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Abstract

The number of spanning trees of a graph G is called the
complexity of G. It is known that the complexity of the line
graph of a given graph G can be computed as the sum over all
spanning trees of G of contributions which depend on various
types of products of degrees of vertices of G. We interpret the
contributions in terms of three types of multiplicative Zagreb
indices, obtaining simple and compact expressions for the com-
plexity of line graphs of graphs with low cyclomatic numbers.
As an application, we determine the unicyclic graphs whose line
graphs have the smallest and the largest complexity.

c© 2024 University of Kashan Press. All rights reserved.

1 Introduction
Given two graphs on the same number of vertices, one can often intuitively perceive one of them
as more complex that the other. However, the intuitive perception of complexity turns out to
be somewhat elusive when it comes to its quantification. Several different measures of graph
complexity were proposed, each with its own good and less good sides. The most standard one
is the number of spanning trees.

There are several standard ways of counting spanning trees, such as, e.g., the contraction-
deletion theorem and the matrix-tree theorem. In most cases, they will not produce simple
closed formulas for the number of spanning trees in terms of some simple structural parameters
of the considered graph. It is, hence, of interest to consider special cases for which such formulas
can be obtained. In this paper, we start from one such result, expressing the number of spanning
trees of the line graph L(G) of a graph G in terms of sums and products of degrees of vertices of
G. The expressions appearing there are reinterpreted in terms of three well-known topological
indices, resulting in compact formulas for the complexity of the line graph of G. When G itself
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has a low cyclomatic number, the obtained formulas allow for determining the graphs whose
line graphs achieve the extremal complexities.

In the next section, we give the necessary definitions and quote some preliminary results.
Section 3 contains our main results on the complexity of line graphs of unicyclic graphs. In
the last section, we summarize our findings and indicate some possible directions for further
research.

2 Definitions and preliminary results

All graphs we consider here are simple and connected. We assume that the reader is familiar
with those terms, as well as with other basic terms such as, e.g., vertices, edges, degrees, paths
and cycles. For any doubts, we refer the reader to some standard monographs on graph theory
[1, 2].

For a graph G, we denote its set of vertices by V (G), and its set of edges by E(G). When
there is no risk of confusion, we shorten the notation to V and E, respectively. If a graph
F contains no cycles, one says that F is an acyclic graph. A graph whose every component
is acyclic is called a forest. A tree T is a connected acyclic graph, a forest with exactly one
connected component. For a connected graph G with n vertices and m edges, we define its
cyclomatic number c(G) as c(G) = m − n + 1. (The definition can be made meaningful also
for graphs with several connected components by replacing 1 with the number of components.)
Hence, trees are connected graphs with the cyclomatic number zero. Graphs with c(G) = 1 are
called unicyclic graphs; generally, graphs with c(G) = k are called k-cyclic.

A subgraph H of a graph G is spanning if it includes all vertices (but not necessarily all
edges) of G. A subgraph H is induced if all edges between vertices of H in G appear also in H.
A connected acyclic subgraph T of G is a spanning tree in G if it includes all vertices of G. The
number of spanning trees of a (connected) graph G is called the complexity of G and denoted
by τ(G).

For a given graph G, its line graph L(G) is defined as the graph whose vertices are edges of
G, and two vertices in L(G) are connected by an edge if and only if the corresponding edges in
G are incident to the same vertex in G. The line graph of a connected graph is itself connected.
It is well known that not every connected graph is a line graph. There are several small graphs
which cannot appear as induced subgraphs of line graphs [3].

A topological index is a numerical quantity assigned to a graph G which remains invariant
under graph isomorphisms. It is, usually, derived from some structural properties of G. The
main motivation for the study of topological indices comes from their role in the QSAR/QSPR
studies. Many topological indices have been introduced and studied so far. We refer the reader
to [4] and references therein for more background. In the chemical context, topological indices
are also known as molecular descriptors, reflecting their use in the study of physico-chemical
properties of various chemical compounds.

The two oldest named topological indices, the Wiener index and the Platt index, were
introduced almost simultaneously back in 1947, the Wiener index [5] preceding the other one
[6] by mere five months. A long period of dormancy ensued, punctuated by sporadic publications
[7, 8]. The activities resumed at the beginning of seventies, by introducing a pair of indices
by a group of researchers working at the Rudjer Bošković Institute in Zagreb, Croatia, which
subsequently became known as the Zagreb group indices and later simply as the Zagreb indices
[9]. See a nice paper by Gutman [10] for more historical details.

The first Zagreb index M1(G) and the second Zagreb index M2(G) of a graph G are defined,
respectively, as the sum over all vertices of G of squares of their degrees, and the sum over all
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edges of G of products of degrees of their end-vertices:

M1(G) =
∑

v∈V (G)

d2
v, M2(G) =

∑
uv∈E(G)

dudv.

(Here du denotes the degree of the vertex u ∈ V .) The first Zagreb index was also studied in the
mathematical literature, by researchers apparently unaware of its chemical relevance [11–13].
It was observed much later [14] that the first Zagreb index has an alternative, bond-additive,
formulation, as the sum over all edges of G of sums of degrees of their end-vertices,

M1(G) =
∑

uv∈E(G)

(du + dv) .

As often is the case with topological indices, the Zagreb indices were soon generalized in several
ways, giving rise to several derived indices. In this paper, we are concerned with two indices
that arise by replacing sums with products in the defining relations of M1(G) and M2(G). The
resulting invariants, named the multiplicative Zagreb indices, were introduced by Todeschini
and his coauthors in 2010 [15, 16]. The first and the second multiplicative Zagreb index are
defined, respectively, as follows:

Π1(G) =
∏

v∈V (G)

d2
v, Π2(G) =

∏
uv∈E(G)

dudv.

An alternative version of the first multiplicative Zagreb index, based on the bond-additive
formulation, was proposed by Eliasi, Iranmanesh and Gutman [17],

Π∗1(G) =
∏

uv∈E(G)

(du + dv) .

This alternative version became known as the multiplicative sum Zagreb index [18]. The first
multiplicative Zagreb index is closely related to another index, the Narumi–Katayama index,
defined as the product of degrees of all vertices of a graph, NK(G) =

∏
v∈V (G) dv. It was

introduced by Narumi and Katayama in 1984 [19] and modestly named the “simple topological
index”. We refer the reader to [20] and references therein for more information on the history
and uses of the Narumi–Katayama index. As the first multiplicative Zagreb index is nothing
else but the square of the Narumi–Katayama index, Π1(G) = NK(G)2, they capture the same
information carried by the degree-sequence of a graph, and can be used interchangeably. Notice
that, unlike the original Zagreb indices, the two multiplicative versions of the first Zagreb index
behave in different ways.

It turns out that it is much easier to introduce a new topological index than to find a good
use for it. Certainly, some indices deserve studying because they have interesting and non-
trivial properties, but in many cases, the new indices struggle to find some application. One of
the goals of this note is to point to a potential application of multiplicative Zagreb indices for
computing complexities of line graphs of graphs with low cyclomatic number, in particular of
line graphs of trees and unicyclic graphs.

Our starting point is the following result (Theorem 3.1 of [21]):

Theorem 2.1. Let G be a loopless graph and let T (G) be the set of all spanning trees of G.
Then

τ(L(G)) =
1∏

v∈V (G) d
2
v

∑
T⊆T (G)

 ∏
e=xy∈E(T )

dxdy

 ∏
e=uv∈E(G)\E(T )

[du + dv]

 .
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The above expression involves the sum running over all spanning trees of G. All three types
of products appearing there look familiar, and one could be tempted to interpret the right-hand
side as

1

Π1(G)

∑
T⊆T (G)

Π2(T )Π∗1(G− E(T )).

It would be incorrect, though, as the degrees of vertices in the last two products are taken in
G, not in T . In the next section, we investigate how much of this approach could be salvaged
when the number of spanning trees of G is small.
We refer the reader to [22, 23] for more results of the type quoted in Theorem 2.1.

3 Main results

3.1 Trees

The simplest possible situation arises when G itself is a tree. In that case, G = T , there is
only one term in the sum, the second product is empty, and the degrees of vertices in G and T
coincide. Hence, Theorem 2.1 reduces to a very simple expression.

Corollary 3.1. Let T be a tree and L(T ) its line graph. Then τ(L(T )) = Π2(T )
Π1(T ) .

The above result can be further simplified by applying formula

∑
u∈V (G)

F (u) =
∑

uv∈E(G)

[
F (u)

du
+
F (v)

dv

]
,

valid for any numerical quantity F (u) depending on the degree du [14]. By taking the logarithm
of Π2(G) and applying the above formula backwards, we obtain

log Π2(G) =
∑

uv∈E(G)

[log du + log dv] =
∑

v∈V (G)

du log du = log
∏

u∈V (G)

d du
u ,

which, plugged into the right-hand side of Corollary 3.1, yields an alternative formula for the
complexity of the line graph of a tree T .

Corollary 3.2. Let T be a tree and L(T ) its line graph. Then

τ(L(T )) =
∏

u∈V (G)

d du−2
u .

The above logarithmic trick also establishes another equivalence between two topological
indices: the quantity

∏
u∈V (G) d

du
u , introduced in this form by Ghorbani et al. [24] and since

known as the modified Narumi–Katayama index NK∗(G), is identical to the second multiplica-
tive Zagreb index.

We close the subsection on trees by noticing that the formula of Corollary 3.2 readily yields
both extremal cases for trees. It returns 1 for any path T = Pn, since degrees 1 and 2 contribute
1 to the product, and it returns the Cayley formula τ(Kn) = nn−2 for the line graph Kn of the
star T = K1,n.
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3.2 Unicyclic graphs
The next simplest case in Theorem 2.1 is when G is a unicyclic graph. Each unicyclic graph Un

on n vertices contains an induced cycle Ck of length k, where 3 ≤ k ≤ n, and some number of
trees, T1, . . . , Tl, rooted at the vertices of Ck. It is sometimes convenient to assume that there
are exactly k such trees, allowing for some of them to be empty. The length of the unique cycle
of Un will be called its girth.

Proposition 3.3. Let Un be a unicyclic graph, L(Un) its line graph, and let Ck be the unique
cycle in Un, induced by the vertices v1, . . . , vk. Then

τ(L(Un)) = 2
Π2(Un)

Π1(Un)

k∑
i=1

1

dvi
= 2

 ∏
u∈V (Un)

d du−2
u

 k∑
i=1

1

dvi
.

Proof. Let Ck be the unique cycle in Un induced by the vertices v1, . . . , vk. Then Un has
exactly k spanning trees, each obtained by removing exactly one edge vivi+1, where the indices
are counted modulo k. For each such spanning tree, its complement has exactly one edge, so
the second product in the right-hand side of Theorem 2.1 has only one term. The first product
in each summand includes all edges except one, the one not participating in the corresponding
spanning tree. Hence, it evaluates to the whole second multiplicative Zagreb index of Un divided
by dui

dui+1
, the contribution of the missing edge. By taking this into account, we obtain

τ(L(Un)) =
1

Π1(Un)

k∑
i=1

 ∏
xy∈E(Un)
xy 6=vivi+1

dxdy

(dvi + dvi+1

)

=
Π2(Un)

Π1(Un)

k∑
i=1

dvi + dvi+1

dvidvi+1

=

 ∏
u∈V (Un)

d du−2
u

 k∑
i=1

[
1

dvi
+

1

dvi+1

]

= 2

 ∏
u∈V (Un)

d du−2
u

 k∑
i=1

1

dvi
.

�

For the trivial case Un = Cn, the above theorem clearly gives the correct answer, τ(L(Cn)) =
τ(Cn) = n. By taking a closer look at the formula, one can notice that it will be dominated by
the first term, since the sum of reciprocal degrees of the degrees lying on the cycle grows at most
linearly with the number of vertices. This gives one a reason to believe that the minimizing
graphs will tend to have many vertices of degree 2, while the maximizing ones will tend to
have the contributing degrees concentrated in a small number of vertices, maybe just in one.
In addition, for the minimizing graphs, the cycle should be short, hence forcing the vertices of
degree 2 into long path(s). The role of the vertices of degree one is not immediately clear. In
order to elucidate the structure of extremal graphs, we first establish some auxiliary results.

Proposition 3.4. Let Un,k be a unicyclic graphs whose unique cycle has length k and is induced
by vertices v1, . . . , vk, where k < n − 1. If more than one of vertices v1, . . . , vk has the degree
greater than 2, then there is another graph U ′n,k on the same number of vertices and with the
same girth such that τ(L(U ′n,k)) > τ(L(Un,k)).
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Proof. Let vi and vj be two vertices lying on Ck with degrees di and dj , respectively. If both
di and dj are greater than 2, it means that there are two non-empty trees, denote them by Ti
and Tj , which are rooted at vi and vj , respectively. What happens with τ(Un,k) if we uproot
the tree Ti from vi and transplant it to vj? We claim that the graph U ′n,k obtained by this
transplantation has a greater number of spanning trees in its line graph. The new degree of
vi becomes 2, the new degree of vj becomes di + dj − 2, and the degrees of all other vertices
remain unchanged. Hence, in order to asses the effect of the transplantation on τ(L(Un,k)), we
must compare only two pairs of contributions.

The first one is the pair of contributions to the sum of inverse degrees. We claim that
the new vi and vj contribute more to τ(L(U ′n,k)) than the old ones contribute to τ(L(Un,k)).
In other words, we claim that 1

2 + 1
di+dj−2 > 1

di
+ 1

dj
. Indeed, by considering the function

f(x, y) = 1
x+y−2 + 1

2 −
1
x −

1
y and by rewriting it as f(x, y) = (x−2)(y−2)(x+y)

2xy(x+y−2) , one can notice
that all its factors are positive on (2,∞)× (2,∞). Hence f(di, dj) > 0, since the degrees di, dj
are greater than 2 in Un,k.

It remains to compare the contributions of the old and new vi and vj to the product in the
right-hand side of Proposition 3.3. To that end, we consider the function f(x, y) = (x+y−2)x+y−4

xx−2yy−2 .
It can be rearranged as

f(x, y) =
(x+ y − 2)

x−2

xx−2

(x+ y − 2)
y−2

yy−2
=

(
x+ y − 2

x

)x−2(
x+ y − 2

y

)y−2

.

Clearly, f(x, y) > 1 for all (x, y) ∈ (2,∞) × (2,∞), since each fraction is greater than one
and both exponents are positive. By plugging in x = di, y = dj we immediately obtain that
(di + dj − 2)

(di+dj−4)
> d di−2

i d
dj−2
j . Hence, the contributions of the new degrees of vi and

vj to both parts of the formula of Proposition 3.3 to τ(L(U ′n,k)) exceed the corresponding
contributions to τ(L(Un,k)), and our claim follows. �

Proposition 3.4 implies that in any unicyclic graph maximizing the number of spanning trees
in its line graph, all trees must be rooted in the same vertex of its unique cycle. It remains to
examine the structure of that tree and also to consider the minimizing case.

Motivated by our previous discussion on the structure of extremal graphs, we consider two
special unicyclic graphs on n vertices with the unique cycle of length k. In order to rule out
the trivial case, we assume k < n, forcing the assumption n ≥ 4, unless stated otherwise.
The first, CP (n, k), is obtained by attaching a path of length n − k to one vertex of Ck. The
second, CS(n, k), is obtained by attaching n − k vertices of degree one to the same vertex
of Ck. Those graphs are shown in Figure 1. The complexities of their respective line graphs

Figure 1: The extremal unicyclic graphs on n vertices with the girth k.
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are readily computed from Proposition 3.3 as τ(L(CP (n, k))) = 3k − 1 and τ(L(CS(n, k))) =
(n−k+ 2)n−k−1 [n(k − 1) + k(3− k)]. Notice that the first one is increasing, while the other is
decreasing when considered as functions of k. In our next result, we show that the two graphs
we just introduced bracket all other unicyclic graphs with the same girth.

Proposition 3.5. Let Un,k be a unicyclic graph on n ≥ 4 vertices with girth k < n. Then

τ(L(CP (n, k))) ≤ τ(L(Un,k)) ≤ τ(L(CS(n, k))),

with the left inequality if and only if Un,k
∼= CP (n, k) and the right inequality if and only if

Un,k
∼= CS(n, k).

Proof. We first look at the lower bound. Again, let us suppose that a tree Ti is rooted at each
vertex vi of the unique cycle Ck of Un,k, with some trees being, possibly, empty. If k = n− 1,
there is only one such graph and the claim is trivially valid. Suppose, hence, that k ≤ n− 2. It
is clear that the vertices of degree 2 in trees do not contribute to τ(L(Un,k)). (The vertices of
degree 2 in Ck, if any, contribute by participating in the sum of inverse degrees.) Take a tree
Ti rooted at vi. If Ti is the only non-empty tree, and if it has only one leaf, then Ti is a path
and hence Un,k = CP (n, k), the claim is, again, trivially valid. Hence we may assume that Ti
has at least two leaves. Fix two of them, wi and w′i, and transplant w′i to wi so that the degree
of wi becomes 2. If w′i was not adjacent to vi, this operation cannot increase τ(L(Un,k)); it can
decrease it, though, if the only neighbor of w′i in Ti had a degree greater than 2. In that way,
we can transplant all leaves of Ti not adjacent to vi to a path growing from one of its original
leaves without increasing τ(L(Un,k)). In the same way, we can transplant all other leaves from
other non-empty trees, if any, not adjacent to the vertices of the unique cycle. What happens
if we transplant a leaf adjacent to a vertex on Ck, say, to vj? Since dj ≥ 3, the contribution of
vj will decrease from d

dj−2
j to (dj − 1) dj−3. On the other hand, the contribution of vj to the

sum of reciprocal degrees will increase from 1/dj to 1/(dj−1). This increase, however, is small,
by a factor less than one, and it is more than offset by the decrease which is by a factor at least
three. So, the total effect of such transplantations is decreasing, and they can be continued
until all vertices not in Ck are in a single path, necessarily having n − k vertices. Hence, the
left inequality is established.

In order to establish the upper bound, suppose that at least two trees, Ti and Tj , are non-
empty. From Proposition 3.4 we know that such graph cannot maximize τ(L(Un,k)). Hence any
maximizing graph must have exactly one non-empty tree. Let Ti be that tree. If all non-root
vertices of Ti are leaves, then Un,k = CS(n, k), and we are done. If not, let us take any non-root
vertex z of Ti of the largest degree, and transplant the sub-tree rooted in zi to vi. It means
that z becomes a leaf, and all its neighbors, except the one on the unique path between vi
and z, become neighbors of vi. We need to consider the ratio of the contributions of z and
vi to τ(L(Un,k)) after and before the transplanting operation. The task is even easier than in
Proposition 3.4, since the ratio

(dvi + dz − 1)dvi
+dz−3

d
dvi
−2

vi ddz−2
z

=

(
dvi + dz − 1

dvi

)dvi
−2(

dvi + dz − 1

dz

)dz−2

(dvi + dz − 1),

is clearly greater than one, since all factors exceed one. Moreover, the last factor more than offset
the small decrease in the sum of reciprocal degrees which falls from k−1

2 + 1
dvi

to k−1
2 + 1

dvi
+dz−1 .

Hence the total effect of the transplantation is an increase in τ(L(Un,k)). The process can be
continued until all non-leaves of Ti have been transplanted to vi. �

We can now formulate our main result.
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Theorem 3.6. Let Un be a unicyclic graph on n vertices and L(Un) its line graph. Then

min{n, 8} ≤ τ(L(Un)) ≤ 2n(n− 1)n−4.

The right inequality is attained if and only if Un
∼= CS(n, 3). The left inequality is attained for

Cn for 3 ≤ n ≤ 7, for C8 and CP (8, 3) if n = 8, and if and only if Un
∼= CP (n, 3) for n > 8.

For n > 8, Theorem 3.6 follows by noticing that the lower bound of Proposition 3.5 is
increasing, and the upper bound is a decreasing function of the cycle length k. For the remaining
cases, 3 ≤ n ≤ 8, the upper bound follows from Proposition 3.5, while the lower bound is
obtained by the fact that the line graph of a cycle is isomorphic to the cycle and formula
τ(Cn) = n. It is interesting to notice that the lower bound is independent of n, except for
3 ≤ n ≤ 8.

4 Concluding remarks

The number of spanning trees is often used as a measure of the complexity of graphs. In many
cases it can be efficiently computed, but only rarely is it given by simple closed formulas in
terms of some basic graph parameters. In this paper, we have shown how some explicit formulas
for the number of spanning trees in line graphs can be interpreted in terms of multiplicative
Zagreb indices. This enabled us to determine the unicyclic graphs whose line graphs have the
smallest and the largest number of spanning trees. It would be interesting to explore whether
the presented approach could be extended also to the graphs with higher cyclomatic numbers
and to graphs in which cycles are well separated. We believe that the corresponding results
could be obtained at least for the bicyclic graphs, and that they could be extended to the class
of cactus graphs.

With some additional effort, Proposition 3.3 could yield other unicyclic graphs whose line
graphs have complexities close to the extremal ones. We invite the reader to verify that the
second largest complexity of the line graph of a unicyclic graph on n vertices is obtained for a
cycle of length 3 with n− 4 leaves attached to one of its vertices, and a single leaf attached to
another vertex. Also, the next-to-smallest value of 11 is obtained (for large enough n) for the
line graph of CP (n, 4), independent of n. We leave it to the interested reader to investigate
the effects of various ways of attaching leaves to short cycles in order to obtain other close-to-
maximum values of τ(L(Un)).
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