On the Difference between Laplacian and Signless Laplacian Coefficients of a Graph and its Applications on the Fullerene Graphs

Mahsa Arabzadeh ${ }^{1}$, Gholam Hossein Fath-Tabar ${ }^{2 \star}$, Hamid Rasouli ${ }^{1}$ and Abolfazl Tehranian ${ }^{1}$
${ }^{1}$ Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran
${ }^{2}$ Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan 8731751167, Iran

(Dedicated to the memory of Professor Ali Reza Ashrafi.)

Keywords:

Fullerene graph,
Signless Laplacian matrix,
Laplacian coefficient

AMS Subject Classification (2020):

05C50; 05C30; 05C07

Article History:
Received: 3 January 2024
Accepted: 8 March 2024

Abstract

Let $\sum_{i=0}^{n}(-1)^{i} l_{i} x^{n-i}$ and $\sum_{i=0}^{n}(-1)^{i} q_{i} x^{n-i}$ be the characteristic polynomials of the Laplacian matrix and signless Laplacian matrix of an n-vertex graph, respectively. Let $\alpha_{i}=\left|q_{i}-l_{i}\right|, 0 \leq i \leq n$. In this paper, we find formulas for some of α_{i} 's. In particular, we compute α_{i} 's for some fullerene graphs.

1 Introduction

Let H be an n-vertex graph with no loop and parallel edges. The edge set and the vertex set of H are denoted as $E(H)$ and $V(H)$, respectively. We denote by $A(H)$ the adjacency matrix of H. Let $\operatorname{diag}\left(d_{11}, d_{22}, d_{33}, \ldots, d_{n n}\right)$ be the diagonal matrix of vertex degrees of H, denoted by $D(H)$, where $d_{i i}$ is the degree of vertex v_{i} and $L(H)=D(H)-A(H)$ be the Laplacian matrix of H (see [1-4]). Similarly, the signless Laplacian matrix of a graph H studied in [5, 6], has been defined as $Q(H)=D(H)+A(H)$. Since $A(H), L(H)$ and $Q(H)$ are symmetric matrices with real entries, their eigenvalues are real. We know that $L(H)$ and $Q(H)$ are positive semi-definite, and they have the same eigenvalues if and only if H is bipartite.

The Laplacian and signless Laplacian characteristic polynomials of a graph H are defined by $L_{H}(t)=\operatorname{det}(t I-L(H))=\sum_{i=0}^{n}(-1)^{i} l_{i} t^{n-i}$ and $Q_{H}(t)=\operatorname{det}(t I-Q(H))=\sum_{i=0}^{n}(-1)^{i} q_{i} t^{n-i}$,

[^0]respectively. One may see that the Laplacian coefficient, l_{i}, can be expressed in terms of subtrees of H, for $i=0,1, \ldots, n$ (see [7]). Suppose that F is a spanning subforest of H with connected components $T_{1}, T_{2}, \ldots, T_{k}$, having $n_{1}, n_{2}, \ldots, n_{k}$ vertices, respectively. Let $\omega(F)=\prod_{i=1}^{k} n_{i}$.

First, we recall the following:
Theorem A ([8, Theorem 7.5]). The coefficients l_{i} of the polynomial $L_{H}(t)$ are given by the formula

$$
l_{i}=\sum_{F} \omega(F),
$$

where F is a subforest with i edges.
Using the notation and terminology from [1, 5], a spanning subgraph of a graph H whose connected components are odd unicyclic graphs or trees is called a $T U$-subgraph of H. Suppose that a $T U$-subgraph F of H contains t odd unicyclic graphs and s trees $T_{1}, T_{2}, \ldots, T_{s}$. The weight of $F, W(F)$, is defined by $W(F)=4^{t} \prod_{j=1}^{s} n_{j}$, in which n_{j} is $\left|V\left(T_{j}\right)\right|$. If F contains no tree, then $W(F)=4^{t}$. Based on the next theorem, the coefficients q_{j} can be expressed in terms of the weight of $T U$-subgraphs of a graph H.

Theorem B ([5, Theorem 4.4]). For coefficients q_{j} as above, $q_{0}=1$ and $q_{j}=\sum_{F_{j}} W\left(F_{j}\right)$, $j=1, \ldots, n$, where F_{j} is a TU-subgraph with j edges.

A fullerene graph is a 3 -regular planar graph with only pentagonal and hexagonal faces. A fullerene graph with n carbon atoms, F_{n}, has $\frac{n}{2}-10$ hexagons and 12 pentagons.

For the motivation of this paper, we refer to [9-12] concerning the Laplacian coefficients and signless Laplacian coefficients. By calculating the difference between these two coefficients, in the case that one of these polynomial coefficients is available, one can find the other one. Here we investigate $\alpha_{i}=\left|q_{i}-l_{i}\right|, 0 \leq i \leq n$, the difference between Laplacian and signless Laplacian coefficients of some graphs. The notations are taken from [7, 13-16].

2 Main results

In this section, we compute the number of some subgraphs of a given graph and then investigate the difference between Laplacian and signless Laplacian coefficients associated with them. We define the odd girth of a graph $H, O g(H)$, as the minimum odd integer k such that C_{k} is a cycle with k vertices in H and denote the number of subgraphs of H isomorphic to a subgraph F by $N(F)$.
Theorem 2.1. Let H be a graph and $O g(H)=k$. Then $\alpha_{i}=0, i=1,2, \ldots, k-1$ and $\alpha_{k}=4 N\left(C_{k}\right)$.

Proof. By Theorems A and B,

$$
\begin{aligned}
\alpha_{i} & =\sum_{\substack{F \text { is a TU-subgraph } \\
\text { with i edges }}} W \sum_{\substack{\text { is a subforest } \\
\text { with i edges }}} \omega(F)-\sum_{\substack{\text { Fis a TU-subgraph with i edges } \\
\text { containing at least one odd cycle }}} W(F) .
\end{aligned}
$$

Since there is no $T U$-subgraph with i edges for $i=1,2, \ldots, k-1$ in $H, \alpha_{1}=\alpha_{2}=\ldots=\alpha_{k-1}=$ 0 . A $T U$-subgraph with k edges and at least one cycle is an odd cycle with k vertices and $W(F)=4$. Thus $\alpha_{k}=4 N\left(C_{k}\right)$.

Figure 1: Some unicyclic graphs.

In the next result, we calculate $\alpha_{i}, 1 \leq i \leq 5$, for the fullerene graph. This result can also be obtained using the results of $[6,16]$.

Corollary 2.2. For the fullerene graph $F_{n}, \alpha_{i}=0,1 \leq i \leq 4$, and $\alpha_{5}=48$.

Proof. By definition, one has $W\left(C_{5}\right)=4$ and $N\left(C_{5}\right)=12$. Therefore, $\alpha_{5}=48$.

Theorem 2.3. Let H be an m-edges graph and $O g(H)=k$. Let $C_{k}^{j}, j=1,2, \ldots, N\left(C_{k}\right)$ be cycles in H with k vertices. Then

$$
\alpha_{k+1}=8 m N\left(C_{k}\right)-4 \sum_{j=1}^{N\left(C_{k}\right)} \sum_{i=1}^{k} d\left(v_{i}^{j}\right)
$$

where v_{i}^{j} is i-th vertex in C_{k}^{j}.

Proof. The $T U$-subgraphs with $k+1$ edges in H are isomorphic to A in Figure 1 and A^{\prime}, where A^{\prime} is the union of C_{k} and an edge. One can see that $W(A)=4, N(A)=\sum_{j=1}^{N\left(C_{k}\right)} \sum_{i=1}^{k} d\left(v_{i}^{j}\right)-$ $2 k N\left(C_{k}\right)$ and $W\left(A^{\prime}\right)=8, N\left(A^{\prime}\right)=(m+k) N\left(C_{k}\right)-\sum_{j=1}^{N\left(C_{k}\right)} \sum_{i=1}^{k} d\left(v_{i}^{j}\right)$. Now by the proof of

Theorem 2.1,

$$
\begin{aligned}
\alpha_{k+1} & =\sum_{\begin{array}{c}
H \text { is a TU-subgraph containing at least } \\
\text { one odd cycle with } k+1 \text { edges }
\end{array}} W(H) \\
& =4 N(A)+8 N\left(A^{\prime}\right) \\
& =4\left(\sum_{j=1}^{N\left(C_{k}\right)} \sum_{i=1}^{k} d\left(v_{i}^{j}\right)-2 k N\left(C_{k}\right)\right) \\
& +8\left((m+k) N\left(C_{k}\right)-\sum_{j=1}^{N\left(C_{k}\right)} \sum_{i=1}^{k} d\left(v_{i}^{j}\right)\right) \\
& =8 m N\left(C_{k}\right)-4 \sum_{j=1}^{N\left(C_{k}\right)} \sum_{i=1}^{k} d\left(v_{i}^{j}\right)
\end{aligned}
$$

as desired.
Corollary 2.4. Let H be an r-regular and m-edges graph and $O g(H)=k$. Let C_{k}^{j}, $j=$ $1,2, \ldots, N\left(C_{k}\right)$, be cycles in H with k vertices. Then $\alpha_{k+1}=(8 m-4 r k) N\left(C_{k}\right)$. In particular, $\alpha_{6}\left(F_{n}\right)=144 n-720$.

Proof. Since H is r-regular, the degree of each vertex is r. So, by Theorem 2.3 we have

$$
\alpha_{k+1}=8 m N\left(C_{k}\right)-4 r k N\left(C_{k}\right)=(8 m-4 r k) N\left(C_{k}\right) .
$$

Since F_{n} is a 3 -regular graph, $m=3 / 2 n$ and $\alpha_{6}\left(F_{n}\right)=144 n-720$.
In the following lemma, $N i\left(C_{k}\right)=\left\{x \in V(H) \mid v_{i} x \in E(H)\right\}, m$ denotes the cardinality of $E(H)$ and $s(x)=\sum_{x y \in E(H)} d(y)$.

Lemma 2.5. For a graph H, let $O g(H)=k, N\left(C_{k}\right)=1$ and $V\left(C_{k}\right)=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$. For the subgraphs A, B, C and D of H depicted in Figure 1, the following assertions hold:
(i) $N(A)=\sum_{i=1}^{k} d\left(v_{i}\right)-2 k$.
(ii) $N(B)=\frac{1}{2} \sum_{0<i<j<k+1}\left(d\left(v_{i}\right)-2\right)\left(d\left(v_{j}\right)-2\right)$.
(iii) $N(C)=\sum_{i=1}^{k} s\left(v_{i}\right)+2 k-3 \sum_{i=1}^{k} d\left(v_{i}\right)$.
(iv) $N(D)=\frac{1}{2} \sum_{i=1}^{k}\left(d\left(v_{i}\right)-2\right)\left(d\left(v_{i}\right)-3\right)$.
(v) If E is the union of C_{k} and P_{3}, then $N(E)$ is

$$
\frac{1}{2} \sum_{u_{i} \notin N i\left(C_{k}\right) \cup V\left(C_{k}\right)} d\left(u_{i}\right)\left(d\left(u_{i}\right)-1\right)+\frac{1}{2} \sum_{u_{i} \in N i\left(C_{k}\right) \backslash V\left(C_{k}\right)}\left(d\left(u_{i}\right)-1\right)\left(d\left(u_{i}\right)-2\right) .
$$

(vi) If A^{\prime} is the union of A and K_{2}, then

$$
N\left(A^{\prime}\right)=N(A)(m-(1+k))-N(C)-2 N(B)-2 N(D)
$$

(vii) If C^{\prime} is the union of C_{k} and K_{2}, then

$$
N\left(C^{\prime}\right)=m+k-\sum_{i=1}^{k} d\left(v_{i}\right)
$$

(viii) If $C^{\prime \prime}$ is the union of C_{k} and $2 K_{2}$ (the union of two K_{2}), then

$$
N\left(C^{\prime \prime}\right)=\frac{1}{2}\left(N\left(C^{\prime}\right)(m-(1+k))-2 N(E)-N(C)-N\left(A^{\prime}\right)\right)
$$

Proof. To count the number of subgraphs isomorphic to A, in H, we consides the number of neighborhoods of $V\left(C_{k}\right)$ excluding $V\left(C_{k}\right)$. Then

$$
N(A)=\sum_{i=1}^{k}\left(d\left(v_{i}\right)-2\right)=\sum_{i=1}^{k} d\left(v_{i}\right)-2 k .
$$

To get the number of subgraphs isomorphic to B, in H, we choose $d\left(v_{i}\right)-2$ ways an edge joint to v_{i} and $d\left(v_{j}\right)-2$ ways an edge joint to v_{j}, then

$$
N(B)=\frac{1}{2} \sum_{0<i<j<k+1}\left(d\left(v_{i}\right)-2\right)\left(d\left(v_{j}\right)-2\right)
$$

To determine the number of subgraphs isomorphic to C in H, we need to count the number of paths P_{3} joint to vertex v_{i} in $V\left(C_{k}\right)$. Essentially, we count the total number of neighbors of v_{i}^{j} except v_{i}, where v_{i}^{j} is a neighbor of v_{i} and does not belong to the cycle. Then

$$
N(C)=\sum_{i=1}^{k} s\left(v_{i}\right)+2 k-3 \sum_{i=1}^{k} d\left(v_{i}\right)
$$

The number of subgraphs isomorphic to D in H is $\sum_{i=1}^{k}\binom{d\left(v_{i}\right)-2}{2}$. Thus

$$
N(D)=\frac{1}{2} \sum_{i=1}^{k}\left(d\left(v_{i}\right)-2\right)\left(d\left(v_{i}\right)-3\right) .
$$

Note that $N(E)$ is the number of selections of P_{3} in $G \backslash\left\{v_{1}, \ldots, v_{k}\right\}$. Then

$$
\begin{aligned}
N(E) & =\sum_{u_{i} \notin N i\left(C_{k}\right) \cup V\left(C_{k}\right)}\binom{d\left(u_{i}\right)}{2}+\sum_{u_{i} \in N i\left(C_{k}\right) \backslash V\left(C_{k}\right)}\binom{d\left(u_{i}\right)}{2} \\
& =\frac{1}{2} \sum_{u_{i} \notin N i\left(C_{k}\right) \cup V\left(C_{k}\right)} d\left(u_{i}\right)\left(d\left(u_{i}\right)-1\right) \\
& -\frac{1}{2} \sum_{u_{i} \in N i\left(C_{k}\right) \backslash V\left(C_{k}\right)}\left(d\left(u_{i}\right)-1\right)\left(d\left(u_{i}\right)-2\right) .
\end{aligned}
$$

We can select $N(A)(m-k-1)$ ways subgraph A and an edge. Now by removing undesirable states, we have

$$
N\left(A^{\prime}\right)=N(A)(m-(1+k))-N(C)-2 N(B)-2 N(D)
$$

Also $N\left(C^{\prime}\right)$ is the number of selection in $H \backslash\left\{v_{1}, \ldots, v_{k}\right\}$. Thus

$$
N\left(C^{\prime}\right)=m+k-\sum_{i=1}^{k} d\left(v_{i}\right)
$$

We can choose C^{\prime} and an edge with $N\left(C^{\prime}\right)(m-(1+k))$ ways. Now by removing undesirable states, we have

$$
N\left(C^{\prime \prime}\right)=\frac{1}{2}\left(N\left(C^{\prime}\right)(m-(1+k))-2 N(E)-N(C)-N\left(A^{\prime}\right)\right)
$$

In the following, we calculate α_{k+2} based on subgraphs presented in Lemma 2.5.

Theorem 2.6. Let G be a triangle free graph, $O g(G)=k, N\left(C_{k}\right)=1$ and $V\left(C_{k}\right)=\left\{v_{1}, \ldots, v_{k}\right\}$. Then

$$
\begin{aligned}
\alpha_{k+2} & =12 N(B)-4 N(C)+12 N(D)-16 N(E) \\
& +8 N\left(C^{\prime}\right)(m-k-1)-8 N(A)(m-k-1)
\end{aligned}
$$

Proof. The $T U$-subgraphs with $k+2$ edges and at least one cycle are isomorphic to B, C, D, A^{\prime} and $C^{\prime \prime}$. By the definition of the weight of subgraphs, we have $W(B)=W(C)=W(D)=4$ and $W\left(A^{\prime}\right)=8$. Then by the proof of Theorem 2.1,

$$
\begin{aligned}
\alpha_{k+2} & =\sum_{\begin{array}{c}
H \text { is a TU-subgraph containing at least } \\
\text { one unicyclic graph with k+2 edges }
\end{array}} W(H) \\
& =4 N(B)+4 N(C)+4 N(D)+8 N\left(A^{\prime}\right)+16 N\left(C^{\prime \prime}\right) \\
& =4 N(B)+4 N(C)+4 N(D)+8(N(A)(m-k-1)-N(C) \\
& -N(B)-N(D))+16\left[\frac { 1 } { 2 } \left(N\left(C^{\prime}\right)(m-k-1)-2 N(E)\right.\right. \\
& -N(C)-N(A)(m-k-1)+N(C)+2 N(B)+2 N(D))] \\
& =12 N(B)-4 N(C)+12 N(D)-16 N(E) \\
& +8 N\left(C^{\prime}\right)(m-k-1)-8 N(A)(m-k-1),
\end{aligned}
$$

as desired.
Corollary 2.7. Let H be an r-regular graph, $O g(H)=k, k>3$ and $N\left(C_{k}\right)=1$. Then α_{k+2} is given by

$$
12 k^{2} r^{2}-4 k n r^{2}+2 n^{2} r^{2}-40 k^{2} r+8 k r^{2}-8 n r^{2}+40 k^{2}+4 k r+4 n r+6 r^{2}-30 r+36
$$

Proof. By Lemma 2.5, for the r-regular graph H, we have

$$
\begin{aligned}
N(B) & =k\left((r-1)^{2}(k-1)\right. \\
N(C) & =k\left(r^{2}-3 r-2\right) \\
N(D) & =1 / 2(r-2)(r-3) \\
N(E) & =1 / 2(r-1)(n r-3 k r+4 k) \\
N(A) & =k r-2 k \\
N\left(C^{\prime}\right) & =(m+k-k r)(m-k-1)
\end{aligned}
$$

Then, by Theorem 2.6, we have

$$
\alpha_{k+2}=12 k^{2} r^{2}-4 k n r^{2}+2 n^{2} r^{2}-40 k^{2} r+8 k r^{2}-8 n r^{2}+40 k^{2}+4 k r+4 n r+6 r^{2}-30 r+36 .
$$

Theorem 2.8. For the graph F_{n}, we have

$$
\alpha_{7}=4 N(A)+4 N(B)+8 N(C)+8 N(D)+16 N(E)
$$

where A, B, \ldots, N are depicted in Figure 4.

Figure 2: TU-subgraphs with 7 edges in a Fullerene.

Figure 3: TU-subgraphs with 8 edges in a grpah.

Proof. Note that the $T U$-subgraphs with 7 edges and a cycle in F_{n} are isomorphic to subgraphs depicted in Figure 2. Therefore, we get $\alpha_{7}=4 N(A)+4 N(B)+8 N(C)+8 N(D)+16 N(E)$. Then by the proof of Theorem 2.1, the assertion holds.

Lemma 2.9. Let G be a graph with girth at least 7, $O g(G)=k, N\left(C_{k}\right)=1, V\left(C_{k}\right)=$ $\left\{v_{1}, \ldots, v_{k}\right\}$ and $N i\left(v_{i}\right)-V\left(C_{k}\right)=\left\{v_{i}^{1}, \ldots, v_{i}^{d_{i}-2}\right\}$. Then the number of $T U-$ subgraphs of the type shown in Figure 3 is as follows:

$$
\begin{aligned}
& \text { 1) } N(1)=\sum_{i=1}^{k}\binom{d_{i}-2}{3}, \\
& \text { 2) } N(2)=\sum_{i=1}^{k} \sum_{j=1, j \neq i}^{k}\binom{d_{i}-2}{2}\left(d_{j}-2\right) \text {, } \\
& \text { 3) } N(3)=\sum_{i=1}^{k} \sum_{j=1}^{d_{i}-2}\left(d\left(v_{i}^{j}\right)-1\right)\left(d_{i}-3\right), \\
& \text { 4) } \left.N(4)=\sum_{1 \leq i<j<r \leq k}\left(d_{i}-2\right) d_{j}-2\right)\left(d_{r}-2\right) \text {, } \\
& \text { 5) } N(5)=\sum_{i=1}^{k} \sum_{j=1}^{d_{i}-2}\left(S\left(v_{i}^{j}\right)-d\left(v_{i}^{j}\right)-d_{i}+1\right) \text {, } \\
& \text { 6) } N(6)=\sum_{i=1}^{k} \sum_{j=1}^{d_{i}-2}\binom{d\left(v_{i}^{j}\right)-1}{2} \text {, } \\
& \text { 7) } N(7)=\sum_{i=1}^{k} \sum_{j=1, j \neq i}^{k} \sum_{r=1}^{d_{i}-2}\left(d\left(v_{i}^{r}\right)-1\right)\left(d_{j}-2\right) \text {, } \\
& \text { 8) } N(8)=\left[\sum_{i=1}^{k}\binom{d_{i}-2}{2}\right](m-k-2)-3 N(1)-N(3)-N(7) \text {, } \\
& \text { 9) } N(9)=\left[\sum_{i=1}^{k} \sum_{j=1}^{d_{i}-2}\left(d\left(v_{i}^{j}\right)-1\right)\right](m-k-2)-N(3)-N(7)-2 N(6), \\
& \text { 10) } N(10)=\sum_{i=1}^{k} \sum_{j=1}^{d_{i}-2}\left[\sum_{v_{t} \notin V\left(C_{k}\right)}\binom{d_{t}}{2}+\sum_{v_{t} \in V\left(C_{k}\right), v_{t} \neq v_{i}^{j}}\binom{d_{t}-1}{2}\right] \text {, } \\
& \text { 11) } N(11)=\sum_{v_{i} \notin V\left(C_{k}\right)}\binom{d_{i}}{3}+\sum_{v_{t} \in V\left(C_{k}\right) i}\binom{d_{i}-1}{3} \text {, } \\
& \text { 12) } N(12)=N_{G-V\left(C_{k}\right)}\left(P_{4}\right) \text {, } \\
& \text { 13) } N(13)=N_{G-V\left(C_{k}\right)}\left(P_{3}\right)(m-k-2) \\
& -3 N(11)-2 N(12)-N(5)-N(6)-N(10) \text {, } \\
& \text { 14) } N(14)=\sum_{i=1}^{k} \sum_{j=1}^{d_{i}-2} m\left(G-C_{i j}^{\prime}, 2\right) \text {, } \\
& \text { 15) } N(15)=m\left(G-V\left(C_{k}\right), 3\right),
\end{aligned}
$$

where $m(G, r)$ is the number of r-matching in G.

Proof. 1) it is enough to choose three edges outside the cycle from each vertex on the cycle.
2)Suppose i and j are selected. In $\binom{d_{i}-2}{2}\left(d_{j}-2\right)$ ways, two edges from v_{i} and one edge from v_{j} can be selected. Thus $N(2)=\sum_{i=1}^{k} \sum_{j=1, j \neq i}^{k}\binom{d_{i}-2}{2}\left(d_{j}-2\right)$.
3)In $\left(d\left(v_{i}^{j}\right)-1\right)\left(d_{i}-3\right)$ ways, a path of length 2 and an edge from vertex v_{i} can be chosen. Then $N(3)=\sum_{i=1}^{k} \sum_{j=1}^{d_{i}-2}\left(d\left(v_{i}^{j}\right)-1\right)\left(d_{i}-3\right)$.
4) To prove this relation, it is enough to note that an edge can be selected from vertex v_{i} exactly in $\left(d_{i}-2\right)$ ways.
5)To count such subgraphs, we count the number of paths of length 3 connected to v_{i}, which is equal to $\left(S\left(v_{i}^{j}\right)-d\left(v_{i}^{j}\right)-d_{i}+1\right)$. So $N(5)=\sum_{i=1}^{k} \sum_{j=1}^{d_{i}-2}\left(S\left(v_{i}^{j}\right)-d\left(v_{i}^{j}\right)-d_{i}+1\right)$.
6) Two edges must be selected from each neighboring vertex of C_{k}. As a result, we have $N(6)=\sum_{i=1}^{k} \sum_{j=1}^{d_{i}-2}\left(\begin{array}{c}d\left(v_{i}^{j}\right)-1\end{array}\right)$.
7) $\left(d\left(v_{i}^{r}\right)-1\right)$ paths of length 2 starting from vertex v_{i} to v_{i}^{r} and $\left(d\left(v_{j}\right)-2\right)$ edge start from vertex v_{j}. So $N(7)=\sum_{i=1}^{k} \sum_{j=1, j \neq i}^{k} \sum_{r=1}^{d_{i}-2}\left(d\left(v_{i}^{r}\right)-1\right)\left(d_{j}-2\right)$.
8) We count the number of these subgraphs using principle of inclusion and exclusion. The number of subgraphs C_{k} with two pendant edge and an edge is $\left[\sum_{i=1}^{k}\binom{d_{i}-2}{2}\right](m-k-2)$. Undesirable states are subgraphs of types 1,3 and 7 .
9) We count the number of these subgraphs using the principle of inclusion and exclusion. The number of subgraphs C_{k} with pendant P_{3} and an edge is $\left[\sum_{i=1}^{k} \sum_{j=1}^{d_{i}-2}\left(d\left(v_{i}^{j}\right)-1\right)\right](m-k-2)$. Undesirable states are subgraphs of types 3,7 and 6 .
10)It is enough to count the number of paths of length 2 that do not have a vertex in common with the c_{k} and its pendant edge.
11)It is enough to count the number of 4 -vertex star subgraphs that do not have a common vertex with the C_{k}.
12) Clearly, the number of 4 -vertex paths in $G-C_{k}$ must be counted.
13) Clearly, the number of 3 -vertex paths in $G-C_{k}$, is $N_{G-C_{k}}\left(P_{3}\right)$. Using the principle of inclusion and exclusion, we select a distinct edge from $C_{k} \cup P_{3}$. Clearly, Undesirable states are $11,12,5,6$ and 10 .
14) We count the number of $2-$ matching in $G-C_{i j}$ where $C_{i j}$ is C_{k} along with a pendant edge $v_{i} v_{i}^{j}$.
15) We count the number of 3 -matching in $G-C_{k}$.

Theorem 2.10. Let G be a graph with girth at least 7, $O g(G)=k, N\left(C_{k}\right)=1, V\left(C_{k}\right)=$ $\left\{v_{1}, \ldots, v_{k}\right\}$. Then

$$
\begin{aligned}
\alpha_{k+3} & =4 N(1)+4 N(2)+4 N(3)+4 N(4) \\
& +4 N(5)+4 N(6)+4 N(7)+8 N(8) \\
& +8 N(9)+12 N(10)+16 N(11)+16 N(12) \\
& +24 N(13)+8 N(14)+32 N(15),
\end{aligned}
$$

where $T U$-subgraphs $1,2, \ldots, 15$ are depicted in Figure 3.
Proof. TU-subgraphs with $k+3$ edges and a cycle in G are isomorphic to subgraphs depicted in Figure 3. Now we get
$W(1)=W(2)=W(3)=W(4)=W(5)=W(6)=W(7)=4$,
$W(8)=W(9)=W(14)=8$,
$W(10)=12, W(11)=W(12)=16, W(13)=24, W(15)=32$.
Then by the proof of Theorem 2.1, the assertion holds.

We can calculate the eighth Laplacian and signless Laplacian coefficients of fullerene graphs, only for IPR (Isolated Pentagon Rule) fullerenes, and then their difference. However, this method requires pentagonal separation. In the following, a method is presented that does not require this separation.

Figure 4: TU-subgraphs of F_{n} generated by 8 edges.

Theorem 2.11. For the graph F_{n}, we have

$$
\begin{aligned}
\alpha_{8} & =4 N(A)+4 N(B)+4 N(C)+4 N(D) \\
& +8 N(E)+8 N(F)+16 N(G)+12 N(H) \\
& +32 N(K)+16 N(L)+24 N(M)+16 N(N)
\end{aligned}
$$

where A, B, \ldots, N are depicted in Figure 4.

Proof. Note that the $T U$-subgraphs with 8 edges and a cycle in F_{n} are isomorphic to subgraphs depicted in Figure 3. Now we get
$W(A)=W(B)=W(C)=W(D)=4, W(E)=W(F)=8$,
$W(G)=16, W(H)=12, W(K)=32, W(L)=16$,
$W(M)=24, W(N)=16$.
Then by the proof of Theorem 2.1, the assertion holds.

3 Concluding remarks

In this research, the difference between Laplacian and signless Laplacian coefficients is calculated. Therefore, by calculating one of them, the other becomes available as well. It is recommended to proceed with the calculation of the coefficient α_{k+4}.

Conflicts of Interest. The authors declare that they have no conflicts of interest regarding the publication of this article.

References

[1] D. M. Cvetković, M. Doob and H. Sachs, Spectra of Graphs: Theory and Applications, Academic Press, New York, 1980.
[2] H. R. Ellahi, R. Nasiri, G. H. Fath-Tabar and A. Gholami, On maximum signless Laplacian Estrada indices of graphs with given parameters, Ars Math. Contemp. 11 (2016) 381-389.
[3] F. Taghvaee and G. H. Fath-Tabar, Signless Laplacian spectral moments of graphs and ordering some graphs with respect to them, Alg. Struc. Appl. 1 (2014) 133-141.
[4] F. Taghvaee and G.H. Fath-Tabar, Note on skew-eigenvalues of digraphs, Trans. Comb. 13 (2024) 225-234, https://doi.org/10.22108/TOC.2023.134342.2001.
[5] D. Cvetković, P. Rowlinson and S. K. Simić, Signless Laplacians of finite graphs, Linear Algebra Appl. 423 (2007) 155-171, https://doi.org/10.1016/j.laa.2007.01.009.
[6] D. Cvetković and D. Stevanković, Spectral moments of fullerene graphs, Match Commun. Math. Comput. Chem. 50 (2004) 63-72.
[7] E. J. Farrell, J. M. Guo and G. M. Constantine, On matching coefficients, Discrete Math. 89 (1991) 203-210, https://doi.org/10.1016/0012-365X(91)90369-D.
[8] N. Biggs, Algebraic Graph Theory, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1993.
[9] I. Gutman and L. Pavlović, On the coefficients of the Laplacian characteristic polynomial of trees, Bull. Acad. Serbe Sci. Arts 27 (2003) 31-40, https://doi.org/10.2298/BMAT0328031G.
[10] R. Merris, Laplacian matrices of graphs: a survey, Linear Algebra Appl. 197-198 (1994) 143-176, https://doi.org/10.1016/0024-3795(94)90486-3.
[11] R. Sharafdini, M. Azadimotlagh, V. Hashemi and F. Parsanejad, On eccentric adjacency index of graphs and trees, Math. Interdisc. Res. 8 (2023) 1-17, https://doi.org/10.22052/MIR.2023.246384.1391.
[12] M. Soleimani and M. H Naderi, On power graph of some finite rings, Math. Interdisc. Res. 8 (2023) 161-173, https://doi.org/10.22052/MIR.2020.185443.1132.
[13] R. Nasiri and G.H. Fath-Tabar, The second minimum of the irregularity of graphs, Electron. Notes Discrete Math. 45 (2014) 133-140, https://doi.org/10.1016/j.endm.2013.11.026.
[14] R. Nasiri, H.R. Ellahi, A. Gholami and G.H. Fath-Tabar, The irregularity and total irregularity of Eulerian graphs, Iranian J. Math. Chem. 9 (2018) 101-111, https://doi.org/ 10.22052/IJMC.2018.44232.1153.
[15] G. H. Fath-Tabar, M. j. Nadjafi-Arani, M. Mogharrab and A. R. Ashrafi, Some inequalities for Szeged-like topological indices of graphs, MATCH Commun. Math. Comput. Chem. 63 (2010) 145-150.
[16] G. H. Fath-Tabar, A. R. Ashrafi and D. Stevanović, Spectral properties of fullerenes, J. Comput. Theor. Nanosci. 9 (2012) 327-329, https://doi.org/10.1166/jctn.2012.2027.

[^0]: *Corresponding author
 E-mail addresses: mahsa.arabzade1177@gmail.com (M. Arabzadeh), fathtabar@kashanu.ac.ir (G. H. FathTabar), hrasouli@srbiau.ac.ir (H. Rasouli), tehranian@srbiau.ac.ir (A. Tehranian)
 Academic Editor: Saeid Alikhani

