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Abstract

Let
∑n

i=0(−1)ilixn−i and
∑n

i=0(−1)iqixn−i be the char-
acteristic polynomials of the Laplacian matrix and signless
Laplacian matrix of an n-vertex graph, respectively. Let
αi = |qi − li|, 0 ≤ i ≤ n. In this paper, we find formulas for
some of αi’s. In particular, we compute αi’s for some fullerene
graphs.

c© 2024 University of Kashan Press. All rights reserved.

1 Introduction
Let H be an n-vertex graph with no loop and parallel edges. The edge set and the vertex set of
H are denoted as E(H) and V (H), respectively. We denote by A(H) the adjacency matrix of
H. Let diag(d11, d22, d33, . . . , dnn) be the diagonal matrix of vertex degrees of H, denoted by
D(H), where dii is the degree of vertex vi and L(H) = D(H)−A(H) be the Laplacian matrix
of H (see [1–4]). Similarly, the signless Laplacian matrix of a graph H studied in [5, 6], has been
defined as Q(H) = D(H) + A(H). Since A(H), L(H) and Q(H) are symmetric matrices with
real entries, their eigenvalues are real. We know that L(H) and Q(H) are positive semi-definite,
and they have the same eigenvalues if and only if H is bipartite.

The Laplacian and signless Laplacian characteristic polynomials of a graph H are defined by
LH(t) = det(tI − L(H)) =

∑n
i=0(−1)ilitn−i and QH(t) = det(tI −Q(H)) =

∑n
i=0(−1)iqitn−i,
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respectively. One may see that the Laplacian coefficient, li, can be expressed in terms of subtrees
of H, for i = 0, 1, . . . , n (see [7]). Suppose that F is a spanning subforest of H with connected
components T1, T2, . . . , Tk, having n1, n2, . . . , nk vertices, respectively. Let ω(F ) =

∏k
i=1 ni.

First, we recall the following:

Theorem A ([8, Theorem 7.5]). The coefficients li of the polynomial LH(t) are given by the
formula

li =
∑
F

ω(F ),

where F is a subforest with i edges.

Using the notation and terminology from [1, 5], a spanning subgraph of a graph H whose
connected components are odd unicyclic graphs or trees is called a TU -subgraph of H. Suppose
that a TU -subgraph F of H contains t odd unicyclic graphs and s trees T1, T2, . . . , Ts. The
weight of F , W (F ), is defined by W (F ) = 4t

∏s
j=1 nj , in which nj is |V (Tj)|. If F contains no

tree, then W (F ) = 4t. Based on the next theorem, the coefficients qj can be expressed in terms
of the weight of TU -subgraphs of a graph H.

Theorem B ([5, Theorem 4.4]). For coefficients qj as above, q0 = 1 and qj =
∑

Fj
W (Fj),

j = 1, . . . , n, where Fj is a TU -subgraph with j edges.

A fullerene graph is a 3-regular planar graph with only pentagonal and hexagonal faces. A
fullerene graph with n carbon atoms, Fn, has n

2 − 10 hexagons and 12 pentagons.
For the motivation of this paper, we refer to [9–12] concerning the Laplacian coefficients and

signless Laplacian coefficients. By calculating the difference between these two coefficients, in
the case that one of these polynomial coefficients is available, one can find the other one. Here
we investigate αi = |qi− li|, 0 ≤ i ≤ n, the difference between Laplacian and signless Laplacian
coefficients of some graphs. The notations are taken from [7, 13–16].

2 Main results
In this section, we compute the number of some subgraphs of a given graph and then investigate
the difference between Laplacian and signless Laplacian coefficients associated with them. We
define the odd girth of a graph H, Og(H), as the minimum odd integer k such that Ck is a
cycle with k vertices in H and denote the number of subgraphs of H isomorphic to a subgraph
F by N(F ).

Theorem 2.1. Let H be a graph and Og(H) = k. Then αi = 0, i = 1, 2, . . . , k − 1 and
αk = 4N(Ck).

Proof. By Theorems A and B,

αi =
∑

F is a TU−subgraph
with i edges

W (F )−
∑

F is a subforest
with i edges

ω(F )

=
∑

F is a TU−subgraph with i edges
containing at least one odd cycle

W (F ).

Since there is no TU -subgraph with i edges for i = 1, 2, . . . , k−1 in H, α1 = α2 = . . . = αk−1 =
0. A TU -subgraph with k edges and at least one cycle is an odd cycle with k vertices and
W (F ) = 4. Thus αk = 4N(Ck). �
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Figure 1: Some unicyclic graphs.

In the next result, we calculate αi, 1 ≤ i ≤ 5, for the fullerene graph. This result can also
be obtained using the results of [6, 16].

Corollary 2.2. For the fullerene graph Fn, αi = 0, 1 ≤ i ≤ 4, and α5 = 48.

Proof. By definition, one has W (C5) = 4 and N(C5) = 12. Therefore, α5 = 48. �

Theorem 2.3. Let H be an m-edges graph and Og(H) = k. Let Cj
k, j = 1, 2, . . . , N(Ck) be

cycles in H with k vertices. Then

αk+1 = 8mN(Ck)− 4

N(Ck)∑
j=1

k∑
i=1

d(vji ),

where vji is i-th vertex in Cj
k.

Proof. The TU -subgraphs with k+1 edges in H are isomorphic to A in Figure 1 and A′, where
A′ is the union of Ck and an edge. One can see that W (A) = 4, N(A) =

∑N(Ck)
j=1

∑k
i=1 d(v

j
i )−

2kN(Ck) and W (A′) = 8, N(A′) = (m + k)N(Ck)−
∑N(Ck)

j=1

∑k
i=1 d(v

j
i ). Now by the proof of
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Theorem 2.1,

αk+1 =
∑

H is a TU−subgraph containing at least
one odd cycle with k+1 edges

W (H)

= 4N(A) + 8N(A′)

= 4(

N(Ck)∑
j=1

k∑
i=1

d(vji )− 2kN(Ck))

+ 8((m+ k)N(Ck)−
N(Ck)∑
j=1

k∑
i=1

d(vji ))

= 8mN(Ck)− 4

N(Ck)∑
j=1

k∑
i=1

d(vji ),

as desired. �

Corollary 2.4. Let H be an r-regular and m-edges graph and Og(H) = k. Let Cj
k, j =

1, 2, . . . , N(Ck), be cycles in H with k vertices. Then αk+1 = (8m− 4rk)N(Ck). In particular,
α6(Fn) = 144n− 720.

Proof. Since H is r-regular, the degree of each vertex is r. So, by Theorem 2.3 we have

αk+1 = 8mN(Ck)− 4rkN(Ck) = (8m− 4rk)N(Ck).

Since Fn is a 3−regular graph, m = 3/2n and α6(Fn) = 144n− 720. �

In the following lemma, Ni(Ck) = {x ∈ V (H) | vix ∈ E(H)}, m denotes the cardinality of
E(H) and s(x) =

∑
xy∈E(H) d(y).

Lemma 2.5. For a graph H, let Og(H) = k, N(Ck) = 1 and V (Ck) = {v1, v2, . . . , vk}. For
the subgraphs A, B, C and D of H depicted in Figure 1, the following assertions hold:

(i) N(A) =
∑k

i=1 d(vi)− 2k.

(ii) N(B) =
1

2

∑
0<i<j<k+1(d(vi)− 2)(d(vj)− 2).

(iii) N(C) =
∑k

i=1 s(vi) + 2k − 3
∑k

i=1 d(vi).

(iv) N(D) =
1

2

∑k
i=1(d(vi)− 2)(d(vi)− 3).

(v) If E is the union of Ck and P3, then N(E) is

1

2

∑
ui /∈Ni(Ck)∪V (Ck)

d(ui)(d(ui)− 1) +
1

2

∑
ui∈Ni(Ck)\V (Ck)

(d(ui)− 1)(d(ui)− 2).

(vi) If A′ is the union of A and K2, then

N(A′) = N(A)(m− (1 + k))−N(C)− 2N(B)− 2N(D).

(vii) If C ′ is the union of Ck and K2, then

N(C ′) = m+ k −
k∑

i=1

d(vi).
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(viii) If C ′′ is the union of Ck and 2K2 (the union of two K2), then

N(C ′′) =
1

2
(N(C ′)(m− (1 + k))− 2N(E)−N(C)−N(A′)).

Proof. To count the number of subgraphs isomorphic to A, in H, we consides the number of
neighborhoods of V (Ck) excluding V (Ck). Then

N(A) =
∑k

i=1(d(vi)− 2) =
∑k

i=1 d(vi)− 2k.

To get the number of subgraphs isomorphic to B, in H, we choose d(vi)− 2 ways an edge joint
to vi and d(vj)− 2 ways an edge joint to vj , then

N(B) =
1

2

∑
0<i<j<k+1(d(vi)− 2)(d(vj)− 2).

To determine the number of subgraphs isomorphic to C in H, we need to count the number of
paths P3 joint to vertex vi in V (Ck). Essentially, we count the total number of neighbors of vji
except vi, where v

j
i is a neighbor of vi and does not belong to the cycle. Then

N(C) =
∑k

i=1 s(vi) + 2k − 3
∑k

i=1 d(vi).

The number of subgraphs isomorphic to D in H is
∑k

i=1

(
d(vi)− 2

2

)
. Thus

N(D) =
1

2

k∑
i=1

(d(vi)− 2)(d(vi)− 3).

Note that N(E) is the number of selections of P3 in G \ {v1, . . . , vk}. Then

N(E) =
∑

ui /∈Ni(Ck)∪V (Ck)

(
d(ui)

2

)
+

∑
ui∈Ni(Ck)\V (Ck)

(
d(ui)

2

)
=

1

2

∑
ui /∈Ni(Ck)∪V (Ck)

d(ui)(d(ui)− 1)

− 1

2

∑
ui∈Ni(Ck)\V (Ck)

(d(ui)− 1)(d(ui)− 2).

We can select N(A)(m− k − 1) ways subgraph A and an edge. Now by removing undesirable
states, we have

N(A′) = N(A)(m− (1 + k))−N(C)− 2N(B)− 2N(D).

Also N(C ′) is the number of selection in H \ {v1, . . . , vk}. Thus

N(C ′) = m+ k −
∑k

i=1 d(vi).

We can choose C ′ and an edge with N(C ′)(m − (1 + k)) ways. Now by removing undesirable
states, we have

N(C ′′) = 1
2 (N(C ′)(m− (1 + k))− 2N(E)−N(C)−N(A′)).

�

In the following, we calculate αk+2 based on subgraphs presented in Lemma 2.5.
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Theorem 2.6. Let G be a triangle free graph, Og(G) = k, N(Ck) = 1 and V (Ck) = {v1, . . . , vk}.
Then

αk+2 = 12N(B)− 4N(C) + 12N(D)− 16N(E)

+ 8N(C ′)(m− k − 1)− 8N(A)(m− k − 1).

Proof. The TU -subgraphs with k + 2 edges and at least one cycle are isomorphic to B, C, D,
A′ and C ′′. By the definition of the weight of subgraphs, we have W (B) =W (C) =W (D) = 4
and W (A′) = 8. Then by the proof of Theorem 2.1,

αk+2 =
∑

H is a TU−subgraph containing at least
one unicyclic graph with k+2 edges

W (H)

= 4N(B) + 4N(C) + 4N(D) + 8N(A′) + 16N(C ′′)

= 4N(B) + 4N(C) + 4N(D) + 8
(
N(A)(m− k − 1)−N(C)

− N(B)−N(D)
)
+ 16

[
1

2

(
N(C ′)(m− k − 1)− 2N(E)

− N(C)−N(A)(m− k − 1) +N(C) + 2N(B) + 2N(D)
)]

= 12N(B)− 4N(C) + 12N(D)− 16N(E)

+ 8N(C ′)(m− k − 1)− 8N(A)(m− k − 1),

as desired. �

Corollary 2.7. Let H be an r-regular graph, Og(H) = k, k > 3 and N(Ck) = 1. Then αk+2

is given by

12k2r2 − 4knr2 + 2n2r2 − 40k2r + 8kr2 − 8nr2 + 40k2 + 4kr + 4nr + 6r2 − 30r + 36.

Proof. By Lemma 2.5, for the r−regular graph H, we have

N(B) = k((r − 1)2(k − 1),

N(C) = k(r2 − 3r − 2),

N(D) = 1/2(r − 2)(r − 3),

N(E) = 1/2(r − 1)(nr − 3kr + 4k),

N(A) = kr − 2k,

N(C ′) = (m+ k − kr)(m− k − 1).

Then, by Theorem 2.6, we have
αk+2 = 12k2r2−4knr2+2n2r2−40k2r+8kr2−8nr2+40k2+4kr+4nr+6r2−30r+36. �

Theorem 2.8. For the graph Fn, we have

α7 = 4N(A) + 4N(B) + 8N(C) + 8N(D) + 16N(E),

where A,B, . . . , N are depicted in Figure 4.
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Figure 2: TU-subgraphs with 7 edges in a Fullerene.

Figure 3: TU-subgraphs with 8 edges in a grpah.
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Proof. Note that the TU−subgraphs with 7 edges and a cycle in Fn are isomorphic to subgraphs
depicted in Figure 2. Therefore, we get α7 = 4N(A) + 4N(B) + 8N(C) + 8N(D) + 16N(E).
Then by the proof of Theorem 2.1, the assertion holds. �

Lemma 2.9. Let G be a graph with girth at least 7, Og(G) = k, N(Ck) = 1, V (Ck) =
{v1, . . . , vk} and Ni(vi)− V (Ck) = {v1i , . . . , v

di−2
i }. Then the number of TU− subgraphs of the

type shown in Figure 3 is as follows:

1)N(1) =

k∑
i=1

(
di − 2

3

)
,

2)N(2) =

k∑
i=1

k∑
j=1,j 6=i

(
di − 2

2

)
(dj − 2),

3)N(3) =

k∑
i=1

di−2∑
j=1

(d(vji )− 1)(di − 3),

4)N(4) =
∑

1≤i<j<r≤k

(di − 2)dj − 2)(dr − 2),

5)N(5) =

k∑
i=1

di−2∑
j=1

(S(vji )− d(v
j
i )− di + 1),

6)N(6) =

k∑
i=1

di−2∑
j=1

(
d(vji )− 1

2

)
,

7)N(7) =

k∑
i=1

k∑
j=1,j 6=i

di−2∑
r=1

(d(vri )− 1)(dj − 2),

8)N(8) = [

k∑
i=1

(
di − 2

2

)
](m− k − 2)− 3N(1)−N(3)−N(7),

9)N(9) = [

k∑
i=1

di−2∑
j=1

(d(vji )− 1)](m− k − 2)−N(3)−N(7)− 2N(6),

10)N(10) =

k∑
i=1

di−2∑
j=1

[
∑

vt /∈V (Ck)

(
dt
2

)
+

∑
vt∈V (Ck),vt 6=vj

i

(
dt − 1

2

)
],

11)N(11) =
∑

vi /∈V (Ck)

(
di
3

)
+

∑
vt∈V (Ck)i

(
di − 1

3

)
,

12)N(12) = NG−V (Ck)(P4),

13)N(13) = NG−V (Ck)(P3)(m− k − 2)

− 3N(11)− 2N(12)−N(5)−N(6)−N(10),

14)N(14) =

k∑
i=1

di−2∑
j=1

m(G− C ′ij , 2),

15)N(15) = m(G− V (Ck), 3),

where m(G, r) is the number of r−matching in G.
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Proof. 1) it is enough to choose three edges outside the cycle from each vertex on the cycle.
2)Suppose i and j are selected. In

(
di−2
2

)
(dj − 2) ways, two edges from vi and one edge from

vj can be selected. Thus N(2) =
∑k

i=1

∑k
j=1,j 6=i

(
di−2
2

)
(dj − 2).

3)In (d(vji ) − 1)(di − 3) ways, a path of length 2 and an edge from vertex vi can be chosen.
Then N(3) =

∑k
i=1

∑di−2
j=1 (d(vji )− 1)(di − 3).

4) To prove this relation, it is enough to note that an edge can be selected from vertex vi exactly
in (di − 2) ways.
5)To count such subgraphs, we count the number of paths of length 3 connected to vi, which is
equal to (S(vji )− d(v

j
i )− di + 1). So N(5) =

∑k
i=1

∑di−2
j=1 (S(vji )− d(v

j
i )− di + 1).

6) Two edges must be selected from each neighboring vertex of Ck. As a result, we have
N(6) =

∑k
i=1

∑di−2
j=1

(
d(vj

i )−1
2

)
.

7)(d(vri ) − 1) paths of length 2 starting from vertex vi to vri and (d(vj) − 2) edge start from
vertex vj . So N(7) =

∑k
i=1

∑k
j=1,j 6=i

∑di−2
r=1 (d(vri )− 1)(dj − 2).

8) We count the number of these subgraphs using principle of inclusion and exclusion. The
number of subgraphs Ck with two pendant edge and an edge is [

∑k
i=1

(
di−2
2

)
](m − k − 2).

Undesirable states are subgraphs of types 1, 3 and 7.
9)We count the number of these subgraphs using the principle of inclusion and exclusion. The
number of subgraphs Ck with pendant P3 and an edge is [

∑k
i=1

∑di−2
j=1 (d(vji )− 1)](m− k − 2).

Undesirable states are subgraphs of types 3, 7 and 6.
10)It is enough to count the number of paths of length 2 that do not have a vertex in common
with the ck and its pendant edge.
11)It is enough to count the number of 4−vertex star subgraphs that do not have a common
vertex with the Ck.
12) Clearly, the number of 4−vertex paths in G− Ck must be counted.
13) Clearly, the number of 3−vertex paths in G − Ck, is NG−Ck

(P3). Using the principle of
inclusion and exclusion, we select a distinct edge from Ck ∪ P3. Clearly, Undesirable states are
11, 12, 5, 6 and 10.
14) We count the number of 2−matching in G−Cij where Cij is Ck along with a pendant edge
viv

j
i .

15)We count the number of 3−matching in G− Ck. �

Theorem 2.10. Let G be a graph with girth at least 7, Og(G) = k, N(Ck) = 1, V (Ck) =
{v1, . . . , vk}. Then

αk+3 = 4N(1) + 4N(2) + 4N(3) + 4N(4)

+ 4N(5) + 4N(6) + 4N(7) + 8N(8)

+ 8N(9) + 12N(10) + 16N(11) + 16N(12)

+ 24N(13) + 8N(14) + 32N(15),

where TU−subgraphs 1, 2, . . . , 15 are depicted in Figure 3.

Proof. TU−subgraphs with k+3 edges and a cycle in G are isomorphic to subgraphs depicted
in Figure 3. Now we get

W (1) =W (2) =W (3) =W (4) =W (5) =W (6) =W (7) = 4,
W (8) =W (9) =W (14) = 8,
W (10) = 12, W (11) =W (12) = 16, W (13) = 24, W (15) = 32.
Then by the proof of Theorem 2.1, the assertion holds. �
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We can calculate the eighth Laplacian and signless Laplacian coefficients of fullerene graphs,
only for IPR (Isolated Pentagon Rule) fullerenes, and then their difference. However, this
method requires pentagonal separation. In the following, a method is presented that does not
require this separation.

Figure 4: TU-subgraphs of Fn generated by 8 edges.

Theorem 2.11. For the graph Fn, we have

α8 = 4N(A) + 4N(B) + 4N(C) + 4N(D)

+ 8N(E) + 8N(F ) + 16N(G) + 12N(H)

+ 32N(K) + 16N(L) + 24N(M) + 16N(N),

where A,B, . . . , N are depicted in Figure 4.

Proof. Note that the TU−subgraphs with 8 edges and a cycle in Fn are isomorphic to subgraphs
depicted in Figure 3. Now we get

W (A) =W (B) =W (C) =W (D) = 4, W (E) =W (F ) = 8,
W (G) = 16, W (H) = 12, W (K) = 32, W (L) = 16,
W (M) = 24, W (N) = 16.

Then by the proof of Theorem 2.1, the assertion holds. �
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3 Concluding remarks

In this research, the difference between Laplacian and signless Laplacian coefficients is cal-
culated. Therefore, by calculating one of them, the other becomes available as well. It is
recommended to proceed with the calculation of the coefficient αk+4.
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the publication of this article.

References
[1] D. M. Cvetković, M. Doob and H. Sachs, Spectra of Graphs: Theory and Applications,

Academic Press, New York, 1980.

[2] H. R. Ellahi, R. Nasiri, G. H. Fath-Tabar and A. Gholami, On maximum signless Laplacian
Estrada indices of graphs with given parameters, Ars Math. Contemp. 11 (2016) 381–389.

[3] F. Taghvaee and G. H. Fath-Tabar, Signless Laplacian spectral moments of graphs and
ordering some graphs with respect to them, Alg. Struc. Appl. 1 (2014) 133–141.

[4] F. Taghvaee and G.H. Fath-Tabar, Note on skew-eigenvalues of digraphs, Trans. Comb. 13
(2024) 225–234, https://doi.org/10.22108/TOC.2023.134342.2001.

[5] D. Cvetković, P. Rowlinson and S. K. Simić, Signless Laplacians of finite graphs, Linear
Algebra Appl. 423 (2007) 155–171, https://doi.org/10.1016/j.laa.2007.01.009.

[6] D. Cvetković and D. Stevanković, Spectral moments of fullerene graphs, Match Commun.
Math. Comput. Chem. 50 (2004) 63–72.

[7] E. J. Farrell, J. M. Guo and G. M. Constantine, On matching coefficients, Discrete Math.
89 (1991) 203–210, https://doi.org/10.1016/0012-365X(91)90369-D.

[8] N. Biggs, Algebraic Graph Theory, Cambridge Mathematical Library, Cambridge University
Press, Cambridge, 1993.

[9] I. Gutman and L. Pavlović, On the coefficients of the Laplacian charac-
teristic polynomial of trees, Bull. Acad. Serbe Sci. Arts 27 (2003) 31–40,
https://doi.org/10.2298/BMAT0328031G.

[10] R. Merris, Laplacian matrices of graphs: a survey, Linear Algebra Appl. 197–198 (1994)
143–176, https://doi.org/10.1016/0024-3795(94)90486-3.

[11] R. Sharafdini, M. Azadimotlagh, V. Hashemi and F. Parsanejad, On eccen-
tric adjacency index of graphs and trees, Math. Interdisc. Res. 8 (2023) 1–17,
https://doi.org/10.22052/MIR.2023.246384.1391.

[12] M. Soleimani and M. H Naderi, On power graph of some finite rings, Math. Interdisc. Res.
8 (2023) 161–173, https://doi.org/10.22052/MIR.2020.185443.1132.

[13] R. Nasiri and G.H. Fath-Tabar, The second minimum of the irregularity of graphs, Electron.
Notes Discrete Math. 45 (2014) 133–140, https://doi.org/10.1016/j.endm.2013.11.026.



50 M. Arabzadeh et al. / On the Difference of Laplacian and Signless Laplacian....

[14] R. Nasiri, H.R. Ellahi, A. Gholami and G.H. Fath-Tabar, The irregularity and total ir-
regularity of Eulerian graphs, Iranian J. Math. Chem. 9 (2018) 101–111, https://doi.org/
10.22052/IJMC.2018.44232.1153.

[15] G. H. Fath-Tabar, M. j. Nadjafi-Arani, M. Mogharrab and A. R. Ashrafi, Some inequalities
for Szeged-like topological indices of graphs, MATCH Commun. Math. Comput. Chem. 63
(2010) 145–150.

[16] G. H. Fath-Tabar, A. R. Ashrafi and D. Stevanović, Spectral properties of fullerenes, J.
Comput. Theor. Nanosci. 9 (2012) 327–329, https://doi.org/10.1166/jctn.2012.2027.


	Introduction
	Main results
	Concluding remarks 

