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Abstract

The main goal of this research work is to provide a numeri-
cal technique based on choosing a set of basis functions for han-
dling the third-order time-fractional Korteweg–De Vries Burg-
ers’ equation. The trial functions are selected for the shifted
second-kind Chebyshev polynomials (S2KCPs) compatible with
the problem’s governing initial and boundary conditions. The
spectral tau method transforms the equation and its underlying
conditions into a nonlinear system of algebraic equations that
can be efficiently numerically inverted with the standard New-
ton’s iterative procedures after the approximate solutions have
been expressed as a double expansion of the two chosen basis
functions. The truncation error is estimated. Various numeri-
cal examples are displayed together with comparisons to other
approaches in the literature to show the applicability and accu-
racy of the provided methodology. Different numerical models
are displayed and compared to other methods in the literature.

c© 2023 University of Kashan Press. All rights reserved.

1 Introduction
KdV equation serves as a mathematical representation of waves on shallow water surfaces. It

is noteworthy because it is the archetypal illustration of an entirely solvable model or a nonlinear
partial differential equation whose solutions can be precisely described. It was first presented
by Boussinesq in 1877 [1], Diederik Korteweg and Gustav de Vries in 1895 [2] rediscovered the
KdV equation, which is a nonlinear, dispersive partial differential equation for the function u of
two dimensionless real variables, x and t, that are proportional to space and time, respectively
[3]. The traditional but insignificant constant 6 is placed before the final term. By multiplying
t, x, and u by constants, any of the three terms’ coefficients can equal any non-zero constants.
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Numerous applications use equations of the KdV type and their modified versions. The
Korteweg-de Vries-Burgers’ equation appears as a model equation integrating the effects of
dispersion, dissipation, and nonlinearity in a variety of physical situations. Examples include
the propagation of waves in a viscous fluid inside an elastic tube, the movement of gas bubble-
containing liquids, and turbulence [4]. The Petrov-Galerkin finite element method handled a
modified third-order KdV problem in [5]. Youssri and Atta in [6] offered a double Chebyshev
Spectral Tau Algorithm for Solving the standard KdV Equation.

Spectral methods are one of the most popular numerical techniques for resolving different
kinds of differential equations. When compared to other numerical methods, these methods
have some advantages. For example, these methods are global methods, unlike finite element
methods. The trial and test functions families of basis functions are the two that comprise the
spectral method’s main characteristic. Standard orthogonal polynomials or combinations are
used to express these two families of parts. We must decide which trial and test functions to
use depending on the approach we select. It is commonly known that spectral methods fall into
three primary categories: Galerkin, collocation, and tau approaches.

The boundary/initial conditions specified by the supplied differential equation are satisfied
by each member of the test functions, which are identical to the trial functions in the Galerkin
technique. Unlike the Galerkin method, there are no limitations on selecting the basis functions
with the tau technique. Applying it to many differential equation types is more straightforward
than using the Galerkin approach. It is therefore utilized to resolve several varieties of differen-
tial equations. To address multi-term fractional differential equations, the authors of the two
articles [7] and [8] used Chebyshev polynomials of the fifth and sixth kinds, respectively, the
authors in [9] used the sixth-kind Chebyshev polynomials to handle the time-fractional heat
equation. In [10], Abd-Elhameed derived formulae for the high-order derivatives of sixth-kind
Chebyshev polynomials, and he applied the tau method together with specific unique derivative
procedures to treat the nonlinear Burgers’ problem numerically. The authors in [11] suggested
a spectral tau algorithm based on choosing generalized Fibonacci polynomials as basis functions
for solving fractional Bagley-Torvik equation. Any sort of differential equation can be solved
using the collocation method; for an example, see [12–14]. We mention here that the spectral
methods are flexible in the sense that, the basis functions are not necessary to be orthogonal
polynomials, for nonorthogonal spectral methods, the interested reader is referred to [15, 16].

In recent decades, Chebyshev polynomials have attracted much interest from theoretical and
practical perspectives. The Chebyshev polynomials, which are special Jacobi polynomials, come
in four well-known varieties. The first and second types of polynomials, which are symmetric,
are frequently employed to numerically treat the various varieties of differential equations. For
instance, in [17], the spectral Galerkin method and Chebyshev polynomials of the first kind
were used to treat the linear and non-linear hyperbolic telegraph-type hyperbolic problems
numerically. The second kind of Chebyshev polynomials was also employed in several works,
and they were offered in [18] as numerical solutions to systems of several FDEs. For instance, the
authors in [19] used the collocation method and second-kind Chebyshev polynomials to solve
the space fractional advection-dispersion problem. The variable order fractional differential-
integral problem was solved using an operational matrix technique in [20] based on the second-
kind Chebyshev polynomials. To get spectral solutions of the linear hyperbolic first-order
partial differential equations, the authors in [21] also utilized the shifted fifth-kind Chebyshev
polynomials. Additionally, the Adomian decomposition approach was used in [22] to treat
certain different forms of differential equations, along with the Laguerre polynomials and the
second kind of Chebyshev polynomials. The third and fourth forms of Chebyshev polynomials
were also used to solve various sorts of differential equations. For more studies see [23–27].

The spectral collocation method ends up with a system of nonlinear algebraic equations.
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The computational cost required to solve a nonlinear system of algebraic equations can vary
depending on several factors, such as the number of equations, the complexity of the equations,
the desired level of accuracy, and the specific numerical method used for solving the system. In
general, solving a nonlinear system of algebraic equations is a challenging task, and there is no
universal method that works efficiently for all types of systems. Different numerical techniques
can be employed, including iterative methods like Newton’s method, the Broyden method, or
the secant method, as well as optimization algorithms or symbolic methods. The computational
cost of solving a nonlinear system is typically measured in terms of the number of arithmetic
operations required, such as additions, subtractions, multiplications, and divisions. The number
of operations can vary depending on the specific method used, the convergence behavior of the
system, and the desired level of accuracy. for more details about computational complexity, see
[28].

Numerous authors have put forth numerical solutions for time partial differential equations
with second-order partial derivatives; see, for instance, [29–31]. However, numerical investiga-
tions for time partial differential equations with third-order partial derivatives are insufficient.
This inspires our desire to look into such issues. The authors of [32] suggested a Petrov-Galerkin
spectral approach to handle the linearized time fractional KdV equation, while in [33] the au-
thors used the tau approach to handle the same model. Some fractional KdV equations may
be treated using certain techniques; for example, see [34, 35].

As we know, fractional integral and differential calculus have attracted the attention of a
large number of authors due to their great importance in numerous scientific and engineering
disciplines, see for example [36–40]. So, in this work, we are concerned with building and
implementing a robust second-kind explicit collocation approach for handling the third-order
time fractional KdV Burgers’ equation subject to initial and boundary conditions with nonlinear
product term; this work generalizes the approach in [33], an explicit formula for the first, second
and third order derivatives of a particular choice of shifted second kind Chebyshev basis are
derived, and proved based on the third-order derivative formula of the third-order product
obtained by Abd-Elhameed and Youssri in [33].

This article encompasses: Section 2 is devoted to essential properties of fractional calculus
and second-kind Chebyshev polynomials properties. Section 3 is the main section where we
structure the collocation algorithm for handling the KdV equation. Section 4 is devoted to
a note on the computational cost of solving the nonlinear system of equations. Section 5 for
estimating the truncation error. Numerical examples with some comparisons are exhibited in
Section 6. Some concluding remarks are reported in Section 7.

2 Preliminaries and essential relations

2.1 The fractional derivative in the Caputo sense

Definition 2.1. ([41]). The Caputo fractional derivative of order s is defined as:

Ds
xu(x) =

1

Γ(m− s)

∫ x

0

(x− y)m−s−1u(m)(y)dy, s > 0, x > 0, (1)

where m− 1 6 s < m, m ∈ N.

The following properties are satisfied by the operator Ds
x for m− 1 6 s < m, m ∈ N,

Ds
xc = 0, (c is a constant). (2)
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Ds
x x

m =

{
0, if m ∈ N0 and m < dse,

Γ(m+1)
Γ(m−s+1) x

m−s, if m ∈ N0 and m ≥ dse,
(3)

where N = {1, 2, 3, ...} , N0 = {0} ∪ N and the notation d.e denotes the ceiling function.

2.2 An account on the S2KCPs
Let U∗j (x) be the S2KCPs defined in the interval [0, 1] by U∗j (x) = Uj(2x−1). These polynomials
can be defined as [42]

U∗j (x) =

j∑
r=0

22 r (−1)j+r (j + r + 1)!

(2 r + 1)! (j − r)!
xr, j ≥ 0, (4)

and satisfying the following orthogonality relation with respect to the weight function ŵ(x) =√
x− x2 [42]: ∫ 1

0

ŵ(x)U∗m(x)U∗n(x) dx =

{
π
8 , if m = n = 0,

0, if m 6= n.
(5)

The recurrence relation of U∗m(x) is

U∗m(x) = 2 (2x− 1) U∗m−1(x)− U∗m−2(x), (6)

where U∗0 (x) = 1, U∗1 (x) = 2x− 1.
Moreover, the inversion formula is [42]

xr =

r∑
p=0

Bp,r U
∗
p (x), j ≥ 0, (7)

where

Bp,r =
4 Γ
(
r + 3

2

)
((p+ 1)! r!)

√
π p! (r − p)! (p+ r + 2)!

. (8)

Lemma 2.2. ([42]). Let i and m be any two nonnegative integers. The moments’ formula for
the S2KCPs is given by

xi U∗m(x) =

i+m∑
k=−i−m

Fk,i,m U
∗
k (x), (9)

where
Fk,i,m =

1

22 i

(
2 i

i− k +m

)
. (10)

Lemma 2.3. ([43]). For all nonnegative integers m and n, the following linearization formula
holds for the S2KCPs

U∗m(x)U∗n(x) =

n∑
k=0

U∗2 k+m−n(x). (11)

Lemma 2.4. ([44]). The following integral formula is valid:∫ x

0

U∗i (z) dz =
T ∗i+1(x) + (−1)i

2i+ 2
, ∀i ≥ 0.

Lemma 2.5. ([44]). The following connection formula is valid:

T ∗i+1(x) =
1

2

(
U∗i+1 − U∗i−1

)
, ∀i ≥ 1.
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3 Collocation approach for the time-fractional KdV-Burgers’
equation

In this section, we consider the following time-fractional KdV-Burgers’ equation [45]

Dα
t χ(x, t) + k χ(x, t)χx(x, t)− υ χxx(x, t) + µχxxx(x, t) = S(x, t), 0 < α ≤ 1, (12)

subject to the following initial condition

χ(x, 0) = g(x), 0 < x ≤ 1, (13)

and boundary conditions

χ(0, t) = χ(1, t) = χx(1, t) = 0, 0 < t ≤ 1, (14)

where k 6= 0, υ, µ are positive parameters and S(x, t) is the source term.

3.1 Trial functions

Consider the following basis functions

ψ∗i (x) = x (1− x)2 U∗i (x),

φ∗j (t) = tα U∗j (t).
(15)

Theorem 3.1. The following fractional derivative of φ∗j (t) holds

Dα
t φ
∗
j (t) =

j∑
r=0

λr,j U
∗
r (t), (16)

where

λr,j =
2(r + 1)(−1)j+rΓ(j + r + 2)Γ(r + α+ 1)

Γ(j − r + 1)
3F̃2

 r + α+ 1, r − j, j + r + 2

r + 1, 2 r + 3

∣∣∣∣∣∣ 1
 . (17)

Proof. The power form formula of φ∗j (t) can be written after using relation (4) as

Dα
t φ
∗
j (t) =

j∑
r=0

22 r (−1)j+r (j + r + 1)! (α+ r)!

(2 r + 1)! (j − r)! r!
tr, (18)

which can be rewritten with the aid of the inversion formula (7) as

Dα
t φ
∗
j (t) =

j∑
r=0

r∑
p=0

2 (p+ 1) (−1)j+r Γ(j + r + 2) (α+ r)!

Γ(j − r + 1) Γ(−p+ r + 1) Γ(p+ r + 3) r!
U∗p (t). (19)

And hence, after rearranging and expanding the terms of the last equation, one has

Dα
t φ
∗
j (t) =

j∑
r=0

j∑
p=r

2 (r + 1) (−1)j+p Γ(j + p+ 2) (α+ p)!

p! Γ(j − p+ 1) Γ(p− r + 1) Γ(p+ r + 3)
U∗r (t). (20)
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Now, with the aid of Maple program, the following relation can be summed to give the following
reduced form

λr,j =

j∑
p=r

2 (r + 1) (−1)j+p Γ(j + p+ 2) (α+ p)!

p! Γ(j − p+ 1) Γ(p− r + 1) Γ(p+ r + 3)

=
2(r + 1)(−1)j+rΓ(j + r + 2)Γ(r + α+ 1)

Γ(j − r + 1)
3F̃2

 r + α+ 1, r − j, j + r + 2

r + 1, 2 r + 3

∣∣∣∣∣∣ 1
 .

(21)

Therefore, we get the following relation

Dα
t φ
∗
j (t) =

j∑
r=0

λr,j U
∗
r (t). (22)

This completes the proof of Theorem 3.1. �

Remark 1. Based on the orthogonality relation (5) and the power form of U∗j (t) in (4), the
following basis functions φ∗j (t) can be written in approximation formula as

φ∗j (t) ≈
j∑

k=0

M∑
i=0

Hk,j hi,k U∗i−j+2 k(t), (23)

where

Hk,j =
22 k (−1)j+k (j + k + 1)!

(2 k + 1)! (j − k)!
, (24)

and

hi,k =
8

π

∫ 1

0

√
t− t2 tk+α U∗i (t) dt. (25)

Theorem 3.2. The first three derivatives of ψ∗m(x) can be expressed explicitly as:

d3 ψ∗i (x)

d x3
=

i∑
k=0

dk,i U
∗
k (x),

d2 ψ∗i (x)

d x2
=

i+1∑
k=0

c̄k,i U
∗
k (x),

d ψ∗i (x)

d x
=

i+2∑
k=0

bk,i U
∗
k (x),

(26)
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where

dk,i =


(k + 1)(3(i+ 2)i− k(k + 2) + 6), if (i+ k) even and 0 ≤ k ≤ i− 1,

(k + 1)
(
−3(i+ 1)2 + k2 + 2k

)
, if (i+ k) odd and 0 ≤ k ≤ i− 1,

(i+ 1)(i+ 2)(i+ 3), if k = i,

c̄k,i =



−d0,i4 , if k = −1,

(−1)i+1
(

3
8

(
2 i (i+ 2) + (−1)i+1 + 1

)
+ 1
)
− d1,i

8 , if k = 0,
di−1,i

4 i , if k = i,
di,i

4 (i+1) , if k = i+ 1,
dk−1,i

4 k − dk+1,i

4 (k+2) , otherwise,

bk,i =



− c0,i4 , if k = −1,
1
8 −

c1,i
8 , if k = 0, i = 0,

(−1)i

4 − c1,i
8 , if k = 0, i 6= 0,

ci,i
4 (i+1) , if k = i+ 1,
ci+1,i

4 (i+2) , if k = i+ 2,
ck−1,i

4 k −
ck+1,i

4 (k+2) , otherwise.

(27)

Proof. The proof of the first part related to the third derivative of ψ∗i (x) can be easily obtained
after replacing x by (2x− 1) in Theorem 3.2 in Ref. [33].
To prove the second part, we integrate both sides of the third-order derivative formula and
then apply Lemma 2.4 followed by Lemma 2.5 and then collect like terms, rearranging the
summations, and we get the desired results. The third part is typically the same as the second
part but by integrating the second-order derivative formula. �

Remark 2. Based on the recurrence relation (6) of U∗i (x), the following formula of ψ∗i (x) holds

ψ∗i (x) =
1

64

(
U∗i−3(x)− 2U∗i−2(x)− U∗i−1(x)− U∗i+1(x)− 2U∗i+2(x) + U∗i+3(x) + 4U∗i (x)

)
.

(28)

3.2 Collocation solution for the time-fractional KdV-Burgers’ equa-
tion

To proceed with our proposed collocation approach, we will make use of the following transfor-
mation:

χ(x, t) = u(x, t) + g(x, t), (29)

to convert the time-fractional KdV-Burgers’ equation (12) governed by the conditions (13)-(14)
into the following modified equation:

Dα
t u(x, t) + k u(x, t)ux(x, t)− υ uxx(x, t) + µuxxx(x, t) = f(x, t), 0 < α ≤ 1, (30)

governed by the following homogeneous conditions

u(x, 0) = 0, 0 < x ≤ 1, (31)

u(0, t) = u(1, t) = ux(1, t) = 0, 0 < t ≤ 1, (32)

where
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f(x, t) = S(x, t)−Dα
t g(x, t)− k g(x, t) gx(x, t) + υ gxx(x, t)− µ gxxx(x, t)

− κu gx(x, t)− κux g(x, t),
(33)

and g(x, t) is an arbitrary function satisfying the following conditions

χ(0, t) = g(0, t), χ(1, t) = g(1, t), χx(1, t) = gx(1, t).

Therefore, instead of solving (12) governed by (13)-(14), we can solve the modified equation
(30) governed by the homogeneous conditions (31)-(32).
Now, one may set

ζM = span{ψ∗i (x)φ∗j (t) : i, j = 0, 1, . . . ,M},
ΥM = {u ∈ ζM : u(x, 0) = u(0, t) = u(1, t) = ux(1, t) = 0},

(34)

then, any function uM (x, t) ∈ ΥM may be written as

uM (x, t) '
M∑
i=0

M∑
j=0

cij ψ
∗
i (x)φ∗j (t). (35)

The residual R(x, t) of Eq. (30) can be written as

R(x, t) = Dα
t u

M (x, t) + k uM (x, t)uMx (x, t)− υ uMxx(x, t) + µuMxxx(x, t)− f(x, t). (36)

Now, making use of Theorems 3.1 and 3.2 and Remarks 1 and 2 to get expressions forDα
t u

M (x, t),
uM (x, t)uMx (x, t), uMxx(x, t) and uMxxx(x, t) as following

Dα
t u

M (x, t) ' 1

64

M∑
i=0

M∑
j=0

j∑
r=0

λr,j cij U
∗
r (t)

×
[
U∗i−3(x)− 2U∗i−2(x)− U∗i−1(x)− U∗i+1(x)− 2U∗i+2(x) + U∗i+3(x) + 4U∗i (x)

]
,

(37)

uM (x, t)uMx (x, t) ≈ 1

64

M∑
r=0

M∑
s=0

M∑
i=0

M∑
j=0

i+2∑
k=0

j∑
k=0

M∑
n=0

s∑
l=0

M∑
p=0

Hk,j Hl,s hp,l hn,k bk,i cij crs

×
[
U∗r−3(x)− 2U∗r−2(x)− U∗r−1(x)− U∗r+1(x)− 2U∗r+2(x) + U∗r+3(x) + 4U∗r (x)

]
× U∗p−s+2 l(t)U

∗
k (x)U∗n−j+2 k(t),

(38)

uMxx(x, t) ≈
M∑
i=0

M∑
j=0

i+1∑
k=0

j∑
k=0

M∑
n=0

Hk,j hn,k c̄k,i cij U∗k (x)U∗n−j+2 k(t), (39)

uMxxx(x, t) ≈
M∑
i=0

M∑
j=0

i∑
k=0

j∑
k=0

M∑
n=0

Hk,j hn,k dk,i cij U∗k (x)U∗n−j+2 k(t). (40)

Therefore, relations (37)-(40) enable us to get the residual R(x, t) (36) in simple form.
To get the expansion coefficients cij , we apply the spectral collocation method, by forcing the
residual R(x, t) to be zero at some collocation points (xi, tj), that is, we get

R(xi, tj) = 0, (41)
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where
{(xi, tj) : i, j = 2, 3, ...,M + 2} are the first distinct roots of ψ∗M+1(x) and φ∗M+1(t),
or
{(xi, tj) : i, j = 1, 2, ...,M + 1} are the first distinct roots of U∗M+1(x) and U∗M+1(t).
And hence, we get (M+1)2 nonlinear system of equations that can be solved through a suitable
numerical solver such as Newton’s iterative method.
Remark 3. In order to demonstrate the steps required to obtain the desired numerical solution
for Eq. (30) governed by the homogeneous conditions (31)-(32), Algorithm 1 is presented to
show the required steps till obtaining the numerical solution.

Algorithm 1 Coding algorithm for the proposed scheme of FDWE
Input k, υ, µ, α, M and f(x, t).
Step 1. Use transformation (29) to convert Eqs. (12)-(14) into Eqs. (30)-(32).
Step 2. Assume an approximate solution uM (x, t) in (35).
Step 3. Inserting relations (37)-(40).
Step 4. Compute the residual R(x, t).
Step 5. Apply collocation method to obtain the system in (41).
Step 6. Use FindRoot command with initial guess {cij = 10−i−j , i, j : 0, 1, ...,M}, to solve

the system in (41) to get cij .
Output uM (x, t)

4 Error bound
Let uM (x, t) ∈ ΥM be the best approximation of u(x, t); then, the definition of the best ap-
proximation enables us to write the following inequality

||u(x, t)− uM (x, t)||∞ ≤ ||u(x, t)− ûM (x, t)||∞, ∀ûM (x, t) ∈ ΥM . (42)

Moreover, the previous inequality is also true if ûM denotes the interpolating polynomial for
u(x, t) at points (xi, tj), where xi are the roots of ψ∗i (x), while tj are the roots of φ∗j (t).
Now, if we take similar steps as in [46, 47], we get

u(x, t)− ûM (x, t) =
∂M+1 u(η, t)

∂ xM+1 (M + 1)!

M∏
i=0

(x− xi) +
∂M+1 u(x, µ)

∂ tM+1 (M + 1)!

M∏
j=0

(t− tj)

− ∂2M+2 u(η̂, µ̂)

∂ xM+1 ∂ tM+1 ((M + 1)!)2

M∏
i=0

(x− xi)
M∏
j=0

(t− tj),

(43)

where η, η̂, µ, µ̂ ∈ [0, 1].
Now,

||u(x, t)− ûM (x, t)||∞ ≤ max
(x,t)∈Ω

∣∣∣∣∂M+1 u(η, t)

∂ xM+1

∣∣∣∣ ||∏M
i=0(x− xi)||∞
(M + 1)!

+ max
(x,t)∈Ω

∣∣∣∣∂M+1 u(x, µ)

∂ tM+1

∣∣∣∣ ||
∏M
j=0(t− tj)||∞
(M + 1)!

− max
(x,t)∈Ω

∣∣∣∣ ∂2M+2 u(η̂, µ̂)

∂ xM+1 ∂ tM+1

∣∣∣∣ ||
∏M
i=0(x− xi)||∞ ||

∏M
j=0(t− tj)||∞

((M + 1)!)2
.

(44)
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Since u is a smooth function on Ω = [0, 1]2, then there exist three constants σ1, σ2 and σ3, such
that

max
(x,t)∈Ω

∣∣∣∣∂M+1 u(x, t)

∂ xM+1

∣∣∣∣ ≤ σ1, max
(x,t)∈Ω

∣∣∣∣∂M+1 u(x, µ)

∂ tM+1

∣∣∣∣ ≤ σ2, max
(x,t)∈Ω

∣∣∣∣ ∂2M+2 u(η̂, µ̂)

∂ xM+1 ∂ tM+1

∣∣∣∣ ≤ σ3.

(45)
To minimize the factor ||

∏M
i=0(x − xi)||∞, let us use the one-to-one mapping x = 1

2 (z + 1)
between the intervals [−1, 1] and [0, 1] to deduce that

min
xi∈[0,1]

max
x∈[0,1]

∣∣∣∣∣
M∏
i=0

(x− xi)

∣∣∣∣∣ = min
zi∈[−1,1]

max
z∈[−1,1]

∣∣∣∣∣
M∏
i=0

1

2
(z − zi)

∣∣∣∣∣
=

(
1

2

)M+1

min
zi∈[−1,1]

max
z∈[−1,1]

∣∣∣∣∣
M∏
i=0

(z − zi)

∣∣∣∣∣
=

(
1

2

)M+1

min
zi∈[−1,1]

max
z∈[−1,1]

∣∣∣∣ψM−2(z)

ψ̄M

∣∣∣∣ ,
(46)

where ψ̄M = 2M−5 is the leading coefficient of ψM−2(z) =
(

1+z
2

) (
1−z

2

)2
UM−2(z) and zi are

the roots of ψM+1(z).

Similarly, the factor ||
∏M
j=0(t − tj)||∞, can be minimized by using the one-to-one mapping

t = 1
2 (t̄+ 1) between the intervals [−1, 1] and [0, 1] to deduce that

min
tj∈[0,1]

max
t∈[0,1]

∣∣∣∣∣∣
M∏
j=0

(t− tj)

∣∣∣∣∣∣ =

(
1

2

)M+1

min
t̄j∈[−1,1]

max
t̄∈[−1,1]

∣∣∣∣φM (t̄)

φ̂M

∣∣∣∣ , (47)

where φ̂M = α 2M−α is the leading coefficient of φM (t̄) =
(

1+t̄
2

)α
UM (t̄) and t̄j are the roots

of φM+1(t̄).
It is known that

max
z∈[−1,1]

|ψM−2(z)| = max
z∈[−1,1]

∣∣∣∣∣
(

1 + z

2

) (
1− z

2

)2

UM−2(z)

∣∣∣∣∣ =
4 (M − 1)

27
, (48)

and

max
t̄∈[−1,1]

|φM (t̄)| = max
t̄∈[−1,1]

∣∣∣∣(1− t̄
2

)α
UM (t̄)

∣∣∣∣ = M + 1. (49)

And hence, inequality (45) along with Equations (46), (47), (48) and (49) help us to obtain the
following desired result

||u(x, t)− uM (x, t)||∞ ≤ ||u(x, t)− ûM (x, t)||∞

< σ1
43−M (M − 1)

27 Γ(M + 2)
+ σ2

α 2α−2M−1

Γ(M + 1)

+ σ3

α
(
M2 − 1

)
2α−4M+5

27 Γ(M + 2)2
,

(50)

which represent an upper bound of the absolute error.
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5 Illustrative examples

Test Problem 1. ([45]). Consider the time-fractional KdV-Burgers’ equation of the form

Dα
t u(x, t) + u(x, t)ux(x, t)− uxx(x, t) + uxxx(x, t) = f(x, t), 0 < α ≤ 1, (51)

subject to the following initial and boundary conditions

u(x, 0) = 0, 0 < x ≤ 1,

u(0, t) = u(1, t) = ux(1, t) = 0, 0 < t ≤ 1,
(52)

where u(x, t) = tα (x − 1)4 sin(π x) is the exact solution of this problem and f(x, t) is deter-
mined by Equation (51) consistent with the chosen solution.

In Tables 1 and 2, we give a comparison of L2 error between our method and the method
in [45] at α = 0.4 and α = 0.8. Figure 1 shows the AE at different values of M when α = 0.9.
Table 3 presents the AE at different values of t and the computational time (CPU time) when
α = 0.7 and M = 16.

Table 1: Comparison of L2 error of Example 1.

Method in [45] at M = dNmin{r α,2}e Our method at M = 16
r N Error at α = 0.4 Error at α = 0.8 Error at α = 0.4 Error at α = 0.8

8 4.7587×10−2 1.0273×10−2

3 16 2.2552×10−2 2.5810×10−3 3.52912×10−14 1.22125×10−15

32 9.8238×10−3 6.4395×10−4

Table 2: Comparison of L2 error of Example 1.

Method in [45] at N = 100, r = 2
α Our method at M = 16

M Error at α = 0.4 Error at α = 0.8 Error at α = 0.4 Error at α = 0.8

4 1.1873×10−2 1.1888×10−2

8 2.0365×10−3 2.0646×10−3 3.52912×10−14 1.22125×10−15

16 4.7068×10−4 4.5241×10−4
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Figure 1: The AE for Example 1 at different values of M for α = 0.9.

Table 3: The AE of Example 1 at α = 0.7,M = 16.

x t = 2
10 t = 4

10 t = 6
10 t = 8

10 CPU time
0.1 7.52454× 10−14 7.52731× 10−14 7.49678× 10−14 7.47458× 10−14

0.2 1.10871× 10−13 1.10911× 10−13 1.10467× 10−13 1.10328× 10−13

0.3 1.15921× 10−13 1.16061× 10−13 1.15657× 10−13 1.15352× 10−13

0.4 1.01787× 10−13 1.01974× 10−13 1.01669× 10−13 1.01294× 10−13

0.5 7.85587× 10−14 7.86593× 10−14 7.84442× 10−14 7.82291× 10−14 147.139
0.6 5.36862× 10−14 5.37764× 10−14 5.36446× 10−14 5.34919× 10−14

0.7 3.15512× 10−14 3.15976× 10−14 3.15147× 10−14 3.13768× 10−14

0.8 1.45151× 10−14 0.45489× 10−14 1.44871× 10−14 1.44422× 10−14

0.9 3.75442× 10−15 3.76249× 10−15 3.75766× 10−15 3.74353× 10−15

Test Problem 2. Consider the time-fractional KdV-Burgers’ equation of the form

Dα
t u(x, t) + u(x, t)ux(x, t)− uxx(x, t) + uxxx(x, t) = f(x, t), 0 < α ≤ 1, (53)

subject to the following initial and boundary conditions

u(x, 0) = 0, 0 < x ≤ 1,

u(0, t) = u(1, t) = ux(1, t) = 0, 0 < t ≤ 1,
(54)

where u(x, t) = x (x− 1)5 tα is the exact solution of this problem and f(x, t) is determined by
Equation (53) consistent with the chosen solution.
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Figure 2 shows the AE and approximate solution at α = 0.2 whenM = 12. Table 4 presents
the AE at different values of t and the CPU time when α = 0.5 and M = 12. Figure 3 shows
the AE at different values of M when α = 0.8.

Figure 2: The AE (left) and approximate solution (right) for Example 2 at α = 0.2,M = 12.

Table 4: The AE of Example 2 at α = 0.5,M = 12.

x t = 3
10 t = 5

10 t = 9
10 CPU time

0.1 6.93889× 10−18 0 6.93889× 10−18

0.2 6.93889× 10−18 6.93889× 10−18 1.38778× 10−17

0.3 1.04083× 10−17 0 6.93889× 10−18

0.4 6.93889× 10−18 3.46945× 10−18 1.04083× 10−17

0.5 6.93889× 10−18 1.73472× 10−18 3.46945× 10−18 62.984
0.6 5.63785× 10−18 6.93889× 10−18 8.67362× 10−19

0.7 3.03577× 10−18 4.33681× 10−19 2.60209× 10−18

0.8 9.48677× 10−19 2.11419× 10−18 2.65631× 10−18

0.9 1.66018× 10−19 2.28699× 10−19 7.69106× 10−19

Figure 3: The AE for Example 2 at different values of M for α = 0.8.

Test Problem 3. Consider the time-fractional KdV-Burgers’ equation of the form

Dα
t u(x, t) + u(x, t)ux(x, t)− uxx(x, t) + uxxx(x, t) = f(x, t), 0 < α ≤ 1, (55)
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subject to the following initial and boundary conditions

u(x, 0) = 0, 0 < x ≤ 1,

u(0, t) = u(1, t) = ux(1, t) = 0, 0 < t ≤ 1,
(56)

where u(x, t) = (1−x)2 x5/2 tα+1 is the exact solution of this problem and f(x, t) is determined
by Equation (55) consistent with the chosen solution.

Table 5 presents the AE at different values of t and the CPU time when α = 0.2 andM = 16.
Figure 4 shows the AE and approximate solution at α = 0.5 when M = 16. Table 6 presents
the AE at different values of t and the CPU time when α = 0.9 and M = 16.

Table 5: The AE of Example 3 at α = 0.2,M = 16.

x t = 3
10 t = 5

10 t = 9
10 CPU time

0.1 1.22775× 10−8 2.26669× 10−8 4.58946× 10−8

0.2 6.12315× 10−8 1.13021× 10−7 2.28801× 10−7

0.3 1.8888× 10−8 3.48522× 10−8 7.05344× 10−8

0.4 4.44177× 10−8 8.20105× 10−8 1.66068× 10−7

0.5 4.19961× 10−8 7.7504× 10−8 1.56872× 10−7 140.594
0.6 4.15244× 10−8 7.66681× 10−8 1.55253× 10−7

0.7 1.0532× 10−8 1.94297× 10−8 3.93095× 10−8

0.8 5.29158× 10−10 9.70573× 10−10 1.95065× 10−9

0.9 1.10494× 10−8 2.03984× 10−8 4.13017× 10−8

Figure 4: The AE (left) and approximate solution (right) for Example 3 at α = 0.5,M = 16.

6 Concluding remarks

In this study, the third-order time-fractional KdV equation was numerically handled. A twofold
expansion in terms of a Chebyshev polynomial of the second kind was used to express an ap-
proximation of the solution. The tau approach is used. Some theoretical findings aided the
development of our desired approximation solutions. In addition, a formula for the third-order
derivatives of a particular basis function, represented as a specific combination of the shifted
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Table 6: The AE of Example 3 at α = 0.9,M = 16.

x t = 3
10 t = 5

10 t = 9
10 CPU time

0.1 5.25679× 10−9 1.39106× 10−8 4.25758× 10−8

0.2 2.64334× 10−8 6.96779× 10−8 2.1267× 10−7

0.3 2.64334× 10−9 2.16063× 10−8 6.57156× 10−8

0.4 1.89934× 10−8 5.02974× 10−8 1.54022× 10−7

0.5 1.82054× 10−8 4.78903× 10−8 1.4595× 10−7 143.093
0.6 1.77687× 10−8 4.70394× 10−8 1.44016× 10−7

0.7 4.60913× 10−9 1.20682× 10−8 3.66522× 10−8

0.8 2.66452× 10−10 6.53017× 10−10 1.88272× 10−9

0.9 4.74549× 10−9 1.25403× 10−8 3.83444× 10−8

second-kind Chebyshev polynomials, was provided in terms of the shifted second-kind Cheby-
shev polynomials themselves. The algorithm was tested by giving a few instances. By making
some modifications, our numerical technique can treat more complicated FDEs with non-linear
power terms analogous to ours. All codes were written and debugged by Mathematica 11 on HP
Z420 Workstation, Processor: Intel (R) Xeon(R) CPU E5-1620 - 3.6 GHz, 16GB Ram DDR3,
and 512 GB storage. We are planning to extend the presented algorithm to handle higher-order
PDEs in applied mathematics with more nonlinear terms.
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