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Abstract

Partition dimension problems involve dividing a graph’s
vertex set into a minimum number of disjoint sets so that each
vertex is different with respect to the representation from each
disjoint set. As a result of the development of this method,
a number of applications have arisen in a number of fields
such as drug design, navigation of robots, pattern recognition,
and image processing. In this paper, we have calculated the
partition dimension of oxide and zigzag benzenoid networks,
and the subdivision of benzenoid hydrocarbon and triangular
benzene networks.

c© 2024 University of Kashan Press. All rights reserved.

1 Introduction

One of the important areas of mathematics is graph theory, whose mathematical ideas have been
extensively applied to computer science research areas like networking, data mining, and image
capturing [1]. The field has been greatly supported by graph theory, and its ideas have given
rise to various exciting real-world applications throughout the Internet of Things, as well as
for routing, consumer analysis, scheduling, and fraud detection. The graphs’ metric dimension
is one of the distance-related characteristics that are dealt with in graph theory. Slater [2]
and Harary et al. [3] independently proposed the concept of the metric dimension of a graph.
It has been presented by Chartrand et al. [4] to generalize the graph’s metric dimension as
a partition dimension. In the metric dimension, the distance between vertices is calculated,
while in the partition dimension, the distance between a vertex and a set containing vertices is
calculated. Determining a graph’s metric dimension is an NP-hard task, it has been proved in
[4]. It is known that determining a graph’s partition dimension is an NP-hard problem as it is
a generalization of finding the metric dimension. In different areas, both metric and partition
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dimensions contribute, strategies for mastermind games [5], such as network discovery [6], image
processing, and game theory [3, 7].

Based on the characteristics of the partition dimension, it seems sensible to inquire about the
graph characterizations. Researchers are constantly trying to establish if a family of a network’s
partition dimension is constant, finite, or unbounded. A number of conclusions are drawn from
the study of a graph’s partition dimension, particularly, diameter 2 and graph of order n ≥ 11,
then partition dimension is n−3 were discussed by Baskoro et al. [8]. As determined by Mehreen
et al. [9], the fullerene graph’s partition dimension is 3. For honeycomb and hexagonal networks,
Rajan et al. [10] computed the partition dimension. The partition dimension of rooted product
graphs was found by Monica and Santhakumar in [11]. The partition dimension of particular
classes of series-parallel graphs has been investigated by Monica et al. [12]. For more literature
on graph partition, refer [13–16].

The partition dimension of any general graph remains a challenging problem. In this paper,
we examine the partition dimension for oxide networks, zigzag benzene networks, the subdivision
of benzenoid hydrocarbon networks, and the subdivision of triangular benzene networks.

2 Preliminaries and basic concepts
Let B = (V,E) be a simple and connected graph. The shortest possible route between two
vertices v1, v2 is indicated by d(v1, v2) and equals the distance between them. The distance
between a vertex m and a set S ⊆ V (B) is defined as d(m,S) = min{ d(m, s), s ∈ S}.
Let π = {P1, P2, P3, . . . , Pk} be a k partition of the vertex set V (G) and r(b\π) = {d(b, P1), d(b, P2)
, d(b, P3), . . . , d(b, Pk)} be an k-tuple representation of a vertex m with regard to π. A resolving
partition exists if and only if all representation codes of the vertex set of B are distinct with re-
spect to π. The partition with the smallest cardinality of k is known as the partition dimension
of B and is represented by the symbol pd(B). In this work, we have identified certain chemical
structures in which the partition dimension will be equal to 3.

The following theorems are highly useful for determining a connected graph’s partition
dimension of any graph B.

Theorem 2.1. ([4]). Suppose π is a resolving partition of V (B), and let m and l be vertices
in V (B). If the distance from m to any vertex w in V (B) (excluding m and l) is equal to the
distance from l to the same vertex w, then m and l belong to different elements of π.

Theorem 2.2. ([4]). Suppose that B is a simple, connected and undirected graph of order n.
Then the following statements hold

1. pd(B) = 2 if and only if B is a path on n vertices.

2. pd(B) = n if and only if B is a complete graph on n vertices.

The rest of the article has been divided into the following sections. In Section 3 the partition
dimension of oxide networks is calculated. In Section 4, the partition dimension of zigzag
benzene networks is obtained. In Sections 5 and 6 the partition dimension of the subdivision
of benzenoid hydrocarbon and triangular benzene networks are discussed. Applications and
concluding remarks are provided in Sections 7 and 8, respectively.

3 Partition dimension of oxide networks
Oxide networks have a wide range of applications in chemistry and various fields due to their
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diverse properties and structures. Some applications are electrochemical energy storage, pho-
tocatalysis, semiconductors, waste water treatment, nanomaterials, solar cells, and corrosion
protection. The versatility of oxide networks in terms of structure, composition, and proper-
ties makes them indispensable in modern chemistry and materials science. Their applications
continue to expand as new materials and technologies are developed.

In this section, we will determine the partition dimension of the oxide networks OX(t),
t ≥ 2. The study of oxide networks has an importance for the study of silicate networks. A
silicate network is transformed into an oxide network when all the silicon nodes are removed
from it. In the oxide network, there are 9t2 + 3t nodes and 18t2 edges. Although OX(t) is a
subgraph of SL(t), and OX(t) is more important for understanding SL(t)’s characteristics.

Middle

Upper Middle. (UM)

Lower Middle (LM)

M

Figure 1: Labeling of oxide networks of dimension t.

Theorem 3.1. Let OX(t) be the t-dimensional oxide networks. Then pd(OX(t)) = 3, t ≥ 2.

Proof. An oxide network has a vertex set containing 3 regions, say middle (M), upper middle
(UM), and the lower middle (LM). Label the middle region as m1,m2,m3, . . . ,m2t from left
to right, respectively. The upper middle has 2t levels, say UM1, UM2, UM3, . . . , UM2t starting
next from the middle region. Label the vertices in UM2j as aji , 1 ≤ j ≤ t, 1 ≤ i ≤ 2t − j

from left to right, respectively and label the vertices in UM2j−1 as bji , 1 ≤ j ≤ t, 1 ≤ i ≤
4t − 2j + 2 from left to right, respectively. Similarly, the lower middle has 2t levels, say
LM1, LM2, LM3, . . . , LM2t starting next from the middle region. Label the vertices in LM2j

as cji , 1 ≤ j ≤ t, 1 ≤ i ≤ 2t− j from left to right, respectively and label the vertices in LM2j−1
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as dji , 1 ≤ j ≤ t, 1 ≤ i ≤ 4t − 2j + 2 from left to right, respectively. The labeling of the oxide
network of dimension t is shown in Figure 1.

Let π = {S1, S2, S3}, where S1 = {bi1, 1 ≤ i ≤ t}, S2 = {cti, 1 ≤ i ≤ 2t − j}, and S3 =
V (OX(t)) \ {S1 ∪ S2}, be a partition of V (OX(t)).

To prove π is a resolving partition of OX(t), it is enough to prove that the representation
of each vertex of OX(t) is different with respect to π.

For 1 ≤ i ≤ 2t the representation of each vertex mi of OX(t) with respect to π is r(mi|π) =
(2i− 1, 2t, 0).

For 1 ≤ j ≤ t and 1 ≤ i ≤ 2t− j the representation of each vertex aji of OX(t) with respect
to π is as follows:

r(aji |π) =
{

(2i− 1, 2t+ 2j, 0) if 1 ≤ j ≤ t− 1 and 1 ≤ i ≤ 2t− j
(2i, 2t+ 2j, 0) if 1 ≤ i ≤ 2t− j and j = t.

For 1 ≤ j ≤ t and 2 ≤ i ≤ 4t − 2j + 2, the representation of each vertex bji of OX(t) with
respect to π is r(bji |π) = (i− 1, 2t+ 2j − 1, 0).

For 1 ≤ j ≤ t, 2 ≤ i ≤ 4t− 2j + 2, the representation each vertex cji of OX(t) with respect
to π is r(cji |π) = (2i+ 2j − 1, 2t− 2j, 0).

For 1 ≤ j ≤ t and 1 ≤ i ≤ 4t − 2j + 1, the representation of each vertex dji of OX(t) with
respect to π is as follows.

r(dji |π) =


(2j, 2t− 2j + 2, 0) if i = 1 and 1 ≤ j ≤ t

(i+ 2j − 2, 2t− 2j + 1, 0) if 2 ≤ i ≤ 4t− 2j + 1
and 1 ≤ j ≤ t

(i+ 2j − 2, 2t+ 2− 2j, 0) if i = 4t− 2j + 2 and 1 ≤ j ≤ t.
From the above representation of each vertex with respect to π we get r(a|π) 6= r(b|π) for

any a, b ∈ V (OX(t)). Hence pd(OX(t)) = 3. �

4 Partition dimension of zigzag benzene networks

A zigzag benzenoid structure is a specific type of benzenoid hydrocarbon in graph theory. It
consists of alternating single and double bonds in a zigzag pattern. It has more applications
in various fields due to its unique structure and properties. In graph theory, you can represent
this structure as a graph where atoms are represented by vertices, and bonds are represented
by edges. The graph zigzag benzene structure is made up of p rows, each of which is made up
of two hexagonal units that share one common edge. The first row of Zt has eleven edges, while
the second row has twenty-one edges. Following the same logic, we can conclude that Zt has
10t+ 1 edges and 8t+ 2 vertices. Figure 2 displays the zigzag benzene structure of dimension
4.

Theorem 4.1. Let Zt be the zigzag benzene network of dimension t, t ≥ 2, then pd(Zt) = 3.

Proof. The zigzag benzene networks has a vertex set containing 3 layers, say the Top layerX, the
Middle layer Y , and the Bottom layer Z. Label the vertex in the top layer as x1, x2, x3, . . . , x2t
from top to bottom, respectively. Label the vertex in the middle layer as y1, y2, y3, . . . , y4t+2

from top to bottom, respectively. Label the vertices in the bottom layer as z1, z2, z3, . . . , z2t
from top to bottom, respectively. The labeling of zigzag bebzene networks for dimension t is
shown in Figure 3.

Let π = {P1, P2, P3} be a resolving partition of Zt, where P1 = {xi, 1 ≤ i ≤ 2t}, P2 =
{y4t+2} and P3 = V (Zt) \ {P1 ∪ P2}. To prove π is a resolving partition of Zt, it is enough to
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Figure 2: Zigzag benzene network of dimension 4.

Figure 3: Labeling of zigzag benzene networks of dimension t.

prove all the vertices xi, 1 ≤ i ≤ 2t, yi, 1 ≤ i ≤ 4t + 2 and zi, 1 ≤ i ≤ 2t have distinct with
respect to π.

For 1 ≤ i ≤ 2t, the vertex representation of xi in Zt with respect to π is as follows.

r(xi|π) =
{

(0, 4t− 2i, 1) if i = 1, 3, 5, . . . , 2t− 1
(0, 4t− 2i+ 1, 1) if i = 2, 4, 6, . . . , 2t.

For 1 ≤ i ≤ 4t+2, the vertex representation of yi in Zt with respect to π is obtained as below:
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r(yi|π) =


(3, 4t+ i, 0) if i = 1

(2, 4t+ i− 2, 0) if i = 2
(1, 4t+ 2− i, 0) if i = 3, 6, 7, 10, 11, . . . , 4t+ 2
(2, 4t+ 2− i, 0) if i = 4, 5, 8, 9, 12, 13 . . . , 4t+ 1.

For 1 ≤ i ≤ 2t, the vertex representation of zi in Zt with respect to π is as follows:

r(zi|π) =

 (4, 4t, 0) if i = 1
(3, 4t− 2i+ 1, 0) if i = 2, 4, 6, . . . , 2t
(3, 4t− 2i, 0) if i = 3, 5, 7, . . . , 2t− 1.

From the above representation of each vertex with respect to π, we get r(a|π) 6= r(b|π) for
any a, b ∈ V (Zt). Hence pd(Zt) = 3. �

5 Partition dimension of subdivision of benzenoid hydro-
carbon

Benzenoid hydrocarbons, which are a class of hydrocarbons characterized by their closed-ring
structure similar to benzene, have several applications in various fields, such as dyes and pig-
ments, pharmaceuticals, polycyclic aromatic hydrocarbons, material science, analytical chem-
istry, and fuel additives.

Polygons are utilized in various designs to construct honeycomb networks known as HCN(t)
[17], where t indicates the number of hexagons from the center to the boundary of the network.
The outer border of HCN(1) requires an additional layer of six hexagons in order to construct
HCN(2) from HCN(1). HCN(t) can be constructed by covering HCN(t − 1) with 6(t − 1)
hexagons. SHCN(t) is derived from HCN(t) by adding one vertex to each edge. Honeycomb
networks have diverse applications in navigation, computer graphics, image processing, and cell
phones. In chemistry, the honeycomb network is represented as benzenoid hydrocarbon [18].
Figure 4 displays examples of HCN(2) and its one subdivision SHCN(2). If t ≥ 2, we have
determined that the partition dimension of the honeycomb network with one subdivision is 3.

���

���

Figure 4: (a) Benzenoid hydrocarbon networks HCN(2) (b) Subdivision of benzenoid hydro-
carbon networks SHCN(2).
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Theorem 5.1. Let B be a subdivision of benzenoid hydrocarbon networks of dimension t, t ≥ 2,
then pd(B) = 3.

Proof. The one subdivision of the benzenoid hydrocarbon networks has a vertex set containing 3
regions, say middle (M), right middle (RM), and left middle (LM). Label the vertex in the mid-
dle region asm1,m2,m3, . . . ,m2t from bottom to top, respectively. Label the vertices in RM1 as
r1, r2, r3, . . . , r8t−3 from bottom to top, respectively. Label the vertices in LM1 as l1, l2, l3, . . . ,
l8t−3 from bottom to top, respectively. The left middle has 2t− 1 levels, say LM1, LM2, . . . ,
LM2t−1 starting next from the middle region. Similarly, the right middle has 2t− 1 levels, say
RM1, RM2, . . . , RM2t−1 starting next from the middle region. Label the vertices in LM2j−1

as aji , 2 ≤ j ≤ t− 1, 1 ≤ i ≤ 8t− 4j− 3 from bottom to top, respectively. Label the vertices in
LM2j as b

j
i , 1 ≤ j ≤ t−1, 1 ≤ i ≤ 2t−j+1 from bottom to top, respectively. Label the vertices

in RM2j−1 as pji , 2 ≤ j ≤ t − 1, 1 ≤ i ≤ 8t − 4j − 3 from bottom to top, respectively. Label
the vertices in RM2j as qji , 1 ≤ j ≤ t− 1, 1 ≤ i ≤ 2t− j + 1 from bottom to top, respectively.
The labeling of benzenoid hydrocarbon networks with one subdivision for dimension t is shown
in Figure 5.

Middle

Left Middle 

(LM)
Right Middle 

(RM)

�

Figure 5: Labeling of Benzenoid hydrocarbon network of dimension t with one subdivision
SHCN(t).

Let π = {P1, P2, P3}, where P1 = {l1}, P2 = {at−1
i ; 1 ≤ i ≤ 8t − 4j − 3} and P3 =

V (B) \ {P1 ∪ P2} be a resolving partition set of B. To prove π is a resolving partition it is
enough to show that all the vertices in V (B) has a unique representation with respect to π.

For 1 ≤ i ≤ 2t, the vertex representation of mi in SHCN(t) with respect to π as r(mi|π) =
(4i− 3, 4t− 3, 0).

For 2 ≤ i ≤ 8t−3, the vertex representation of li in SHCN(t) with respect to π is equal to:
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r(li|π) =

 (i− 1, 4t− 5, 0) if i = 2, 4, 6, . . . , 8t− 3
(i− 1, 4t− 6, 0) if i = 3, 7, 11, . . . , 8t− 3
(i− 1, 4t− 4, 0) if i = 5, 9, 13, . . . , 8t− 3.

For 1 ≤ i ≤ 8t−3, the vertex representation of ri in SHCN(t) with respect to π is obtained
as below:

r(ri|π) =

 (i+ 1, 4t− 1, 0) if i = 2, 4, 6, . . . , 8t− 3
(i+ 1, 4t, 0) if i = 3, 7, 11, . . . , 8t− 3

(i+ 1, 4t− 2, 0) if i = 1, 5, 9, 13, . . . , 8t− 3.

For 1 ≤ j ≤ t − 2, 1 ≤ i ≤ 8t − 4j − 3, the vertex representation of aji in SHCN(t) with
respect to π is as follows.

r(aji |π) =

 (4j + i− 1, 4t− 4j − 5, 0) if i = 2, 4, 6, . . . , 8t− 4j − 3 and 1 ≤ j ≤ t− 2
(4j + i− 1, 4t− 4j − 4, 0) if i = 5, 9, 13, . . . , 8t− 4j − 3, and 1 ≤ j ≤ t− 2
(4j + i− 1, 4t− 4j − 6, 0) if i = 3, 7, 11, . . . , 8t− 4j − 3, and 1 ≤ j ≤ t− 2.

For 1 ≤ j ≤ t − 1, 1 ≤ i ≤ 2t − j + 1, the vertex representation of bji of SHCN(t) with
respect to π is r(bji |π) = (4(j + i)− 5, 4t− 4j − 3, 0).

For 1 ≤ j ≤ t − 1, 1 ≤ i ≤ 8t − 4j − 3, the vertex representation of pji of SHCN(t) with
respect to π is as follows:

r(pji |π) =

 (4j + i− 1, 4t+ 4j − 1, 0) if i = 2, 4, . . . , 8t− 4j − 3 and 1 ≤ j ≤ t− 1
(4j + i− 1, 4t+ 4j − 2, 0)) if i = 5, 9, . . . , tn− 4j − 3, and 1 ≤ j ≤ t− 1

(4j + i− 1, 4t+ 4j, 0) if i = 1, 3, . . . , 8t− 4j − 3, and 1 ≤ j ≤ t− 1.

For 1 ≤ j ≤ t − 1, 1 ≤ i ≤ 2t − j + 1 the vertex representation of qji in SHCN(t) with
respect to π is r(qji )|π) = (4(j + i)− 3, 4t+ 4j − 3, 0).

From the above representation of each vertex with respect to π we get r(a|π) 6= r(b|π) for
any a, b ∈ V (B). Hence pd(B) = 3. �

6 Partition dimension of subdivision of a triangular ben-
zene networks

Triangular benzenoid networks’ unique electronic properties make them suitable for optoelec-
tronic applications, including light-emitting devices, photodetectors, and photovoltaic devices.
Triangular benzenoid networks represent a fascinating area in chemical research, providing a
wide array of potential applications across various scientific and technological fields. Their
unique structure and properties open up possibilities for innovative advancements in materials
science, nanotechnology, and numerous other domains within chemistry.

The triangular benzene network Tt is a generalization of the benzene molecule C6H6 in which
the benzene rings create a triangle shape. The triangular benzenoid networks is constructed
from up of hexagons organized in rows, with one hexagon increasing in each row. The benzene
molecule is extremely important in the production of aromatic chemicals. Figure 6 illustrates
the graphical structures of triangular benzenoid T3 as well as the one subdivision of triangular
benzenoid ST3 of dimension 3.

Theorem 6.1. Let B be a triangular benzene networks of dimension t with one subdivision,
STt, t ≥ 2, then pd(B) = 3.

Proof. The strip between two successive lines is marked in one subdivision of triangular benzene
networks are called the segments and it’s denoted by Si, 0 ≤ i ≤ 4t+ 2. To find the minimum
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Figure 6: (a) Triangular benzene networks T3 (b) subdivision of triangular benzene networks
ST3.

resolving partition vertex set of one subdivision of triangular benzene networks we need to
label every vertex of the segments. Label the vertex of S0 as x0,1, label the vertices in S1 as
x1,1, x1,2 from left to right. Label the vertices in S2 as x2,1, x2,2 from left to right. Continue the
same logic and label the vertices in S4t+2 as x4t+2,1, x4t+2,2, x4t+2,3, . . . , x4t+2,t from left to
right onwards. For illustration, the segment labeling of one subdivision of triangular benzene
networks is shown in Figure 7.

Let π = {P1, P2, P3} be a resolving partition of STt, where P1 = {x0,1}, P2 = {xi,1, 1 ≤ i ≤
4t+2} and P3 = V (STt) \ {P1 ∪P2}. To prove π is a resolving partition of STt, it is enough to
prove that all the segments of the vertices S0, S1, S2, . . . , S4t+2 have distinct with respect to π.

For i = 0, the vertex representation of Si in STt with respect to π is as r(Si|π) = (0, i +
1, i + 1). For i = 1, the vertex representation of Si in STt with respect to π is as r(Si|π) =
(i, 2j − 2, 4− 2j), 1 ≤ j ≤ 2.

For i = 2 the vertex representation of Si in STt with respect to π is r(Si|π) = (i, 3j −
3, 6 − 3j), 1 ≤ j ≤ 2. For i = 3 the vertex representation of Si in STt with respect to π is
r(Si|π) = (i, 4j − 4, 4 − 2j), 1 ≤ j ≤ 2. For i = 4 the vertex representation of Si in STt with
respect to π is r(Si|π) = (i, 4j − 4, 2− j) 1 ≤ j ≤ 2.

For i = 5, 9, 13, . . . , 4t − 3 the vertex representation of Si in STt with respect to π is as
follows:

r(Si|π) =
{

(i, j − 1, j + 1) if j = 1
(i, 2j − 3, 0) if 2 ≤ j ≤ i+3

2 .

For i = 6, 10, 14 . . . , 4t−2 the vertex representation of Si in STt with respect to π is obtained
as below:

r(Si|π) =
{

(i, j − 1, j + 2) if j = 1
(i, 4j − 6, 0) if 2 ≤ j ≤ i+2

4 .

For i = 7, 11, 15 . . . , 4t − 1 the vertex representation of Si in STt with respect to π is as
follows:
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Figure 7: Segment labeling of one subdivision of triangular benzene networks of dimension t,
STt.

r(Si|π) =
{

(i, j − 1, j + 1) if j = 1
(i, 4j − 5, 0) if 2 ≤ j ≤ i+1

4 .

For i = 8, 12, 16 . . . , 4t the vertex representation of Si in STt with respect to π is equal to:

r(Si|π) =
{

(i, j − 1, j) if j = 1
(i, 4j − 4, 0) if 2 ≤ j ≤ i

4 .

For i = 4t+ 1 the vertex representation of Si in STt with respect to π is as follows:

r(Si|π) =
{

(i, j − 1, j + 1) if j = 1
(i, 2j − 3, 0) if 2 ≤ j ≤ 2t− 1.

For i = 4t+2 the vertex representation of Si in STt with respect to π is obtained as below:

r(Si|π) =
{

(i, j − 1, j) if j = 1
(i, 4j − 4, 0) if 2 ≤ j ≤ t− 1.



Iranian Journal of Mathematical Chemistry 15 (2) (2024) 51− 63 61

From the above representation of each vertex with respect to π we get r(a|π) 6= r(b|π) for
any a, b ∈ V (STt). Hence pd(STt) = 3. �

7 Applications of partition dimension in chemistry

The concept of partition dimension in graph theory has a wide range of applications beyond net-
work design. Also, it can be applied in the domain of chemical graph theory and molecular mod-
eling, which includes chemical structure analysis, drug discovery, chemoinformatics, molecular
conformation analysis, structural isomerism, and chemical connectivity analysis. Additional
information about each application can be found below.
Chemical structure analysis: Chemical compounds can be represented as molecular graphs,
where atoms are vertices, and bonds are edges. Minimizing the partition dimension of these
graphs can help in identifying unique structural features in chemical compounds, aiding in the
analysis of chemical structures.
Drug discovery: In the field of pharmaceutical chemistry, partition dimension concepts can
be used to analyze the structural diversity of chemical compounds, identify common structural
motifs or substructures, and use this knowledge to aid in the design and discovery of new drugs.
This approach can lead to more efficient drug development, the repurposing of existing drugs,
and the identification of compounds with therapeutic potential.
Chemoinformatics: Chemoinformatics is an interdisciplinary field that combines concepts
from chemistry, computer science, and information science to manage and analyze chemical
information. In chemoinformatics, the partition dimension deals with the storage, retrieval,
and analysis of chemical data. Partition dimension techniques can also be applied to enhance
the efficiency of chemical database searching, substructure searching, data compression, and
chemical information retrieval.
Molecular conformation analysis: Partition dimension methods can help analyze the pos-
sible conformations of a molecule. This is particularly important when studying the spatial
arrangement of atoms in complex molecules.
Structural isomerism: Structural isomerism refers to a type of isomerism in chemistry where
two or more compounds have the same molecular formula (i.e., they contain the same types and
numbers of atoms) but differ in the connectivity or spatial arrangement of those atoms. In the
context of structural isomerism, partition dimension can be a useful concept for distinguishing
between these different isomers and identifying the unique structural features that set them
apart.

Consider the isomers of C4H10, which have the molecular formula of butane. There are
two main structural isomers: n-butane and isobutane see Figure 8. Partitioning these isomers
could involve looking at the connectivity of carbon atoms and distinguishing between linear
and branched arrangements.

For a more complex example, consider the structural isomers of C6H12, which have the
molecular formula of hexane. Partitioning could involve identifying unique arrangements of
carbon atoms in the chain, such as straight-chain hexane, branched-chain hexane, or cyclohex-
ane.
Chemical connectivity analysis: Chemical connectivity analysis is vital for understanding
the structure and reactivity of molecules. Minimizing the partition dimension simplifies the
representation of molecular connectivity, making it easier to work with, store, retrieve, and
analyze chemical data, which is essential in various fields of chemistry and related disciplines.
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H H H H

H H H H

C CC CH H

H H

H H H

C CCH H

CH H

H

(a) (b)

Figure 8: Two main structural isomers of C4H10, (a) n-Butane (b) Iso-Butane.

8 Concluding remarks
This paper thoroughly investigated the structures of OX(t), Zt, SHCN(t), and STt and es-
tablished that the partition dimensions of all networks are 3 for t ≥ 2. Further, the partition
dimension of related interconnection networks is under investigation. It is important to note
that the applications of the networks considered in this paper are still a subject of ongoing
research and development, and their full potential is yet to be realized in many areas. As sci-
entists continue to explore and understand their properties, more applications may emerge in
the future.
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