈ J and l2 /∈ J. Then l2 ∈ Z(J),
which implies there exists c ∈ Z(J) such that (l2

∧
c) ∩ J 6= ∅. By Lemma 2.5, there exists

t ∈ l1
∧
c such that t ≤ l2. As J is a hyperideal, t ∈ J, and so (l2

∧
c) ∩ J 6= ∅. Now since J is

semiprime, it follows that ((l1 ∨ l2)
∧

c) ∩ J 6= ∅ and so c ∈ (J : l1 ∨ l2) = J, a contradiction to
c ∈ Z(J). Therefore, l1, l2 /∈ J, and hence l1, l2 ∈ Z(J). �
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Table 1: Interaction between the oxygen and the hydrogen molecules with stimuli.∧
H2 O2 H2O H2O2

H2 {H2} H {H2, H2O} {H2, H2O,H2, O2}
O2 H {O2} H {O2, H2O,H2O2}
H2O {H2, H2O} H {H2O} H
H2O2 H {O2, H2O,H2O2} H {H2O,H2O2}

4 Examples of meet-hyperlattice of chemical compounds
Example 4.1. Let the set H denote {H2, O2, H2O,H2O2}, representing the dissolution of
hydrogen peroxide in water. Define the hyperoperation

∧
as the interaction between molecules

of hydrogen and oxygen in H with stimuli (see Table 1) and the binary operation ∨ is the
interaction of hydrogen and oxygen molecules in H with and without external stimuli (see
Table 2). Then, (H,

∧
,∨) is a meet-hyperlattice. The possible proper hyperideals of H are

{H2}, {O2}, and {H2O,H2O2}. The zero-divisor graph of H with respect to {H2} and {O2}
are isomorphic, is given in Figure 11, whereas the zero-divisor graph of H with respect to
{H2O,H2O2} is an isolated vertex.

Table 2: Interaction between the oxygen and the hydrogen molecules without stimuli.

∨ H2 O2 H2O H2O2

H2 H2 H2O H2O H2O2

O2 H2O O2 H2O H2O2

H2O H2O H2O H2O H2O2

H2O2 H2O2 H2O2 H2O2 H2O2

H2 H2O2 H2O

Figure 11: Zero-divisor graph with respect to the hyperideal J = {H2}.

Example 4.2. Consider the set O = {O2, O3}. Define binary operation ∨ as the interaction
of oxygen in ozone without external stimuli, as given in Table 3 and the hyperoperation

∧
as the interaction of oxygen in ozone with any external stimuli, as given in Table 4. Then
O = {O2, O3}, (O,

∧
,∨) is a meet-hyperlattice. The zero-divisor graph with respect to the

hyperideal J = {O2} will be a empty graph (i.e. Z(J) = ∅).

Table 3: Interaction between oxygen
molecules in ozone without stimuli.

∨ O2 O3

O2 O2 O3

O3 O3 O3

Table 4: Interaction between oxygen
molecules in ozone with stimuli.∧

O2 O3

O2 {O2} {O2, O3}
O3 {O2, O3} {O3}
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5 Conclusion

In this work, we have considered the concept of meet-hyperlattices and their zero-divisor graph
with respect to hyperideals. As a future scope, one can study hyperlattices from the corre-
sponding zero divisor graphs with respect to hyperideals. The notion of energy of a graph
[21, 22] can be extended to zero-divisor graphs of hyperlattices with respect to hyperideals. As
an application, we have provided examples of chemical reactions of compounds that lead to a
meet-hyperlattice. As a future scope, using Proposition 3.16, we wish to establish the following
conclusion:

• For a proper non primal semi-prime hyperideal I of L, which is contained in more than
two minimal prime hyperideals, diam(GI(L)) is equal to 3 and it is equal to 2 if I is
contained in exactly two minimal prime hyperideals.
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