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Abstract

A self-loop graph GS is a simple graph G obtained by at-
taching loops at S ⊆ V (G). To such GS an Euclidean metric
function is assigned to its vertices, forming the so-called Sombor
matrix. In this paper, we derive two summation formulas for the
spectrum of the Sombor matrix associated with GS , for which a
Forgotten-like index arises. We explicitly study the Sombor en-
ergy ESO of complete graphs with self-loops (Kn)S , as the sum of
the absolute value of the difference of its Sombor eigenvalues and
an averaged trace. The behavior of this energy and its change
for a large number of vertices n and loops σ is then studied.
Surprisingly, the constant 4

√
2 is obtained repeatedly in several

scenarios, yielding a quantization of the energy change of 1 loop
for large n and σ. Finally, we provide a McClelland-type and
determinantal-type upper and lower bounds for ESO(GS), which
generalizes several bounds in the literature.

c© 2023 University of Kashan Press. All rights reserved.

1 Introduction
Let G = (V (G), E(G)) be a simple undirected graph where V (G) is the set of vertices of G and
E(G) is the set of edges of G. If |V (G)| = n and |E(G)| = m, we call G as a graph of order n
and size m. Let V (G) = {v1, . . . , vn}. For i = 1, 2, . . . , n, denote by dvi the degree of vi. The
adjacency matrix A(G) = (aij) associated to G is a matrix whose entry is aij = 1 if vi and
vj are adjacent (vi ∼ vj) and aij = 0 otherwise. Since A(G) is a real symmetric matrix, all
eigenvalues λi(G) of G are real and can be ordered as λ1(G) ≥ . . . ≥ λn(G), where λ1(G) and
λn(G) are the largest and the smallest eigenvalues of G, respectively. We denote the spectrum
of graph G as the multiset

Spec(G) =

[
λ1 λ2 . . . λk
a1 a2 . . . ak

]
, (1)

*Corresponding author
E-mail addresses: johnny.lim@usm.my (J. Lim), zhengkiat.chew@gmail.com (Z. K. Chew),
lzp.macco@gmail.com (M. Z. P. Lim), kjthoo@gmail.com (K. J. Thoo)
Academic Editor: Gholam Hossein Fath-Tabar



226 J. Lim et al. / Quantization of Sombor Energy for Complete ...

where ai is the algebraic multiplicity of λi. Then, the energy [1] of graph G is defined by

E(G) =

n∑
i=1

|λi(G)|. (2)

In general, ifM is a real symmetric matrix associated to G of order n with eigenvalues λ1(M) ≥
. . . ≥ λn(M), then the M -energy [2] of G can be defined to be

EM (G) =

n∑
i=1

∣∣∣∣λi(M)− Tr(M)

n

∣∣∣∣ , (3)

where Tr(M) is the trace of M . The M -energy allows us to consider a variety of energies
associated with certain matrices.

Let S ⊆ V (G) with |S| = σ. A self-loop graph GS over S is obtained from G by attaching
a self-loop at each vertex in S. In the case where σ = 0 or no loop, GS is the simple graph G.
In the case of σ = n or full loops, that is, there is a self-loop at every vertex of G, we write Ĝ.
The adjacency matrix of GS is A(GS) = JS +A(G), where (JS)i,j = 1 if i = j and vi ∈ S, and
(JS)i,j = 0 otherwise. Thus, the eigenvalues of GS are the eigenvalues of A(GS). The energy
[3] of GS of order n with |S| = σ is defined by

E(GS) =

n∑
i=1

∣∣∣λi(GS)− σ

n

∣∣∣ .
For more details on the energy of self-loop graphs, readers are referred to some recent works
[3–5].

Recently in 2021, Gutman [6] has introduced a new vertex-degree-based topological index
called Sombor index SO(G) =

∑
uv∈E(G)

√
d2u + d2v, for which each summand corresponds to

an Euclidean metric function associated to a pair of adjacent vertices in G. The Sombor matrix
S(G) of G is the matrix associated with SO(G), and is explicitly given by S(G) = (sij) whose
entry is sij =

√
d2vi + d2vj if vi is adjacent to vj , i 6= j, and sij = 0 otherwise. To distinguish the

eigenvalues of the associated adjacency matrix and Sombor matrix, we denote them by λi and
µi, respectively. Since S(G) is also real symmetric, the eigenvalues are real and can be ordered
as µ1 ≥ µ2 . . . ≥ µn. Thus, we write the Sombor spectrum of G as

SSpec(G) =

[
µ1 µ2 . . . µk
a1 a2 . . . ak

]
.

If GS is a self-loop graph with S ⊆ V (G), then its associated Sombor matrix is denoted by
S(GS). More precisely, let d̂vi be the degree of vi in GS given by

d̂vi =

{
dvi + 2, if vi ∈ S,
dvi , if vi /∈ S,

where dvi is the degree of vi in G. Then, the Sombor matrix S(GS) is given by S(GS) = (ŝij)
whose entry is

ŝij =

{√
d̂2vi + d̂2vj , if vi ∼ vj ,

0, otherwise.
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Note that this definition allows the possibility of i = j. Alternatively, we can rewrite S(GS) =

S̃(GS) +DS where S̃(GS) = (s̃ij) and

s̃ij =

{√
d̂2vi + d̂2vj , if vi ∼ vj and i 6= j,

0, otherwise,

and DS = (δij) where δii =
√

2d̂vi for vi ∈ S, and δij = 0 for i 6= j. The Sombor eigenvalues of
GS are the eigenvalues of S(GS), which will still be denoted as µi(GS). Using (3), the Sombor
energy S(GS) of a self-loop graph GS is defined by

ESO(GS) =

n∑
i=1

∣∣∣∣µi(GS)− Tr(S(GS))

n

∣∣∣∣ . (4)

In Section 2, we derive the explicit summation formula of µi and µ2
i of GS , respectively,

which will be crucial ingredients throughout. A term that is closely related to the well-known
Forgotten index F (G) arises in the formula. This relation will be described by a difference
formula. In Section 3, we review the Sombor spectrum of (simple) complete graphs Kn via
a simpler and direct approach. They serve as the “base case” throughout. Then, we provide
a description of Sombor spectrum and energy for edgeless graphs with self-loops (Kn)S and
complete graphs with self-loops (Kn)S .

In Section 4, we study the behaviour of the Sombor energy ESO((Kn)S) with respect to n and
σ. It is surprising that ESO((Kn)S) behaves ‘tamely’ despite a convoluted formula. Moreover,
we compute the energy difference of 1 loop explicitly in several cases, all of which are converging
to a constant 4

√
2 for large n and σ. Lastly, in Section 5, we prove a McClelland-type bound and

determinantal-type upper and lower bounds for ESO(GS), for which we recover several known
bounds for ESO(G) in [6–8].

2 Some identities of Sombor eigenvalues for self-loop graphs
In the following, we first derive the summation formula by using∑

µri (GS) := Tr(S(GS)r), for r = 1, 2. (5)

By the definition of S(GS), one can no longer interpret
∑
µri as the number of closed walks of

length r, unlike the case of adjacency matrix, cf. [9, Lemma 2.5 & Result 2h]. Despite this,
(5) still makes sense: since S(GS) is real and symmetric, by (real) Schur’s Triangularization
Theorem [10, Theorem 10.1.1], there exists an orthogonal U such that S(GS) = UΛUT where
Λ is real upper-triangular with diagonal entries µi(GS). Then, (5) follows from polynomial
functional calculus and the trace commutation property.

Lemma 2.1. Let GS be a self-loop graph of order n. Let µi(GS), for i = 1, ..., n, be the Sombor
eigenvalues of GS. Then,

(i)
n∑
i=1

µi(GS) =
√

2
∑
vi∈S

d̂vi ,

(ii)
n∑
i=1

µ2
i (GS) = 2F̃ (GS) +

∑
vi∈S

2d̂2vi , where F̃ (GS) =
1

2

n∑
i=1

∑
vi∼vj
i 6=j

(d̂2vi + d̂2vj ).
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Proof. Part (i) follows from

n∑
i=1

µi(GS) = Tr(S(GS)) =
∑
vi∈S

√
d̂2vi + d̂2vi =

∑
vi∈S

√
2d̂2vi =

√
2
∑
vi∈S

d̂vi .

For part (ii), let S(GS) = S̃(GS) +DS . Then, by (5), we have

n∑
i=1

µ2
i (GS) =

n∑
i=1

[
(S̃(GS) +DS)2

]
ii

=

n∑
i=1

[
S̃(GS)2 + S̃(GS)DS +DSS̃(GS) +D2

S

]
ii
. (6)

One verifies that
∑n
i=1

[
S̃(GS)DS

]
ii

=
∑n
i=1

[
DSS̃(GS)

]
ii

= 0. By the definition of DS ,

[D2
S ]ij =

{
2d̂2vi , if i = j and vi ∈ S,
0, otherwise.

So,
∑n
i=1

[
D2
S

]
ii

=
∑
vi∈S 2d̂2vi . On the other hand,

n∑
i=1

[
S̃(GS)2

]
ii

=

n∑
i=1

∑
vi∼vj
i 6=j

(d̂2vi + d̂2vj ).

Thus, (6) reduces to

n∑
i=1

µ2
i (GS) =

n∑
i=1

∑
vi∼vj
i 6=j

(d̂2vi + d̂2vj ) +
∑
vi∈S

2d̂2vi . (7)

�

From [6, Lemma 1], it is known that for any simple graph G,

n∑
i=1

µ2
i (G) = 2F (G),

where F (G) is the Forgotten topological index of G. One observes that when σ = 0, F̃ (GS) =

F (G) and the second summand of (7) vanishes. Thus, we shall call F̃ (GS) the Forgotten-like
index of GS . In fact, upon further investigation, we establish an explicit difference formula that
depends only on the degrees of vertices with self-loops deleted.

Lemma 2.2. Let G be a graph of order n. Let W ⊆ S ⊆ V (G). Then,

F̃ (GW )− F̃ (GW\{v0}) = 4dv0(dv0 + 1), (8)

where v0 is any element of W. Consequently,

F̃ (GS) = F (G) +
∑
v∈S

4dv(dv + 1). (9)
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Proof. Let v0 ∈W. Since d̂2v0 = (dv0 + 2)2, we have d̂2v0 −d
2
v0 = 4(dv0 + 1). This is the difference

in degree when a loop at v0 is deleted from GW . Since there are a total of dv0 edges that incident
with v0, by symmetry and by Lemma 2.1,

F̃ (GW )− F̃ (GW\{v0}) =
1

2

2

∑
vi∼v0
vi 6=v0

(d̂2vi + d̂2v0)−
∑
vi∼v0
vi 6=v0

(d̂2vi + d2v0)




=
1

2
(8dv0(dv0 + 1)) = 4dv0(dv0 + 1).

The second equation (9) follows immediately by induction on the number of vertices with deleted
loops. �

3 Sombor spectrum and energy of complete graphs with
self-loops

When σ = 0, (Kn)S is the ordinary complete graph Kn. We shall call this the base case in what
follows. Recently, Ghanbari [11] has studied the Sombor spectrum and Sombor energy of Kn,
which heavily uses Sombor characteristic polynomials. Here, we give an alternate treatment for
the base case without characteristic polynomials. Before that, let us state two useful lemmas.

Lemma 3.1. ([10, (3.4.7)]). If A is a non-singular square matrix, then

det

([
A B
C D

])
= det(A) det(D − CA−1B).

Lemma 3.2. ([10, Lemma 8.3.2]). Let A be an n × n matrix with eigenvalues λ1, ..., λn.
Then,

(i) For m ∈ N, the eigenvalues of Am are λm1 , ..., λmn .

(ii) For k ∈ R, the eigenvalues of kA are kλ1, ..., kλn.

(iii) For k ∈ R, the eigenvalues of A+ kI are λ1 + k, ..., λn + k.

Theorem 3.3. For natural number n ≥ 2, let Kn be the complete graph of order n.

(i) Let A(Kn) and S(Kn) be the adjacency matrix and Sombor matrix of Kn, respectively.
Then, we have

S(Kn) =
√

2(n− 1)A(Kn).

(ii) The Sombor spectrum of Kn is

SSpec(Kn) =

[√
2(n− 1)2 −

√
2(n− 1)

1 n− 1

]
. (10)

(iii) The Sombor energy of Kn is ESO(Kn) = 2
√

2(n− 1)2.
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Proof. The Sombor matrix of Kn is an n× n matrix of the form

S(Kn) =


0

√
2(n− 1) · · ·

√
2(n− 1)√

2(n− 1) 0 · · ·
√

2(n− 1)
...

...
. . .

...√
2(n− 1)

√
2(n− 1) · · · 0

 ,
where the entries are all

√
2(n − 1) except the diagonal. Thus, S(Kn) =

√
2(n − 1)A(Kn).

Recall that the ordinary spectrum of Kn is given by
[
n− 1 −1

1 n− 1

]
. By Lemma 3.2, the

Sombor spectrum of Kn is [√
2(n− 1)2 −

√
2(n− 1)

1 n− 1

]
.

It follows from (2) that the Sombor energy of Kn is 2
√

2(n− 1)2. �

Theorem 3.4. Let
(
Kn

)
S
be the edgeless graph with self-loops of order n. Let |S| = σ with

0 ≤ σ ≤ n. Then,
ESO((Kn)S) = 4

√
2σ
(

1− σ

n

)
. (11)

Moreover, ESO((Kn)S) is maximum when σ = 1
2n for even n, and σ = 1

2 (n± 1) for odd n.

Proof. Let S((Kn)S) = Diag(a1, a2, ..., an) be the Sombor matrix of (Kn)S , where a1 = a2 =
· · · = aσ = 2

√
2 and the remaining ai = 0. Since the eigenvalues of a diagonal matrix are the

diagonal entries, thus the eigenvalues of S((Kn)S) are 2
√

2 and 0 with multiplicities of σ and
n−σ, respectively. Thus, ESO((Kn)S) = 4

√
2σ
(
1− σ

n

)
. Since the Sombor energy is a quadratic

polynomial in σ for fixed n, by elementary analysis, one finds that ESO((Kn)S) is maximum
when σ = 1

2n for even n and σ = 1
2 (n± 1) for odd n. �

Theorem 3.5. Let (Kn)S be the self-loop graph of Kn. Let |S| = σ with 0 ≤ σ ≤ n and n ≥ 2.
Then, SSpec((Kn)S) are characterized in the following three cases.

(i) For σ = 0,

SSpec((Kn)S) =

[√
2(n− 1)2 −

√
2(n− 1)

1 n− 1

]
, and ESO(Kn)S = 2

√
2(n− 1)2.

(ii) For σ = n,

SSpec((Kn)S) =

[√
2n(n+ 1) 0

1 n− 1

]
, and ESO(Kn)S = 2

√
2(n+ 1)(n− 1).

(iii) For 0 < σ < n,

SSpec((Kn)S) =[
k1
2 + 1

2

√
2k3 − k21 − 2k2 0 −

√
2(n− 1) k1

2 −
1
2

√
2k3 − k21 − 2k2

1 σ − 1 n− σ − 1 1

]
,

where

– k1 =
√

2(σ(n+ 1) + (n− 1)(n− σ − 1)),
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– k2 = (n− σ − 1)(2(n− 1)2),

– k3 = 2σ2(n+ 1)2 + 2σ(n− σ)((n+ 1)2 + (n− 1)2) + 2((n− σ)2 − (n− σ))(n− 1)2.

Moreover, the explicit Sombor energy of (Kn)S is given by

ESO(Kn)S =
1√
2

(
2σ(σ − 1)(1 +

1

n
)

+

∣∣∣∣1 + n(n− 2)− 2σ

n
−
√

(n− 1)4 + 8n2σ − 4σ2

∣∣∣∣
+

∣∣∣∣1 + n(n− 2)− 2σ

n
+
√

(n− 1)4 + 8n2σ − 4σ2

∣∣∣∣
+ 2(n− σ − 1)

∣∣∣∣n+ σ +
σ

n
− 1

∣∣∣∣). (12)

Proof. The base case (i) is essentially Theorem 3.3. For (ii), when σ = n, for all vertices vi,
d̂vi = n + 1. Since S((Kn)S) =

[√
2(n+ 1)

]
n×n =

√
2(n + 1)Jn where Jn is a n × n matrix

whose all entries are 1, and the spectrum of Jn is
[
n 0
1 n− 1

]
. By Lemma 3.2, we have

SSpec((Kn)S) =

[√
2n(n+ 1) 0

1 n− 1

]
.

By Lemma 2.1 and (4), the Sombor energy can be computed to be

ESO((Kn)S) =

∣∣∣∣√2n(n+ 1)−
√

2n(n+ 1)

n

∣∣∣∣+ (n− 1)

∣∣∣∣− √2n(n+ 1)

n

∣∣∣∣
= 2
√

2(n+ 1)(n− 1).

Lastly, we will prove (iii) when 0 < σ < n. Note that d̂vi = n+ 1 when vi ∈ S and d̂vi = n− 1
when vi /∈ S. Thus, we have an explicit Sombor matrix

S((Kn)S) =

 (S1)σ×σ (S2)σ×(n−σ)

(ST2 )(n−σ)×σ (S3)(n−σ)×(n−σ)

 =

 B

C

 ,
where entries of (S1)σ×σ are all

√
2(n+ 1); entries of (S2)σ×(n−σ) are all

√
(n+ 1)2 + (n− 1)2;

and (S3)(n−σ)×(n−σ) =
[√

2(n− 1)
]
(n−σ)×(n−σ) −

√
2(n − 1)In−σ. First, we determine the

nullity null(S((Kn)S)), which is the multiplicity of eigenvalue 0. Clearly, rank(B) = 1 since all
rows in B are identical. Since (S3)(n−σ)×(n−σ) =

√
2(n−1)A(Kn−σ), and A(Kn−σ) has no zero

eigenvalue, this implies that (S3)(n−σ)×(n−σ) also has no zero eigenvalue. Thus, (S3)(n−σ)×(n−σ)
is invertible and rank(C) = n− σ.

Next, we show that any row in B is linearly independent of all rows of C, which would
imply that rank(S((Kn)S)) = n− σ + 1. Since all rows above and all columns to the left of S3

are repeated, it suffices to consider S3 with a row above and a column on the left. Denote this
matrix as A0. Let x =

√
2(n + 1), y =

√
(n+ 1)2 + (n− 1)2, z =

√
2(n − 1). Then, A0, as a

matrix of size (n− σ + 1)× (n− σ + 1) can be written in the following form:
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A0 =


x y · · · y

y
...
y

0 z · · · z
z 0 · · · z
...

...
. . .

...
z z · · · 0

 .
It suffices to determine the rank of A0 by showing that the determinant of A0 is non-zero. By
Lemma 3.1,

det(A0) = det([x]) det




0 z · · · z
z 0 · · · z
...

...
. . .

...
z z · · · 0

−
y...
y

 [x]−1 [y · · · y
]


=x det


−y

2

x z − y2

x · · · z − y2

x

z − y2

x −y
2

x · · · z − y2

x
...

...
. . .

...
z − y2

x z − y2

x · · · −y
2

x

 .

Let Q =


−y

2

x z − y2

x · · · z − y2

x

z − y2

x −y
2

x · · · z − y2

x
...

...
. . .

...
z − y2

x z − y2

x · · · −y
2

x

 . Since Q is of size (n − σ) × (n − σ), it can be

rewritten as Q = (z − y2

x )A(Kn−σ) − (y
2

x )In−σ. Then, the spectrum of Q can be obtained by
using Lemma 3.2 and the spectrum of Kn−σ:

Spec(Q) =

[
(z − y2

x )(n− σ − 1)− y2

x −(z − y2

x )− y2

x
1 n− σ − 1

]
=

[
(n− σ − 1)z − (n− σ)y

2

x −z
1 n− σ − 1

]
.

Since the determinant of Q is equal to the product of its eigenvalues,

det(Q) =

(
(n− σ − 1)z − (n− σ)

y2

x

)
(−z)n−σ−1,

one can verify that det(Q) 6= 0 for our case.
Therefore, det(A0) = xdet(Q) 6= 0. This implies that A0 is invertible and rank(A0) = n−σ+

1. Thus, any row in B is linearly independent to all rows of C and rank(S((Kn)S)) = n−σ+ 1.
By Rank-Nullity theorem, we conclude that null(S((Kn)S)) = σ − 1.

Next, we consider the matrix S((Kn)S) +
√

2(n − 1)In and determine its nullity, which is
the multiplicity of eigenvalue −

√
2(n− 1). We write

S((Kn)S) +
√

2(n− 1)In =

 (T1)σ×σ (T2)σ×(n−σ)

(TT2 )(n−σ)×σ (T3)(n−σ)×(n−σ)

 =

 D

E

 ,
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where (T1)σ×σ =
[√

2(n+ 1)
]
σ×σ +

√
2(n− 1)Iσ; entries of (T2)σ×(n−σ) are all√

(n+ 1)2 + (n− 1)2; and entries of (T3)(n−σ)×(n−σ) are all
√

2(n− 1). By a similar argument
to the case of S((Kn)S) above, we get rank(E) = 1 and rank(D) = σ. One can also show that
all rows in D are linearly independent of any row in E. Thus, we have rank(S((Kn)S)+

√
2(n−

1)In) = σ + 1 and null(S((Kn)S) +
√

2(n− 1)In) = n− σ − 1.
Note that there are n − (σ − 1) − (n − σ − 1) = 2 eigenvalues left to be determined. By

Lemma 2.1, we obtain the following equations:

µ1 + µ2 + (n− σ − 1)(−
√

2(n− 1)) =
√

2(σ(n+ 1)), (13)

µ2
1 + µ2

2 + (n− σ − 1)(2(n− 1)2) =

n∑
i=1

∑
vi∼vj
i 6=j

(d2vi + d2vj ) + 2σ(n+ 1)2. (14)

More precisely, the nested summation terms in (14) can be written explicitly as

µ2
1 + µ2

2 + (n− σ − 1)(2(n− 1)2) =

2σ2(n+ 1)2 + 2σ(n− σ)((n+ 1)2 + (n− 1)2) + 2((n− σ)2 − (n− σ))(n− 1)2. (15)

Now, let k1 =
√

2(σ(n + 1) + (n − 1)(n − σ − 1)), k2 = (n − σ − 1)(2(n − 1)2) and k3 =
2σ2(n+ 1)2 + 2σ(n− σ)((n+ 1)2 + (n− 1)2) + 2((n− σ)2 − (n− σ))(n− 1)2. Then, (13) and
(15) can be simplified into:

µ1 + µ2 = k1, (16)

µ2
1 + µ2

2 = k3 − k2. (17)

Solving (16) and (17), we have

µ1,2 =
k1
2
± 1

2

√
2k3 − k21 − 2k2.

By applying (4) and with some simplification, we obtain the desired Sombor energy formula.
This completes the proof. �

4 Behaviour of the Sombor energy of complete graphs with
loops

Once the explicit formula for ESO(Kn)S is obtained in (12), it is natural to study its behav-
ior, especially on how the energy changes with respect to increasing n and σ. Whilst (12) is
complicated to compare in symbolic terms, it is still possible to plot as in Figure 1.

It is surprising to see that ESO(Kn)S is ‘tamed’ and appears to be increasing consistently
and almost linearly for large n and σ. This leads us to further investigate the Sombor energy
change on several occasions.
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Figure 1: Sombor Energy of (Kn)S with n = 2, ..., 1000 and σ = 1, ..., 999.

Proposition 4.1. (i) For n ≥ 2, the Sombor energy change between complete graphs with
1-loop and no loop is given by

ESO(Kn)|S|=1 − ESO(Kn) = −
√

2(n3 − 2n2 + n+ 2)

n

+

∣∣∣∣∣−
√

2n4 − 8n3 + 28n2 − 8n− 6n+
√

2 (n− 2)
(
n2 + 1

)
2n

∣∣∣∣∣
+

∣∣∣∣∣
√

2n4 − 8n3 + 28n2 − 8n− 6n+
√

2 (n− 2)
(
n2 + 1

)
2n

∣∣∣∣∣ . (18)

(ii) For n ≥ 2, the Sombor energy change between complete graphs with (n− 1)-loops and full
n-loops is given by

ESO(K̂n)− ESO(Kn)|S|=n−1 =

√
2(n2 − 1)(n+ 2)

n

−

∣∣∣∣∣
√

2
√

(n− 1) (n3 + 5n2 − n+ 3)n+
√

2 (n− 1) (n− 2) (n+ 1)

2n

∣∣∣∣∣
−

∣∣∣∣∣−
√

2
√

(n− 1) (n3 + 5n2 − n+ 3)n+
√

2 (n− 1) (n− 2) (n+ 1)

2n

∣∣∣∣∣ . (19)

When n→∞,

lim
n→∞

(ESO(Kn)|S|=1 − ESO(Kn)) = 4
√

2 = lim
n→∞

(ESO(K̂n)− ESO(Kn)|S|=n−1). (20)

Proposition 4.1 tells us that for sufficiently large n, the energy change due to 1 loop near
the boundary cases is consistent and converging to 4

√
2. Surprisingly, this phenomenon remains

true even for the non-boundary cases with the difference of 1 loop!
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Figure 2: The top curve is ESO(Kn)|S|=1 − ESO(Kn); The bottom curve is ESO(K̂n) −
ESO(Kn)|S|=n−1, both for n = 2, ..., 500.

Proposition 4.2. For n ≥ 2 and 0 < σ < n, then

ESO(Kn)|S|=σ − ESO(Kn)|S|=σ−1

= −2
√
2

n
+

∣∣∣∣∣
√
2
(
−n3 + 2n2 + 2σ − n

)
−
√

2n4 − 8n3 + (16σ + 12)n2 − 8n− 8σ2 + 2n

2n

∣∣∣∣∣
+

∣∣∣∣∣
√
2
(
−n3 + 2n2 + 2σ − n

)
+
√

2n4 − 8n3 + (16σ + 12)n2 − 8n− 8σ2 + 2n

2n

∣∣∣∣∣
−

∣∣∣∣∣
√
2
(
−n3 + 2n2 + 2σ − n− 2

)
−
√

2n4 − 8n3 + (16σ − 4)n2 − 8n− 8σ2 + 16σ − 6n

2n

∣∣∣∣∣ (21)

− 7

∣∣∣∣∣
√
2
(
−n3 + 2n2 + 2σ − n− 2

)
+
√

2n4 − 8n3 + (16σ − 4)n2 − 8n− 8σ2 + 16σ − 6n

2n

∣∣∣∣∣ .

Moreover,

lim
n→∞
σ→∞

(ESO(Kn)|S|=σ − ESO(Kn)|S|=σ−1) = 4
√

2.

Example 4.3. For simplicity, if we write DESO(n, σ, σ−1) as ESO(Kn)|S|=σ−ESO(Kn)|S|=σ−1,

then one can compare the following with 4
√

2 ≈ 5.65685 :

DESO(100, 50, 49) ≈ 5.60029, DESO(1000, 50, 49) ≈ 5.66395,

DESO(10000, 50, 49) ≈ 5.65769, DESO(10000, 500, 499) ≈ 5.65120,

DESO(10000, 5000, 4999) ≈ 5.65629.
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Figure 3: The vertical axis represents ESO(Kn)|S|=σ − ESO(Kn)|S|=σ−1 for n = 2, ..., 1000 and
σ = 1, ..., 999, which shows a fluctuation for small n and σ but consistent for large n and σ.

5 Bounds for Sombor energy of graphs with loops

5.1 McClelland-type bound for ESO(GS)

Theorem 5.1. Let GS be a self-loop graph of order n. Let F̃ (GS) be the Forgotten-like index
in (9). Then,

ESO(GS) ≤

√√√√√2n

F̃ (GS) +
∑
vi∈S

d̂2vi −
1

n

(∑
vi∈S

d̂vi

)2
. (22)

The equality holds if and only if (i) GS ∼= (Kn)S (edgeless graphs with self-loops) for the
boundary cases σ = 0, n, and the half-loop case σ = n

2 when n is even; or (ii) GS ∼= (K2)S
(1-regular graph) with σ = 0, 1, 2.

Proof. We adopt a similar strategy in [6]. In the following, for simplicity, we write µi = µi(GS)
and a =

∑
i µi. Consider

n∑
i=1

n∑
j=1

(∣∣∣µi − a

n

∣∣∣− ∣∣∣µj − a

n

∣∣∣)2 ≥ 0.

This is equivalent to the inequality

2n

n∑
i=1

∣∣∣µi − a

n

∣∣∣2 ≥ 2

n∑
i,j=1

∣∣∣µi − a

n

∣∣∣ ∣∣∣µj − a

n

∣∣∣ . (23)

By direct computation,
n∑
i=1

(
µi −

a

n

)2
=

(
n∑
i=1

µ2
i

)
− a2

n
. (24)
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On the other hand, we observe that

E2SO(GS) =

(
n∑
i=1

∣∣∣µi − a

n

∣∣∣)2

=

n∑
i,j=1

∣∣∣µi − a

n

∣∣∣ ∣∣∣µj − a

n

∣∣∣ .
Thus, by Lemma 2.1, equation (23) reduces to the desired inequality

2nF̃ (GS) + 2n
∑
vi∈S

d̂2vi − 2

(∑
vi∈S

d̂vi

)2

≥ E2SO(GS),

and the claim is complete by taking square roots.
The equality holds if and only if |µ1 − a

n | = |µ2 − a
n | = · · · = |µn −

a
n |. Graphs that satisfy

this condition are (i) the edgeless graph with certain loops and (ii) the regular graph of degree
1 with all possible loops. More precisely, for (i), by (11), the boundary cases are clear. For
0 < σ < n, it amounts to solve |n− σ| = |σ|, which implies that the equality holds if and only
if σ = n

2 when n is even. For (ii), we apply Theorem 3.5 for all cases below. When σ = 0, with
µ1,2 = ±

√
2 and a = 0, we have |µ1| = |µ2|. When σ = 2, with µ1 = 6

√
2 = a, and µ2 = 0,

then |µ1 − a/2| = |µ2 − a/2|. When σ = 1, the Sombor spectra are 3√
2
±
√

29
2 , together with

k1 = 3
√

2, k2 = 0, and k3 = 38, it follows that the equality holds when ESO(K2)S =
√

58. �

5.2 Determinantal lower and upper bounds for ESO(GS)

Lemma 5.2. ([8, Lemma 2.4]). Let a1 ≥ a2 ≥ . . . ≥ an be a sequence of non-negative real
numbers. Then,

n∑
i=1

ai + n(n− 1)

(
n∏
i=1

ai

) 1
n

≤

(
n∑
i=1

√
ai

)2

≤ (n− 1)

n∑
i=1

ai + n

(
n∏
i=1

ai

) 1
n

. (25)

We will also need the following useful form [7, Lemma 7.2]:

n

 1

n

n∑
i=1

ai −

(
n∏
i=1

ai

) 1
n

 ≤ n n∑
i=1

ai −

(
n∑
i=1

√
ai

)2

≤ n(n− 1)

 1

n

n∑
i=1

ai −

(
n∏
i=1

ai

) 1
n

 .

(26)

Theorem 5.3. Let GS be a self-loop graph of order n. Let C be the diagonal matrix with entries
d̂vi if vi ∈ S and zero otherwise. Let a =

∑
i µi. Then,

ESO(GS) ≤

√√√√n

(
n∑
i=1

µ2
i

)
− a2

n
− 2n(n− 1) |det(C)|

2
n , (27)

with equality holds if GS ∼= K̂2.

Proof. By Lemma 5.2, take ai = d̂2vi , then we have

n
∑
vi∈S

d̂2vi −

(∑
vi∈S

d̂vi

)2

≤ (n− 1)
∑
vi∈S

d̂2vi − n(n− 1)

(∏
vi∈S

d̂2vi

) 1
n

.
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Since C = Diag(d̂vi)vi∈S is a diagonal matrix, the determinant of C2 is the square of the
absolute value of the determinant of C. By Cauchy’s inequality, a2/n ≤ 2

∑n
i=1 d̂

2
vi . It follows

that

2nF̃ (GS) + 2n
∑
vi∈S

d̂2vi − 2

(∑
vi∈S

d̂vi

)2

≤ n

(
n∑
i=1

µ2
i

)
− a2

n
− 2n(n− 1) |det(C)|

2
n .

By Theorem 5.1, we obtain (27). For equality, we apply Theorem 3.5 for K̂2. Since µ1 = 6
√

2 =

a, µ2 = 0, and det(C) = d̂v1 d̂v2 = 9, one verifies that the equality is attainable with both sides
of (27) being 6

√
2. �

The next corollary is an immediate consequence when GS = G.

Corollary 5.4. Let GS be a self-loop graph of order n. When σ = 0, both upper bounds (22)
and (27) reduces to [6, Theorem 1]:

ESO(G) ≤
√

2nF (G).

Theorem 5.5. Let GS be a graph with loops of order n. Let B = S(GS)− a

n
In with a =

∑
i µi.

Then,√√√√( n∑
i=1

µ2
i

)
− a2

n
+ n(n− 1)|det(B)| 2n ≤ ESO(GS) (28)

≤

√√√√(n− 1)

((
n∑
i=1

µ2
i

)
− a2

n

)
+ n|det(B)| 2n .

Proof. By taking ai = |µi − a
n |

2 in (26) in Lemma 5.2, on one hand we have

n

n∑
i=1

∣∣∣µi − a

n

∣∣∣2 −( n∑
i=1

∣∣∣µi − a

n

∣∣∣)2

≤ (n− 1)

n∑
i=1

∣∣∣µi − a

n

∣∣∣2 − n(n− 1)

(
n∏
i=1

∣∣∣µi − a

n

∣∣∣2) 1
n

.

Notice that the second term of the left side is exactly E2SO(GS). By (24) and since |µi|2 = µ2
i ,

we obtain

ESO(GS) ≥

√√√√ n∑
i=1

∣∣∣µi − a

n

∣∣∣2 + n(n− 1)

(
n∏
i=1

∣∣∣µi − a

n

∣∣∣2) 1
n

=

√√√√( n∑
i=1

µ2
i

)
− a2

n
+ n(n− 1) |det(B)|

2
n .

On the other hand, following a similar approach and by (24) again, we obtain

ESO(GS) ≤

√√√√
(n− 1)

n∑
i=1

∣∣∣µi − a

n

∣∣∣2 − n( n∏
i=1

∣∣∣µi − a

n

∣∣∣2) 1
n

=

√√√√(n− 1)

((
n∑
i=1

µ2
i

)
− a2

n

)
− n |det(B)|

2
n .

�



Iranian Journal of Mathematical Chemistry 14 (4) (2023) 225− 241 239

Here, we also present an alternate argument for the left side of (28) by adopting a trick of
McClelland in [12, §III].

Alternate proof for lower bound of (28). Since (
∑n
i=1 |µi−

a
n |)

2 =
∑n
i=1 |µi−

a
n |

2+
∑
i 6=j |µi

− a
n ||µj −

a
n | with a =

∑n
i=1 µi, by AM-GM inequality,

∑
i6=j
∣∣µi − a

n

∣∣ ∣∣µj − a
n

∣∣
n(n− 1)

≥

∏
i 6=j

∣∣∣µi − a

n

∣∣∣ ∣∣∣µj − a

n

∣∣∣
 1

n(n−1)

=

(
n∏
i=1

∣∣∣µi − a

n

∣∣∣) 2
n

= |det(B)| 2n .

Now, by [12, Theorem 1], (
n∑
i=1

∣∣∣µi − a

n

∣∣∣)2

≤ nN2(B),

where N2(B) =
∑
kl |Bkl|2 is the square of the Frobenius norm of B. Observe that N2(B) is

the summation of all squares of entries of B, which coincides with the sum of those off-diagonal

terms 2F̃ (GS), those diagonal terms with loops
∑
vi∈S

(√
2d̂vi − a

n

)2
, and those diagonal terms

without loops (n− σ) a
2

n2 . Thus, by [12, eq (12)],

ESO(GS) =

n∑
i=1

∣∣∣µi − a

n

∣∣∣
≥
√
N2 + n(n− 1)|det(B)| 2n

=

√
2F̃ (GS) +

∑
vi∈S

(√
2d̂vi −

a

n

)2
+ (n− σ)

a2

n2
+ n(n− 1)|det(B)| 2n

=

√√√√( n∑
i=1

µ2
i

)
− a2

n
+ n(n− 1)|det(B)| 2n .

�

Corollary 5.6. When σ = 0, that is, when GS = G, the inequality (28) reduces to√
2F (G) + n(n− 1)|det(S(G))| 2n ≤ ESO(G) ≤

√
2(n− 1)F (G) + n|det(S(G))| 2n , (29)

which recovers [8, Theorem 4.1] and [7, Theorem 7.3 & 7.6].

6 Significance and further questions
Further remarks:

1. There is a crucial difference between the explicit determination of ordinary and Sombor
spectrum (and thus energy) of complete graphs with self-loops. In [5] it was achieved
by considering the adjacency matrix associated with GS , which is static with respect to
other vertices, i.e. adding or removing a loop does not affect the vertex degrees in its
neighborhood. In our case, as a degree-based energy (cf. [13]), the existence of a loop at
a vertex will change the vertex degrees in its neighborhood. This dependence results in a
more convoluted energy formula.
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2. In Section 4, we showed that the Sombor energy of (Kn)S increases with n and σ. The
quantization 4

√
2 is obtained for large n or for the large number of edges and σ. We

believe this provides new insight into the results in [14], where the ordinary energy of Kn

for large n and its various modifications via edge deletions are studied. The upshots of
results in Sections 3 and 4 are: (i) they can now be programmed for energy calculation
using only n and σ; (ii) for a large fix n and varying σ, only one energy is required as the
others can be approximated by a modification by a factor of 4

√
2.

3. With the existing role of graphs with loops in the mathematical study of heteroconjugated
molecules, as in [15–18], and [6] (and references therein) under the Sombor settings for
ordinary graphs, we believe our results have applications in molecular chemistry.

Further open questions:

1. Is there a simpler method or scheme for determining the Sombor spectrum and energy of
some families of graphs with loops, such as trees, complete bipartite graphs, cyclic graphs,
etc? Is there any quantization of energy similar to that of in Section 4?

2. Is there a novel construction of graphs with loops from simple graphs such that the energy
(ordinary, Sombor or variants) does not increase post-construction?

3. What are the effects of edge and loop deletion on energy (ordinary, Sombor or variants)
for general graphs with loops?
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