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Abstract

The space fractional PDEs (SFPDEs) have attracted a
lot of attention. Developing high-order and stable numerical
algorithms for them is the main aim of most researchers. This
research work presents a fractional spectral collocation method
to solve the fractional models with space fractional derivative
which is defined based upon the Riesz derivative. First, a
second-order difference formulation is used to approximate the
time derivative. The stability property and convergence order
of the semi-discrete scheme are analyzed. Then, the fractional
spectral collocation method based on the fractional Jacobi
polynomials is employed to discrete the spatial variable. In the
numerical results, the effect of fractional order is studied.

c© 2023 University of Kashan Press. All rights reserved.

1 Introduction

Turing systems appear in various biological systems, such as patterns in fish, butterflies, lady
bugs, tumor growth, and a synthetic bacterial population [1]. We can mention the Gierer-
Meinhardt model for pattern formation of spatial tissue structures in morphogenesis [2], the
morphodynamic (limit) model in describing the cell dynamics and the chemical processes during
limb bud formation [3] and the FitzHugh-Nagumo model for analyzing various processes in
the myocardium [4, 5]. Non-monotonic behavior of the critical magnetic Prandtl number is
explained in [6] based on an analysis of the intermittency in the convective attractors.
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1.1 Governing model

In the current work the space-fractional Brusselator model is considered

∂u

∂t
− µ11

(
∂2νu(x, y, t)

∂|x|2ν
+
∂2νu(x, y, t)

∂|y|2ν

)
= f(u, v), (x, y, t) ∈ Ω× [0, T ], (1)

∂v

∂t
− µ21

(
∂2ηu(x, y, t)

∂|x|2η
+
∂2ηu(x, y, t)

∂|y|2η

)
= g(u, v), (x, y, t) ∈ Ω× [0, T ], (2)

where
f(u, v) = γ1

(
γ2 − u+ u2v

)
, g(u, v) = γ1

(
γ3 − u2v

)
, (3)

with boundary and initial conditions

∂u

∂n
=
∂v

∂n
= 0, (x, y, t) ∈ ∂Ω× [0, T ],

u(x, y, 0) = ψ1(x, y), v(x, y, 0) = ψ2(x, y), (x, y) ∈ Ω,

where Ω is an open and bounded domain, γi for i = 1, 2, 3 are constants, µij for i, j = 1, 2 indi-
cate the diffusion coefficients and n denotes the unit normal vector. Furthermore, in Equations
(1) and (2), we consider

∂2νu(x, y, t)

∂|x|2ν
=

−1

2 cos(νπ)

(
RL
x D2ν

L u(x, y, t)(x, y, t) +RL
x D2ν

R u(x, y, t)(x, y, t)
)
, (4)

∂2ηu(x, y, t)

∂|y|2η
=

−1

2 cos(ηπ)

(
RL
y D

2η
L u(x, y, t)(x, y, t) +RL

y D
2η
R u(x, y, t)(x, y, t)

)
, (5)

where

RL
x D2ν

L u(x, y, t) =
1

Γ(2− 2ν)

∂2

∂x2

x∫
L

(x− ξ)1−2ν
u(ξ, y, t)dξ, (6)

RL
x D2ν

R u(x, y, t) =
1

Γ(2− 2ν)

∂2

∂x2

R∫
x

(ξ − x)
1−2ν

u(ξ, y, t)dξ, (7)

RL
y D

2η
L u(x, y, t) =

1

Γ(2− 2η)

∂2

∂y2

y∫
L

(y − ξ)1−2η
u(x, ξ, t)dξ, (8)

RL
y D

2η
R u(x, y, t) =

1

Γ(2− 2η)

∂2

∂y2

R∫
y

(ξ − y)
1−2η

u(x, ξ, t)dξ. (9)

and 0 < ν, η ≤ 1.

The integer order of the mathematical model (1) is numerically solved by using different ap-
proaches. For example, meshless method [7], finite volume element method [8], finite difference
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method [9], variational multiscale element free Galerkin and local discontinuous Galerkin meth-
ods [10], modified cubic B-spline differential quadrature method [11], etc. The spatial patterns
of a chemical can be produced based on the reaction of chemicals, under specific certain [12, 13]
which can be seen in Figure 1. Also, a novel semi-analytical technique i.e. the fractional reduced
differential transform method (FRDTM) has been applied in [14] to solve the time-fractional
Brusselator reaction-diffusion system which its convergence analysis has been studied here. The
main of [15] is to obtain the approximate solution of the fractional nonlinear Brusselator model
in the Caputo sense by using the Laplace-Adomian decomposition method (LADM). Authors
of [15] established a general scheme for the solution to the Brusselator model by applying the
LADM. The time-fractional Brusselator reaction–diffusion model is solved in [16] with the help
of the residual power series transform method. The author of [17] investigated the effects of
the time-fractional derivative on the oscillations in the fractal-fractional Brusselator chemi-
cal reaction (FFBCR). An effective hybrid matrix method is developed in [18] to solve the
time-fractional Brusselator reaction–diffusion model based upon the combination of the quasi-
linearization technique with the spectral collocation strategy and the generalized clique bases.
A dynamical Brusselator reaction-diffusion system arising in the triple collision and enzymatic
reactions with time-fractional Caputo derivative is simulated in [19] based on the q-homotopy
analysis transform method (q-HATM).

Figure 1: Pattern formation of Brusselator model.

1.2 A brief review of the fractional calculus
In the recent decade, the interest and inclination towards fractional calculations has increased.
Because of the varied applications of fractional PDEs and ODEs in the various fields of science
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and engineering, including finance [20], chemistry [21], fluid and solid mechanics [22], etc, many
researchers have been attracted to this subject. It has been observed that the results of math-
ematical models with integer-order derivatives are different from outputs of the experimental
results [23]. Therefore, many researchers tried to propose analytical and numerical techniques
to study fractional PDEs in various cases. The space fractional PDEs with the distributed-order
are numerically studied in [24]. On the other hand, the space fractional PDEs are studied in
several ways such as a second-order difference formula [25, 26], Legendre operational matrix [27],
a tau approach based on the shifted Legendre polynomials [28], a new operational matrix based
on Müntz-Legendre polynomials [29], a finite element method [30], the operational matrix of
the fractional-order Chebyshev functions[31], the collocation method based on Chebyshev poly-
nomials [32], the sinc functions via Legendre polynomials [33], the high-order difference plans
[34–36], the ADI finite difference technique [37], a difference approach with non-uniform grids
[38], the spectral formula [39], the fractional spectral collocation discretization for space frac-
tional optimal control problem [40], meshless methods [41], finite difference/spectral method
[42], L1 approximation scheme [43], Logarithmic Jacobi collocation method [44], etc. A frac-
tional order Jacobi Tau method is developed in [45] for the time-fractional PDEs with variable
coefficients. A second-order backward difference formula (BDF2) is proposed in [46] for solving
time approximation of Riesz space-fractional diffusion equations.

The main aim of [47] is to develop a finite difference scheme for simulating fractional char-
acterization of the MHD fluid model. The simulation of activator–inhibitor dynamics based
on a cross-diffusion Brusselator reaction–diffusion system via a differential quadrature-radial
point interpolation method (DQ-RPIM) technique is developed in [48]. A reduced-order finite
difference method based on the proper orthogonal decomposition is proposed in [49] for solving
space-fractional reaction-diffusion systems corresponding to the Gray-Scott model.

2 Some preliminaries
Assume the temporal step size is τ = T

N and tn = nτ for n = 1, 2, . . . , N . Next, we approximate
the space derivatives and for this aim some definitions are needed.

Definition 2.1. ([50]). The Jacobi polynomials are defined as

P$1,$2

0 (x) = 1,

P$1,$2

1 (x) =
1

2
($1 +$2 + 2)x+ 1

2 ($1 −$2) ,

P$1,$2

n+1 (x) = (A$1,$2
n x−B$1,$2

n )P$1,$2
n (x)− C$1,$2

n P$1,$2

n−1 (x), n ≥ 1,

where 

A$1,$2
n =

(2n+$1 +$2 + 1) (2n+$1 +$2 + 2)

2(n+ 1) (n+$1 +$2 + 1)
,

B$1,$2
n =

(
$2

1 −$2
2

)
(2n+$1 +$2 + 1)

2(n+ 1) (n+$1 +$2 + 1) (2n+$1 +$2)
,

C$1,$2
n =

(n+$1) (n+$2) (2n+$1 +$2 + 2)

(n+ 1) (n+$1 +$2 + 1) (2n+$1 +$2)
.

For $1, $2 > −1 they are orthogonal with the weight function ω$1,$2 = (1 − x)$1(1 + x)$2

over interval (−1, 1).
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Definition 2.2. ([50]). Let 1 < α < 2, 0 < $1, $2 < α, $1 +$2 = α, 0 ≤ p ≤ 1 and

C(α,$1, $2) =
sin(π$1) + sin(π$2)

sin(πα)
. (10)

Also, we introduce

Iα0+v(x) =
1

Γ(α)

∫ x

0

(x− s)α−1
v(s)ds, x > 0,

Iα1−v(x) =
1

Γ(α)

∫ 1

x

(s− x)
α−1

v(s)ds, x < 1.

We define the following linear operators

I$1,$2,α
−1,1 : =

1

2
C(α,$1, $2) (Iα0+ + Iα1−) , (11)

D$1,$2,α
−1,1 : =

dk

dxk
I$1,$2,k−α
−1,1 , k ∈ N, (12)

J−%,−sm (x) = (1− x)%(1 + x)sP %,sm , %, s > −1. (13)

Lemma 2.3. ([50]). Let 1 < α < 2 and 0 < $1, $2 < α with condition $1 +$2 = α and

1

2
sin(π$1) =

1

2
sin(π$2).

Then, for −1 ≤ x ≤ 1, n ∈ N ∪ {0} and k = 1, 2, . . . , n+ 2 we have

I$1,$2,2−α
−1,1 J−$1,−$2

n (x) = Ĉ(n, α)P$2−2,$1−2
n+2 , Ĉ(n, α) =

4Γ(n+ α− 1)

n!
,

D$1,$2,k−2+α
−1,1 J−$1,−$2

n (x) = C̃(n, k, α)P$2−2+k,$1−2+k
n+2−k , Ĉ(n, k, α) =

Γ(n+ k + α− 1)

2k−2n!
.

Let C0 presents the space of continuous functions.

Definition 2.4. ([51]). Given % > 0 then the following semi-norms

|v|J%L(R2) =
(∥∥RL

x D
%
Lv
∥∥2

L2(R2)
+
∥∥RL
y D

%
Lv
∥∥2

L2(R2)

) 1
2

, (14)

|v|J%R(R2) =
(∥∥RL

x D
%
Rv
∥∥2

L2(R2)
+
∥∥RL
y D

%
Rv
∥∥2

L2(R2)

) 1
2

, (15)

and norms

‖v‖J%L(R2) =
(
‖v‖2L2(R2) + |v|2J%L(R2)

) 1
2

, (16)

‖v‖J%R(R2) =
(
‖v‖2L2(R2) + |v|2J%R (R2)

) 1
2

. (17)

can be defined. Also, J%L(R2) and J%R(R2) are the closure of C∞0 (R2) with respect to ‖v‖J%L(R2)

and ‖v‖J%R(R2), respectively.



248 M. Abbaszadeh et al. / The Effect of Fractional-Order Derivative for Pattern ...

Definition 2.5. ([51]). Given % > 0 then we define the following semi-norm

|v|H%(R2) = ‖ |ξ|% v̂(ξ)‖L2(R2
ξ)
, (18)

and norm

‖v‖H%(R2) =
(
‖v‖2L2(R2) + |v|2H%(R2)

) 1
2

, (19)

where H%(R2) is the closure of C∞0 (R2) with respect to ‖v‖H%(R2) and v̂ is the Fourier transform
of v. Furthermore, H%

0 denotes the semi-norms.

Definition 2.6. ([51]). Given % > 0. If % 6= n− 1
2 for n ∈ N we consider the following semi-norm

|v|J%S(R2) =
(∣∣∣(RLx D

%
Lv,

RL
x D

%
Rv
)
L2(R2)

∣∣∣+
∣∣∣(RLy D

%
Lv,

RL
y D

%
Rv
)
L2(R2)

∣∣∣) 1
2

, (20)

and norm

‖v‖J%S(R2) =
(
‖v‖2L2(R2) + |v|2J%S(R2)

) 1
2

. (21)

Also, J%S(R2) is the closure of C∞0 (R2) with respect to ‖v‖J%S(R2).

Lemma 2.7. ([51]). For % > 0 spaces J%L(R2), J%R(R2) and H%(R2) are equivalent.

Lemma 2.8. ([51]). Let v ∈ J%S(Ω) and v̄ be the deployment of v outside of Ω then(
RL
a D%xv,

RL
x D

%
bv
)
L2(Ω)

=
(
RL
a D%xv̄,

RL
x D

%
b v̄
)
L2(R2)

= cos(π%)
∥∥RL
a D%xv̄

∥∥2

L2(R2)
, (22)

(
RL
c D%yv,

RL
y D

%
dv
)
L2(Ω)

=
(
RL
c D%y v̄,

RL
y D

%
dv̄
)
L2(R2)

= cos(π%)
∥∥RL
c D%y v̄

∥∥2

L2(R2)
, (23)

in which % is the order of fractional.

Lemma 2.9. ([51]). Let % ∈ (1, 2), u, v ∈ J%L(Ω) where u and v are zero on ∂Ω then(
RL
a D%xu, v

)
=
(
RL
a D

%
2
x u,

RL
x D

%
2

b v
)
,

(
RL
c D%yu, v

)
=
(
RL
c D

%
2
y u,

RL
y D

%
2

d v
)
, (24)

(
RL
x D

%
bu, v

)
=
(
RL
x D

%
2

b v,
RL
a D

%
2
x v
)
,

(
RL
y D

%
du, v

)
=
(
RL
y D

%
2

d v,
RL
a D

%
2
y v
)
. (25)

Now, we define the following weighted Sobolev space

L2
ω (Ω) =

f :

∫
Ω

f2(x)ωdx < +∞

 ,

with norm

‖u‖ω =

∫
Ω

f2(x)ωdx

 1
2

.

For ω = 1, we denote L2(Ω) = L2
ω (Ω). For 1 < α < 2, 0 < $1, $2 < α, l = −1, 0, 1, . . . ,m,

m ∈ N, we denote

Bmα =
{
u ∈ L2

ω−$1,−$2 (Ω) : D$1,$2,α+1
−1,1 u ∈ L2

ω$1+l,$2+l (Ω) , −1 ≤ l ≤ m
}
.
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Let PN be space of polynomials of degree at most N . Also, we define

F−$1,−$2

N (Ω) = {u = (1− x)
$1(1 + x)

$2v : v ∈ PN} .

Define the following L2
ω−$1,−$2

-orthogonal projection(
Π−$1,−$2

N u− u, vN
)
ω−$1,−$2

= 0, ∀ vN ∈ F−$1,−$2

N (Ω) . (26)

Thus, we have

Π−$1,−$2

N u(x) =

N∑
n=0

û−$1,−$2
n J−$1,−$2

n (x), (27)

û−$1,−$2
n =

1

γ$1,$2
n

1∫
−1

u(x)J−$1,−$2
m (x)ω−$1,−$2(x)dx,

γ$1,$2
n =

2$1+$2+1Γ (n+$1 + 1) Γ (n+$2 + 1)

(2n+$1 +$2 + 1)n!Γ (n+$1 +$2 + 1)
.

Theorem 2.10. ([50]). Let 1 < α < 2 and u ∈ Bmα where m ∈ N. If 0 < $1, $2 < α then for
−1 ≤ l ≤ m ≤ N , 0 ≤ m ≤ N and C ∈ R+, we have∥∥Π−$1,−$2

N u− u
∥∥
ω−$1,−$2

≤ CN−α−m
∥∥D$1,$2,α+m
−1,1 u

∥∥
ω$1+m,$2+m . (28)

3 Time-discrete analysis

We employ a finite difference scheme for the time derivative of the main model as follows:

∂un−
1
2

∂t
− µ11

(
∂2νun−

1
2

∂|x|2ν
+
∂2νun−

1
2

∂|y|2ν

)
= f(un−

1
2 , vn−

1
2 ) +O(τ2), (29)

∂vn−
1
2

∂t
− µ21

(
∂2ηvn−

1
2

∂|x|2η
+
∂2ηvn−

1
2

∂|y|2η

)
= g(un−

1
2 , vn−

1
2 ) +O(τ2). (30)

From the above relations, the use of the Crank-Nicolson finite difference idea gives:

un − un−1

τ
− µ11

2

(
∂2νun

∂|x|2ν
+
∂2νun−1

∂|x|2ν
+
∂2νun

∂|y|2ν
+
∂2νun−1

∂|y|2ν

)
= f(un−

1
2 , vn−

1
2 ) +O(τ2),

(31)

vn − vn−1

τ
− µ22

2

(
∂2ηvn

∂|x|2η
+
∂2ηvn−1

∂|x|2η
+
∂2ηvn

∂|y|2η
+
∂2ηvn−1

∂|y|2ν

)
= g(un−

1
2 , vn−

1
2 ) +O(τ2).

(32)
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or

un − τµ11

2

∂2νun

∂|x|2ν
− τµ11

2

∂2νun

∂|y|2ν
(33)

= un−1 +
τµ11

2

∂2νun−1

∂|x|2ν
+
τµ11

2

∂2νun−1

∂|y|2ν
+ τf(un−

1
2 , vn−

1
2 ) +O(τ2),

vn − τµ22

2

∂2ηvn

∂|x|2η
− τµ22

2

∂2ηvn

∂|y|2η
(34)

= vn−1 +
τµ22

2

∂2ηvn−1

∂|x|2η
+
τµ22

2

∂2ηvn−1

∂|y|2η
+ τg(un−

1
2 , vn−

1
2 ) +O(τ2).

Omitting the small term O(τ2) from the above relation results

ũn − τµ11

2

∂2ν ũn

∂|x|2ν
− τµ11

2

∂2ν ũn

∂|y|2ν
= ũn−1 +

τµ11

2

∂2ν ũn−1

∂|x|2ν
+
τµ11

2

∂2ν ũn−1

∂|y|2ν
+ τf(ũn−

1
2 , ṽn−

1
2 ),

(35)

ṽn − τµ22

2

∂2η ṽn

∂|x|2η
− τµ22

2

∂2η ṽn

∂|y|2η
= ṽn−1 +

τµ22

2

∂2η ṽn−1

∂|x|2η
+
τµ22

2

∂2η ṽn−1

∂|y|2η
+ τg(ũn−

1
2 , ṽn−

1
2 ).

(36)

According to Eq. (36), we want to find ũn, ṽn ∈ Hβ
0 (Ω) ∩ C0(Ω) such that

〈ũn, ζ1〉 +
τµ11

2
Q1 (ũn, ζ1) =

〈
ũn−1, ζ1

〉
− τµ11

2
Q1

(
ũn−1, ζ1

)
+ τ

〈
f
(
ũn−

1
2 , ṽn−

1
2

)
, ζ1

〉
,

(37)

〈ṽn, ζ2〉 +
τµ22

2
Q2 (ṽn, ζ2) =

〈
ṽn−1, ζ2

〉
− τµ22

2
Q2

(
ṽn−1, ζ1

)
+ τ

〈
g
(
ũn−

1
2 , ṽn−

1
2

)
, ζ2

〉
,

(38)

for every ζ1, ζ2 ∈ Hβ
0 (Ω) ∩ C0(Ω) where < ., . > denotes the inner product and

Q1(Φn, ζ1) = µ11

[(
RL
a DνxΦn,RLx Dνb ζ1

)
+
(
RL
x DνbΦn,RLa Dνxζ1

)]
(39)

+ µ11

[(
RL
c DνyΦn,RLy Dνdζ1

)
+
(
RL
y DνdΦn,RLc Dνyζ1

)]
,

Q2(Φn, ζ2) = µ22

[(
RL
a DηxΦn,RLx D

η
b ζ2
)

+
(
RL
x D

η
bΦn,RLa Dηxζ2

)]
(40)

+ µ22

[(
RL
c DηyΦn,RLy D

η
dζ2
)

+
(
RL
y D

η
dΦn,RLc Dηyζ2

)]
.

Theorem 3.1. Let ũn, ṽn ∈ Hβ
0 (Ω) ∩ C0(Ω). So, Equation (36) is unconditionally stable.

Proof. The roundoff error equation for relation (36) is as follows

〈Ξn1 , ζ1〉 +
τµ11

2
Q1 (Ξn1 , ζ1) =

〈
Ξn−1

1 , ζ1
〉
− τµ11

2
Q1

(
Ξn−1

1 , ζ1
)

+ τ 〈f (un, vn)− f (ũn, ṽn) , ζ1〉

(41)

〈Ξn2 , ζ2〉 +
τµ22

2
Q2 (Ξn2 , ζ2) =

〈
Ξn−1

2 , ζ2
〉
− τµ22

2
Q2

(
Ξn−1

2 , ζ2
)

+ τ 〈g (un, vn)− g (ũn, ṽn) , ζ2〉 ,

(42)
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where Ξn1 = ũn − un and Ξn2 = ṽn − vn. Also, un and vn are approximate values of ũn and ṽn,
respectively. Now, we put ζ1 = Ξn1 and ζ2 = Ξn2 in relation (41) that it gives

〈Ξn1 ,Ξn1 〉 +
τµ11

2
Q1 (Ξn1 ,Ξ

n
1 ) (43)

=
〈
Ξn−1

1 , ζ1
〉
− τµ11

2
Q1

(
Ξn−1

1 ,Ξn1
)

+ τ 〈f (un, vn)− f (ũn, ṽn) ,Ξn1 〉 ,

〈Ξn2 ,Ξn2 〉 +
τµ22

2
Q2 (Ξn2 ,Ξ

n
2 ) (44)

=
〈
Ξn−1

2 ,Ξn2
〉
− τµ22

2
Q2

(
Ξn−1

2 ,Ξn2
)

+ τ 〈g (un, vn)− g (ũn, ṽn) ,Ξn2 〉 ,

From Theorem 1 of Ref. [52] we obtain

Q1(Ξn1 ,Ξ
n
1 ) ≥ µ11 ‖Ξn1‖

2
Hβ(Ω) , (45)

Q2(Ξn2 ,Ξ
n
2 ) ≥ µ22 ‖Ξn2‖

2
Hβ(Ω) . (46)

Here, for the nonlinear relation, we can get

〈f(un, vn)− f(ũn, ṽn),Ξn1 〉 ≤ 〈L ‖un − ũn‖+ L ‖vn − ṽn‖ ,Ξn1 〉 ≤ 〈L1 ‖Ξn1‖+ L1 ‖Ξn2‖ ,Ξn1 〉 , (47)

〈g(un, vn)− g(ũn, ṽn),Ξn2 〉 ≤ 〈L ‖un − ũn‖+ L ‖vn − ṽn‖ ,Ξn2 〉 ≤ 〈L2 ‖Ξn1‖+ L2 ‖Ξn2‖ ,Ξn2 〉 . (48)

Now, from Equations (43) and (44) we can write

‖Ξn1‖
2
L2(Ω) +

Cτµ11

2
‖Ξn1‖

2
Hν(Ω) ≤

∥∥Ξn−1
1

∥∥
L2(Ω)

‖Ξn1‖L2(Ω) + C
τµ11

2

∥∥Ξn−1
1

∥∥
Hν(Ω)

‖Ξn1‖Hν(Ω)

+ τL1

(
‖Ξn1‖Hν(Ω) + ‖Ξn2‖Hν(Ω)

)
‖Ξn1‖Hν(Ω) , (49)

‖Ξn2‖
2
L2(Ω) +

τµ22

2
‖Ξn2‖

2
Hν(Ω) ≤

∥∥Ξn−1
2

∥∥
L2(Ω)

‖Ξn2‖L2(Ω) +
Cτµ22

2

∥∥Ξn−1
2

∥∥
Hη(Ω)

‖Ξn2‖Hη(Ω)

+ τL2

(
‖Ξn1‖Hν(Ω) + ‖Ξn2‖Hν(Ω)

)
‖Ξn2‖Hν(Ω) . (50)

According to the previous relation, the following relations can be obtained

‖Ξn1‖
2
L2(Ω) +

Cτµ11

2
‖Ξn1‖

2
Hν(Ω) ≤

1

2

∥∥Ξn−1
1

∥∥2

L2(Ω)
+

1

2
‖Ξn1‖

2
L2(Ω) + C

τµ11

4

∥∥Ξn−1
1

∥∥2

Hν(Ω)

+ C
τµ11

4
‖Ξn1‖

2
Hν(Ω) + τL1

(
‖Ξn1‖L2(Ω) + ‖Ξn2‖L2(Ω)

)
‖Ξn1‖L2(Ω) , (51)

‖Ξn2‖
2
L2(Ω) +

Cτµ22

2
‖Ξn2‖

2
Hη(Ω) ≤

1

2

∥∥Ξn−1
2

∥∥2

L2(Ω)
+

1

2
‖Ξn2‖

2
L2(Ω) + C

τµ22

4

∥∥Ξn−1
2

∥∥2

Hη(Ω)

+ C
τµ22

4
‖Ξn2‖

2
Hη(Ω) + τL2

(
‖Ξn1‖L2(Ω) + ‖Ξn2‖L2(Ω)

)
‖Ξn2‖L2(Ω) . (52)
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The simplified form of Equations (51) and (52) are

1

2
‖Ξn1‖

2
L2(Ω) +

Cτµ11

4
‖Ξn1‖

2
Hν(Ω) ≤ 1

2

∥∥Ξn−1
1

∥∥2

L2(Ω)
+ C

τµ11

4

∥∥Ξn−1
1

∥∥2

Hν(Ω)

+ τL1 ‖Ξn1‖
2
L2(Ω) +

τL1

2
‖Ξn2‖

2
L2(Ω) +

τL1

2
‖Ξn1‖

2
L2(Ω) ,

1

2
‖Ξn2‖

2
L2(Ω) +

Cτµ22

4
‖Ξn2‖

2
Hη(Ω) ≤ 1

2

∥∥Ξn−1
2

∥∥2

L2(Ω)
+ C

τµ22

4

∥∥Ξn−1
2

∥∥2

Hη(Ω)

+
τL1

2
‖Ξn1‖

2
L2(Ω) +

τL1

2
‖Ξn2‖

2
L2(Ω) + τL2 ‖Ξn2‖

2
L2(Ω) .

Changing index n to j and summing the above relation for j = 0 to n, give

‖Ξn1‖
2
L2(Ω) +

Cτµ11

2
‖Ξn1‖

2
Hν(Ω) ≤

∥∥Ξ0
1

∥∥2

L2(Ω)
+
Cτµ11

2

∥∥Ξ0
1

∥∥2

Hν(Ω)

+ 3τL1

n∑
j=0

∥∥∥Ξj1

∥∥∥2

L2(Ω)
+ τL1

n∑
j=0

∥∥∥Ξj2

∥∥∥2

L2(Ω)
, (53)

‖Ξn2‖
2
L2(Ω) +

Cτµ22

2
‖Ξn2‖

2
Hη(Ω) ≤

∥∥Ξ0
2

∥∥2

L2(Ω)
+
Cτµ22

2

∥∥Ξ0
2

∥∥2

Hη(Ω)

+ 3τL2

n∑
j=0

∥∥∥Ξj2

∥∥∥2

L2(Ω)
+ τL2

n∑
j=0

∥∥∥Ξj1

∥∥∥2

L2(Ω)
. (54)

Summing Equations (53) with (54), results

‖Ξn1‖
2
L2(Ω) + ‖Ξn2‖

2
L2(Ω) ≤

(
1 + 3τL

1− 3τL

)[∥∥Ξ0
1

∥∥2

L2(Ω)
+
∥∥Ξ0

2

∥∥2

L2(Ω)

]

+

(
1 + 3τL

1− 3τL

) n∑
j=1

∥∥∥Ξj1

∥∥∥2

L2(Ω)
+

n∑
j=1

∥∥∥Ξj2

∥∥∥2

L2(Ω)

 (55)

≤
(

1 + 3τL

1− 3τL

)[∥∥Ξ0
1

∥∥2

L2(Ω)
+
∥∥Ξ0

2

∥∥2

L2(Ω)

]
exp

(
n

(
1 + 3τL

1− 3τL

))

≤
(

1 + 3τL

1− 3τL

)[∥∥Ξ0
1

∥∥2

L2(Ω)
+
∥∥Ξ0

2

∥∥2

L2(Ω)

]
exp

((
(1 + 3τL)

n

(1− 3τL)
n

))
.

If n→∞ then

‖Ξn1‖
2
L2(Ω) + ‖Ξn2‖

2
L2(Ω) ≤

(
1 + 3τL

1− 3τL

)[∥∥Ξ0
1

∥∥2

L2(Ω)
+
∥∥Ξ0

2

∥∥2

L2(Ω)

]
exp (exp(9TL))

≤ C(L, T )
[∥∥Ξ0

1

∥∥2

L2(Ω)
+
∥∥Ξ0

2

∥∥2

L2(Ω)

]
, (56)

thus

‖Ξn1‖
2
L2(Ω) + ‖Ξn2‖

2
L2(Ω) ≤ C(L, T )

[∥∥Ξ0
1

∥∥2

L2(Ω)
+
∥∥Ξ0

2

∥∥2

L2(Ω)

]
. (57)

�
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Theorem 3.2. Let un, vn, ũn, ṽn ∈ Hβ
0 (Ω) ∩ C0(Ω) be solutions of the exact and approximate

formulation. So, the time-discrete scheme is convergent and also

‖un − ũn‖Hβ(Ω) ≤ C(L, T )τ2, ‖vn − ṽn‖Hβ(Ω) ≤ C(L, T )τ2.

Proof. The proof is similar to the proof of Theorem 3.1. �

Consider the following approximate solutions

ũnN (x, y) =

N∑
k=0

N∑
m=0

unk,mJ
−$1,−$2

k (x)J−$1,−$2
m (y), (58)

ṽnN (x, y) =

N∑
k=0

N∑
m=0

vnk,mJ
−$1,−$2

k (x)J−$1,−$2
m (y). (59)

Substituting relations (58) and (59) in Equations (35) and (36), give

ũnN −
τµ11

2

∂2ν ũnN
∂|x|2ν

− τµ11

2

∂2ν ũnN
∂|y|2ν

= ũn−1
N +

τµ11

2

∂2ν ũn−1
N

∂|x|2ν
(60)

+
τµ11

2

∂2ν ũn−1
N

∂|y|2ν
+ τf(ũ

n− 1
2

N , ṽ
n− 1

2

N ),

ṽnN −
τµ22

2

∂2η ṽnN
∂|x|2η

− τµ22

2

∂2η ṽnN
∂|y|2η

= ṽn−1
N +

τµ22

2

∂2η ṽn−1
N

∂|x|2η
(61)

+
τµ22

2

∂2η ṽn−1
N

∂|y|2η
+ τg(ũ

n− 1
2

N , ṽ
n− 1

2

N ).

or
N∑
k=0

N∑
m=0

unk,mJ
−$1,−$2

k (x)J−$1,−$2
m (y) (62)

− τµ11

2

N∑
k=0

N∑
m=0

unk,m
∂2ν

∂|x|2ν
J−$1,−$2

k (x)J−$1,−$2
m (y)

− τµ11

2

N∑
k=0

N∑
m=0

unk,m
∂2ν

∂|y|2ν
J−$1,−$2

k (x)J−$1,−$2
m (y)

=

N∑
k=0

N∑
m=0

un−1
k,mJ

−$1,−$2

k (x)J−$1,−$2
m (y)

+
τµ11

2

N∑
k=0

N∑
m=0

un−1
k,m

∂2ν

∂|x|2ν
J−$1,−$2

k (x)J−$1,−$2
m (y)

+
τµ11

2

N∑
k=0

N∑
m=0

un−1
k,m

∂2ν

∂|y|2ν
J−$1,−$2

k (x)J−$1,−$2
m (y)

+ τf(

N∑
k=0

N∑
m=0

u
n− 1

2

k,m J
−$1,−$2

k (x)J−$1,−$2
m (y),

N∑
k=0

N∑
m=0

v
n− 1

2

k,m J
−$1,−$2

k (x)J−$1,−$2
m (y)),
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and

N∑
k=0

N∑
m=0

vnk,mJ
−$1,−$2

k (x)J−$1,−$2
m (y)− τµ11

2

N∑
k=0

N∑
m=0

vnk,m
∂2ν

∂|x|2ν
J−$1,−$2

k (x)J−$1,−$2
m (y)

− τµ11

2

N∑
k=0

N∑
m=0

vnk,m
∂2ν

∂|y|2ν
J−$1,−$2

k (x)J−$1,−$2
m (y) =

N∑
k=0

N∑
m=0

vn−1
k,m J

−$1,−$2

k (x)J−$1,−$2
m (y)

+
τµ11

2

N∑
k=0

N∑
m=0

vn−1
k,m

∂2ν

∂|x|2ν
J−$1,−$2

k (x)J−$1,−$2
m (y)

+
τµ11

2

N∑
k=0

N∑
m=0

vn−1
k,m

∂2ν

∂|y|2ν
J−$1,−$2

k (x)J−$1,−$2
m (y)

+ τf(

N∑
k=0

N∑
m=0

u
n− 1

2

k,m J
−$1,−$2

k (x)J−$1,−$2
m (y),

N∑
k=0

N∑
m=0

v
n− 1

2

k,m J
−$1,−$2

k (x)J−$1,−$2
m (y)). (63)

Equations (62) and (63) produce a nonlinear algebraic system of equations which will be solved
by the fixed point method.

4 Numerical results
The simulations are performed using MATLAB 2020b software on an Intel(R) Core(TM) i7-4790
CPU @ 3.60GHz, 3.60 GHz with 32 GB of memory.

Consider the mixed patterns on a square

∂u

∂t
− µ11

(
∂2νu(x, y, t)

∂|x|2ν
+
∂2νu(x, y, t)

∂|y|2ν

)
= γ1

(
γ2 − u+ u2v

)
, (x, y, t) ∈ Ω× [0, T ],

∂v

∂t
− µ22

(
∂2ηu(x, y, t)

∂|x|2η
+
∂2ηu(x, y, t)

∂|y|2ν

)
= γ1

(
γ3 − u2v

)
, (x, y, t) ∈ Ω× [0, T ], (64)

with initial conditions

u(x, y, 0) = rand(0, 1) , v(x, y, 0) = rand(0, 1) . (65)

Here Ω = [0, 20] × [0, 20], 1280 collocation distributed points in the physical domain and τ =
10−5. Here, we consider two different cases:

Case 1:
γ1 γ2 γ3 µ11 µ22

230.82 0.1 0.9 1 8.6676

Figure 2 illustrates L2-norm obtained with γ1= 230.82, γ2= 0.1, γ3= 0.9, µ11= 0.05, µ22 =
1 and 2ν = 2η = 1.1. Furthermore, Figure 3 presents L2-norm obtained with γ1= 230.82,
γ2= 0.1,, γ3= 0.9, µ11= 0.05, µ22 = 1 and 2ν = 2η = 1.5. Figures 4 to 7, demonstrate
the pattern formation with 2ν = 2η = 1.1, 2ν = 2η = 1.5, 2ν = 2η = 1.8 and 2ν =
2η = 1.9 respectively. We fixed the constant parameters in the main model and changed
the fractional order. The effect of fractional-order can be observed in Figures 4 to 7.
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The depicted patterns in Figures 4 to 7 are very different together and each pattern
formation can be seen in various phenomena. Figure 4 shows the pattern formation with
2ν = 2η = 1.1 which the shape of patterns are finger-picking patterns. Figure 5 is
obtained with 2ν = 2η = 1.5 that its shape is parallel uniform lines. The pattern shapes
of Figures 6 and 7 with 2ν = 2η = 1.8 and 2ν = 2η = 1.9 are elliptical.

Case 2:
γ1 γ2 γ3 µ11 µ22

230.82 0.1 0.9 0.05 1

Figures 8 to 11 illustrate the pattern formation with 2ν = 2η = 1.1, 2ν = 2η = 1.5 and
2ν = 2η = 1.8, respectively. The effect of fractional-order can be observed in Figures 8
to 11. The pattern formations in Figures 8 to 11 have circular shapes whereas the radius
of each circular shape is growing by increasing the fractional order.

The numerical results of the proposed method have been compared with the finite difference
and finite element methods. The current example does not have any exact solution. Thus, we
pursue the following strategy. The obtained solutions with τ = 10−4 and N = 6000 collocation
points using the present methods are named ur and vr as the reference solutions (as an exact
solution). Consequently, we use the numerical procedure with τ = 10−4 and different values of
Ni to obtain uNi and vNi (numerical solutions applying the method presented in the current
paper). Now, by interpolating the reference solution at Ni points, we obtain the numerical
solutions uI and vI (numerical solutions using interpolating). Finally, we define the following
error relations

ENu,∞ =
∥∥uI − uNi∥∥∞,

ENv,∞ =
∥∥vI − vNi∥∥∞.

For further explanation, follow the below commands

• Compute ue with N = 6000 and τ = 10−4,

• Compute uNi with Ni = 200 and τ = 10−4,

• x-coordinate and y-coordinate denote N = 6000 distributed nodes,

• x200-coordinate and y200-coordinate denote N = 200 distributed nodes,

• uI = Interpolate ue on nodes x200 and y200,

• ENΠ,∞ =
∥∥uI − uNi∥∥∞.

In the finite difference scheme, the reference solution is constructed based on 6000 equally
spaced points. Also, the reference solution of the finite element method is obtained with 438
triangle elements. Tables 1 and 2 present the error obtained based on the reference solution for
cases 1 and 2, respectively.

5 Conclusion and future works
Here, the effect of fractional order derivative is studied via the Jacobi fractional collocation
method. The proposed numerical solution is based on combining the finite difference method
and fractional collocation technique. In the first step, the time derivative is discretized by
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Figure 2: L2-norm obtained with γ1= 230.82, γ2= 0.1, γ3= 0.9, µ11= 0.05, µ22 = 1 and 2ν =
2η = 1.1

Figure 3: L2-norm obtained with γ1= 230.82, γ2= 0.1, γ3= 0.9, µ11= 0.05, µ22 = 1 and 2ν =
2η = 1.5.

a second-order difference scheme. The stability analysis and convergence rate of the time-
discrete method are analytically investigated. In the second attempt, the full-discrete plan is
constructed. In the numerical experiments, we fixed all constant parameters and displayed
pattern formations based on the various fractional orders. It must be noted that the spectral
method has high accuracy but it can be applied to the rectangular physical domain, easily.
Furthermore, in the future, we want to consider the time- and space-fractional Brusselator
model and study the effect of fractional orders of time and space derivatives.

Conflicts of Interest. The authors declare that they have no conflicts of interest regarding
the publication of this article.
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Figure 4: Pattern formation with γ1=230.82, γ2= 0.1, γ3= 0.9, µ11= 1, µ22 = 8.6676 and 2ν =
2η = 1.1.
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Figure 5: Pattern formation with γ1=230.82, γ2= 0.1, γ3= 0.9, µ11= 1, µ22 = 8.6676 and 2ν =
2η = 1.5.
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Figure 6: Pattern formation with γ1=230.82, γ2= 0.1, γ3= 0.9, µ11= 1, µ22 = 8.6676 and 2ν =
2η = 1.8.
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Figure 7: Pattern formation with γ1=230.82, γ2= 0.1, γ3= 0.9, µ11= 1, µ22 = 8.6676 and 2ν =
2η = 1.9.
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Figure 8: Pattern formation with γ1= 230.82, γ2= 0.1, γ3= 0.9, µ11= 0.05, µ22 = 1 and 2ν =
2η = 1.1.
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Figure 9: Pattern formation with γ1= 230.82, γ2= 0.1, γ3= 0.9, µ11= 0.05, µ22 = 1 and 2ν =
2η = 1.5.
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Figure 10: Pattern formation with γ1= 230.82, γ2= 0.1, γ3= 0.9, µ11= 0.05, µ22 = 1 and 2ν =
2η = 1.8.
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Figure 11: Pattern formation with γ1= 230.82, γ2= 0.1, γ3= 0.9, µ11= 0.05, µ22 = 1 and 2ν =
2η = 1.9.
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Table 1: Error obtained based on the reference solution for case 1.

N Finite difference method Finite element method Present method CPU time(s)
ENu,∞ ENu,∞ ENu,∞

100 5.3624× 10−2 6.1207× 10−2 2.0264× 10−3 16
200 7.4102× 10−3 8.1011× 10−3 5.2135× 10−4 48
400 6.7176× 10−4 1.3001× 10−3 1.3138× 10−4 87
800 1.0318× 10−4 6.1733× 10−4 3.3039× 10−5 163
1600 8.6480× 10−5 9.6634× 10−5 8.3013× 10−6 230
3200 2.0034× 10−5 4.0001× 10−5 2.0775× 10−7 374

Table 2: Error obtained based on the reference solution for case 2.

N Finite difference method Finite element method Present method CPU time(s)
ENv,∞ ENv,∞ ENv,∞

100 7.2145× 10−2 7.0143× 10−2 4.2287× 10−3 16
200 8.6410× 10−3 7.5540× 10−3 7.6482× 10−4 48
400 7.1002× 10−4 2.0413× 10−3 2.0006× 10−4 87
800 2.0036× 10−4 5.4969× 10−4 4.6741× 10−5 163
1600 9.4510× 10−5 1.2348× 10−4 7.4461× 10−6 230
3200 3.3317× 10−5 6.8977× 10−5 6.5543× 10−7 374
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