Degree-Based Function Index of Graphs with Given Connectivity

Tomáš Vetrík ${ }^{1 \star}$
${ }^{1}$ Department of Mathematics and Applied Mathematics, University of the Free State, Bloemfontein, South Africa

Keywords:

General augmented Zagreb index,

Randić index,
Sombor index,

AMS Subject Classification (2020):

05C09; 05C07; 05C40

Article History:
Received: 13 March 2023
Accepted: 3 June 2023

Abstract

We investigate the index $I_{f}(G)=$ $\sum_{v w \in E(G)} f\left(d_{G}(v), d_{G}(w)\right)$ of a graph G, where f is a symmetric function of two variables satisfying certain conditions, $E(G)$ is the edge set of G, and $d_{G}(v)$ and $d_{G}(w)$ are the degrees of vertices v and w in G, respectively. Those conditions are satisfied by functions that can be used to define the general sum-connectivity index χ_{a}, general Randić index R_{a}, general reduced second Zagreb index $G R M_{a}$ for some $a \in \mathbb{R}$, general Sombor index $S O_{a, b}$, general augmented Zagreb index $A Z I_{a, b}$ and by one other generalization $M_{a, b}$ for some $a, b \in \mathbb{R}$. The general augmented Zagreb index is a new index defined in this paper.

We obtain a sharp upper bound on I_{f} for graphs with given order and connectivity, and a sharp lower bound on I_{f} for 2-connected graphs with given order. Our upper bound holds for $M_{a, b}$ and $S O_{a, b}$ where $a, b \geq 1 ; \chi_{a}$ and R_{a} where $a \geq 1$; and $G R M_{a}$ where $a>-1$. Our lower bound holds for $M_{a, b}$ where $a \geq 0$ and $b \geq-a ; S O_{a, b}$ where $a, b \geq 0$ or $a, b \leq 0 ; A Z I_{a, b}$ where $a \geq-2$ and $b \geq 0 ; \chi_{a}$ and R_{a} where $a \geq 0$; and $G R M_{a}$ where $a>-2$.

1 Introduction

Let $V(G)$ and $E(G)$ be the vertex set and the edge set of a connected graph G. The order of G is the number of vertices in $V(G)$. The degree of $v \in V(G)$, denoted by $d_{G}(v)$, is the number of vertices adjacent to v. The vertex connectivity or just the connectivity of a connected graph G is the smallest number of vertices whose removal from G disconnects G. For $k \geq 1$, a graph is k-connected if its connectivity is at least k.

[^0]For a graph G, we study degree-based indices defined as

$$
I_{f}(G)=\sum_{v w \in E(G)} f\left(d_{G}(v), d_{G}(w)\right)
$$

where f is a real-valued symmetric function of two variables. If $f\left(d_{G}(v), d_{G}(w)\right)=\left[d_{G}(v)+\right.$ $\left.d_{G}(w)\right]^{a}$ where $a \in \mathbb{R}$, we obtain the general sum-connectivity index

$$
\chi_{a}(G)=\sum_{v w \in E(G)}\left[d_{G}(v)+d_{G}(w)\right]^{a},
$$

of G defined by Zhou and Trinajstić [1]. From $\chi_{a}(G)$ we obtain the reciprocal sum-connectivity index if $a=\frac{1}{2}$, first Zagreb index if $a=1$ and first hyper-Zagreb index if $a=2$.

If $f\left(d_{G}(v), d_{G}(w)\right)=\left[d_{G}(v) d_{G}(w)\right]^{a}$ where $a \in \mathbb{R}$, we obtain the general Randić index

$$
R_{a}(G)=\sum_{v w \in E(G)}\left[d_{G}(v) d_{G}(w)\right]^{a}
$$

of a graph G which was first investigated by Bollobás and Erdős [2]. From $R_{a}(G)$ we get the reciprocal Randić index if $a=\frac{1}{2}$, the second Zagreb index if $a=1$, and the second hyper-Zagreb index if $a=2$.

We can generalize the general Randić index and general sum-connectivity index even more by using $f\left(d_{G}(v), d_{G}(w)\right)=\left[d_{G}(v) d_{G}(w)\right]^{a}\left[d_{G}(v)+d_{G}(w)\right]^{b}$ where $a, b \in \mathbb{R}$. We obtain the generalization

$$
M_{a, b}(G)=\sum_{v w \in E(G)}\left[d_{G}(v) d_{G}(w)\right]^{a}\left[d_{G}(v)+d_{G}(w)\right]^{b}
$$

(see [3]). From $M_{a, b}(G)$ we get the third redefined Zagreb index also called second Gourava index (see [4]) if $a=1$ and $b=1$, second redefined Zagreb index also known as inverse sum indeg index if $a=1$ and $b=-1$, second hyper-Gourava index (see [5]) if $a=2$ and $b=2$, general Randić index if $b=0$ and general sum-connectivity index if $a=0$.

We also consider the general Sombor index of a graph G,

$$
S O_{a, b}(G)=\sum_{v w \in E(G)}\left(\left[d_{G}(v)\right]^{a}+\left[d_{G}(w)\right]^{a}\right)^{b}
$$

defined for $a, b \in \mathbb{R}$; see [6]. We obtain $S O_{a, b}(G)$ from $I_{f}(G)$ if $f\left(d_{G}(v), d_{G}(w)\right)=\left(\left[d_{G}(v)\right]^{a}+\right.$ $\left.\left[d_{G}(w)\right]^{a}\right)^{b}$. From $S O_{a, b}(G)$ we get the classical Sombor index if $a=2$ and $b=\frac{1}{2}$ (see [7]), forgotten index if $a=2$ and $b=1$, and general sum-connectivity index if $a=1$.

If $f\left(d_{G}(v), d_{G}(w)\right)=\left(d_{G}(v)+a\right)\left(d_{G}(w)+a\right)$ where $a \in \mathbb{R}$, we obtain the general reduced second Zagreb index

$$
G R M_{a}(G)=\sum_{v w \in E(G)}\left(d_{G}(v)+a\right)\left(d_{G}(w)+a\right)
$$

of a graph G from $I_{f}(G)$. This index was defined in [8]. From $G R M_{a}(G)$ we get the second Zagreb index if $a=0$ and reduced second Zagreb index if $a=-1$.

For $a, b \in \mathbb{R}$ where $a>-3$, we introduce the general augmented Zagreb index

$$
A Z I_{a, b}(G)=\sum_{v w \in E(G)}\left(\frac{d_{G}(v) d_{G}(w)}{d_{G}(v)+d_{G}(w)+a}\right)^{b}
$$

of a graph G. We obtain $A Z I_{a, b}(G)$ from $I_{f}(G)$ if $f\left(d_{G}(v), d_{G}(w)\right)=\left(\frac{d_{G}(v) d_{G}(w)}{d_{G}(v)+d_{G}(w)+a}\right)^{b}$. We call it "general augmented Zagreb index", because for $a=-2$ and $b=3$, we get the classical augmented Zagreb index.

Indices are usually studied for connected graphs G of order $n \geq 3$. The reason for defining the general augmented Zagreb index for $a>-3$ is that $d_{G}(v)+d_{G}(w)$ is 3 if G contains an edge $v w$ incident with vertices having degrees 1 and 2 . In that case, if $a=-3$, we would have $d_{G}(v)+d_{G}(w)+a=0$ in the denominator of $\frac{d_{G}(v) d_{G}(w)}{d_{G}(v)+d_{G}(w)+a}$.

Indices of graphs are investigated due to their extensive applications, especially in chemistry. Indices using a degree-based edge-weight function were investigated by Hu et al. [9], who presented extremal results for graphs with given order and size. Degree-based indices called bond incident degree indices were investigated for example in [10-14]. Ali and Dimitrov [10] studied graphs with a small number of cycles, Ali et al. [11] considered graphs with given order and size, Liu et al. [12] studied complex structures in drugs, Ye et al. [13] investigated polygonal cacti and Zhou et al. [14] studied graphs with a given number of pendant vertices. General degree-based indices were studied also in [15-22] and some related indices in [23, 24]. Chen and Guo [25] obtained bipartite graphs with prescribed connectivity having the maximum Zagreb indices. Tomescu, Arshad, and Jamil [26] presented the graph of given order and connectivity having the maximum χ_{a} and R_{a} for $a \geq 1$, and the 2 -connected graph having the minimum χ_{a} and R_{a} for $a>0$.

For a function f satisfying certain conditions, we obtain a sharp upper bound on I_{f} for graphs with given order and connectivity, and a sharp lower bound on I_{f} for 2-connected graphs with given order. Our upper bound holds for $M_{a, b}$ and $S O_{a, b}$ where $a, b \geq 1 ; \chi_{a}$ and R_{a} where $a \geq 1$; and $G R M_{a}$ where $a>-1$. Our lower bound holds for $M_{a, b}$ where $a \geq 0$ and $b \geq-a ; S O_{a, b}$ where $a, b \geq 0$ or $a, b \leq 0 ; A Z I_{a, b}$ where $a \geq-2$ and $b \geq 0 ; \chi_{a}$ and R_{a} where $a \geq 0$; and $G R M_{a}$ where $a>-2$.

2 Preliminary results

We investigate degree-based indices with the help of Definition 2.1.
Definition 2.1. A symmetric function $f(x, y)$ of two variables x and y having property Q is any function satisfying the following conditions:
(i) $f(x, y)>0$ for $x, y \geq 2$,
(ii) $f\left(x_{1}, y_{1}\right) \leq f\left(x_{2}, y_{2}\right)$ for $2 \leq x_{1} \leq x_{2}$ and $2 \leq y_{1} \leq y_{2}$.

There are many functions that have the property Q. In Lemma 2.2 we present those ones which can be used to obtain some well-known indices. In the proof of Lemma 2.2, we consider the functions $(x y)^{a}(x+y)^{b}$ and $\left(x^{a}+y^{a}\right)^{b}$ for $x, y \geq 1$, because we use those values in Lemma 2.5.

Lemma 2.2. The following functions of two variables x and y have property Q :

- $(x y)^{a}(x+y)^{b}$ for $a \geq 0, b \geq-a$,
- $\left(x^{a}+y^{a}\right)^{b}$ for $a, b \geq 0$ or $a, b \leq 0$,
- $\left(\frac{x y}{x+y+a}\right)^{b}$ for $a \geq-2, b \geq 0$,
- $(x+a)(y+a)$ for $a>-2$.

Proof. We show that $f(x, y)=(x y)^{a}(x+y)^{b}$ has property Q for $a \geq 0$ and $b \geq-a$. Let $x, y \geq 1$.
(i) We get $(x y)^{a}(x+y)^{b}>0$.
(ii) Let $b=c-a$ where $a, c \geq 0$. Then

$$
\begin{aligned}
\frac{\partial f(x, y)}{\partial x} & =a(x y)^{a-1} y(x+y)^{c-a}+(c-a)(x y)^{a}(x+y)^{c-a-1} \\
& =a(x y)^{a-1}(x+y)^{c-a-1}[y(x+y)-x y]+c(x y)^{a}(x+y)^{c-a-1} \\
& =a y^{2}(x y)^{a-1}(x+y)^{c-a-1}+c(x y)^{a}(x+y)^{c-a-1} \\
& \geq 0 .
\end{aligned}
$$

Since $f(x, y)$ is symmetric, we get $\frac{\partial f(x, y)}{\partial y} \geq 0$. Thus, for $1 \leq x_{1} \leq x_{2}$ and $1 \leq y_{1} \leq y_{2}$, we have $f\left(x_{1}, y_{1}\right) \leq f\left(x_{2}, y_{2}\right)$.

Let $f(x, y)=\left(x^{a}+y^{a}\right)^{b}$ where both $a, b \geq 0$ or both $a, b \leq 0$. Let $x, y \geq 1$.
(i) We obtain $\left(x^{a}+y^{a}\right)^{b}>0$.
(ii) We get

$$
\frac{\partial f(x, y)}{\partial x}=b\left(x^{a}+y^{a}\right)^{b-1} a x^{a-1} \geq 0
$$

since $\left(x^{a}+y^{a}\right)^{b-1}>0$ and $x^{a-1}>0$. Similarly, $\frac{\partial f(x, y)}{\partial y}>0$, so part (ii) holds.
We show that $f(x, y)=\left(\frac{x y}{x+y+a}\right)^{b}$ has property Q for $a \geq-2$ and $b \geq 0$. Let $x, y \geq 2$.
(i) We get $x y \geq 4$ and $x+y+a \geq 2$, thus $\left(\frac{x y}{x+y+a}\right)^{b}>0$.
(ii) We obtain

$$
\frac{\partial f(x, y)}{\partial x}=b\left(\frac{x y}{x+y+a}\right)^{b-1} \frac{y(y+a)}{(x+y+a)^{2}}=\frac{b x^{b-1} y^{b}(y+a)}{(x+y+a)^{b+1}} \geq 0
$$

since $b \geq 0, y+a \geq 0$ and $x, y, x+y+a>0$.
The function $f(x, y)=(x+a)(y+a)$ for $a>-2$ has property Q, since for $x, y \geq 2$:

$$
\text { (i) } \quad(x+a)(y+a)>0 \quad \text { and } \quad \text { (ii) } \frac{\partial f(x, y)}{\partial x}=y+a>0 \text {. }
$$

Let us present a few functions, which are special cases of $(x y)^{a}(x+y)^{b}$ for $a \geq 0$ and $b \geq-a$.
Corollary 2.3. The functions $x y(x+y),(x y)^{2}(x+y)^{2}, \frac{x y}{x+y},(x y)^{a}$ and $(x+y)^{a}$ for $a \geq 0$ have property Q.

Proof. By Lemma 2.2, $(x y)^{a}(x+y)^{b}$ has property Q for $a \geq 0$ and $b \geq-a$.

- If $a=1$ and $b=1$, we get $x y(x+y)$.
- If $a=2$ and $b=2$, we get $(x y)^{2}(x+y)^{2}$.
- If $a=1$ and $b=-1$, we get $\frac{x y}{x+y}$.
- If $b=0$, we get $(x y)^{a}$ for $a \geq 0$.
- If $a=0$, we get $(x+y)^{b}$ for $b \geq 0$.

The first two conditions of Definitions 2.1 and 2.4 are almost equal. In Definition 2.1 we consider $f(x, y)$ for $x, y \geq 2$. In Definition 2.4 we consider $f(x, y)$ for $x, y \geq 1$. Moreover, in Definition 2.4 we have a new third condition.

Definition 2.4. A symmetric function $f(x, y)$ of two variables x and y having property P is any function satisfying the following conditions:
(i) $f(x, y)>0$ for $x, y \geq 1$,
(ii) $f\left(x_{1}, y_{1}\right) \leq f\left(x_{2}, y_{2}\right)$ for $1 \leq x_{1} \leq x_{2}$ and $1 \leq y_{1} \leq y_{2}$,
(iii) $g\left(x_{1}, y_{1}\right)=f\left(x_{1}+c, y_{1}+c^{\prime}\right)-f\left(x_{1}, y_{1}\right) \leq f\left(x_{2}+c, y_{2}+c^{\prime}\right)-f\left(x_{2}, y_{2}\right)=g\left(x_{2}, y_{2}\right)$ for $1 \leq x_{1} \leq x_{2}, 1 \leq y_{1} \leq y_{2}$ and $c, c^{\prime} \geq 0$.

Since we have an additional condition in Definition 2.4, there are functions that have property Q, but not property P.

Lemma 2.5. The following functions of two variables x and y have property P :

- $(x y)^{a}(x+y)^{b}$ and $\left(x^{a}+y^{a}\right)^{b}$ for $a, b \geq 1$,
- $(x+y)^{a}$ and $(x y)^{a}$ for $a \geq 1$,
- $(x+a)(y+a)$ for $a>-1$.

Proof. Let $f(x, y)=(x+a)(y+a)$ where $a>-1$. Let $x, y \geq 1$.
(i) We have $(x+a)(y+a)>0$.
(ii) We get $\frac{\partial f(x, y)}{\partial x}=y+a>0$. Similarly, $\frac{\partial f(x, y)}{\partial y}>0$.
(iii) For

$$
g(x, y)=f\left(x+c, y+c^{\prime}\right)-f(x, y)=(x+c+a)\left(y+c^{\prime}+a\right)-(x+a)(y+a)
$$

we have

$$
\frac{\partial g(x, y)}{\partial x}=\left(y+c^{\prime}+a\right)-(y+a)=c^{\prime} \geq 0
$$

The function $f(x, y)$ is symmetric, thus $g(x, y)$ is symmetric. Therefore $\frac{\partial g(x, y)}{\partial y} \geq 0$. Thus, for $1 \leq x_{1} \leq x_{2}, 1 \leq y_{1} \leq y_{2}$ and $c, c^{\prime} \geq 0$, we have $g\left(x_{1}, y_{1}\right)=f\left(x_{1}+c, y_{1}+c^{\prime}\right)-$ $f\left(x_{1}, y_{1}\right) \leq f\left(x_{2}+c, y_{2}+c^{\prime}\right)-f\left(x_{2}, y_{2}\right)=g\left(x_{2}, y_{2}\right)$.

Hence, $f(x, y)=(x+a)(y+a)$ has property P for $a>-1$.
Conditions (i) and (ii) of Definition 2.4 for the functions $\left(x^{a}+y^{a}\right)^{b}$ and $(x y)^{a}(x+y)^{b}$ (containing special cases $(x+y)^{a}$ and $\left.(x y)^{a}\right)$ are proved in Lemma 2.2. Condition (iii) for $(x+y)^{a},(x y)^{a}$ and $(x y)^{a}(x+y)^{b}$, where $a, b \geq 1$, was proved in [20]. It remains to show that $\left(x^{a}+y^{a}\right)^{b}$ satisfies condition (iii).

Let $f(x, y)=\left(x^{a}+y^{a}\right)^{b}$ where $a, b \geq 1$. We consider

$$
g(x, y)=f\left(x+c, y+c^{\prime}\right)-f(x, y)=\left([x+c]^{a}+\left[y+c^{\prime}\right]^{a}\right)^{b}-\left(x^{a}+y^{a}\right)^{b} .
$$

We obtain

$$
\frac{\partial g(x, y)}{\partial x}=a b\left([x+c]^{a}+\left[y+c^{\prime}\right]^{a}\right)^{b-1}[x+c]^{a-1}-a b\left(x^{a}+y^{a}\right)^{b-1} x^{a-1} \geq 0
$$

since for $a, b \geq 1$, we have $[x+c]^{a-1} \geq x^{a-1},[x+c]^{a} \geq x^{a},\left[y+c^{\prime}\right]^{a} \geq y^{a}$ and $\left([x+c]^{a}+[y+\right.$ $\left.\left.c^{\prime}\right]^{a}\right)^{b-1} \geq\left(x^{a}+y^{a}\right)^{b-1}$. Similarly, $\frac{\partial g(x, y)}{\partial y} \geq 0$. So condition (iii) of Definition 2.4 is satisfied by the function $\left(x^{a}+y^{a}\right)^{b}$. Hence, $\left(x^{a}+y^{a}\right)^{b}$ has property P for $a, b \geq 1$.

Let us compare I_{f} of two graphs that differ only by one edge. We use Lemma 2.6 in the proofs of Theorems 3.1 and 4.2.

Lemma 2.6. Let G be a connected/2-connected graph containing two non-adjacent vertices v_{1} and v_{2}. Then for a function $f(x, y)$ satisfying conditions (i) and (ii) of Definition 2.4/Definition 2.1, we get $I_{f}(G)<I_{f}\left(G+v_{1} v_{2}\right)$.
Proof. For connected graphs and a function with slightly different condition (ii) in Definition 2.4, Lemma 2.6 was proved in [20]. The proof for our function introduced in Definition 2.4 is identical. Let us consider Lemma 2.6 for 2 -connected graphs. Note that in Definition 2.4, we use $f(x, y)$ for $x, y \geq 1$, but in Definition 2.1, we use $f(x, y)$ for $x, y \geq 2$.

If G is 2 -connected, then also $G+v_{1} v_{2}$ is 2 -connected. 2-connected graphs do not contain vertices of degree 1 , therefore for any vertex $v \in V(G)$, we get $d_{G+v_{1} v_{2}}(v) \geq d_{G}(v) \geq 2$. Then, similarly as in [20], it can be easily shown that $I_{f}(G)<I_{f}\left(G+v_{1} v_{2}\right)$.

3 Upper bound for graphs with given connectivity

For two graphs G_{1} and G_{2}, the union $G_{1} \cup G_{2}$ and the join $G_{1}+G_{2}$ have the vertex set $V\left(G_{1}\right) \cup V\left(G_{2}\right)$. The edge set of $G_{1} \cup G_{2}$ is $E\left(G_{1}\right) \cup E\left(G_{2}\right)$. The edge set of $G_{1}+G_{2}$ consists of $E\left(G_{1}\right), E\left(G_{2}\right)$, and every vertex of G_{1} is adjacent to every vertex of G_{2}. Let us denote the complete graph of order n by K_{n}. Note that $1 \leq \kappa \leq n-2$ for the connectivity κ of any connected graph of order n except for K_{n}.

Theorem 3.1. Let G be any graph with n vertices and connectivity κ, where $1 \leq \kappa \leq n-2$. If f has property P, then

$$
\begin{aligned}
I_{f}(G) & \leq\binom{ n-\kappa-1}{2} f(n-2, n-2)+\binom{\kappa}{2} f(n-1, n-1) \\
& +\kappa(n-\kappa-1) f(n-1, n-2)+\kappa f(n-1, \kappa) .
\end{aligned}
$$

with equality if and only if G is $\left(K_{n-\kappa-1} \cup K_{1}\right)+K_{\kappa}$.
Proof. Among graphs with n vertices and connectivity κ, let G^{\prime} be any graph with the largest I_{f}. Thus there is a set $S \subset V\left(G^{\prime}\right)$ with κ vertices, such that $G^{\prime}-S$ is disconnected. So, it is possible to divide the vertices in $V\left(G^{\prime}\right) \backslash S$ into two sets S_{1} and S_{2}, such that no vertex in S_{1} is adjacent to a vertex in S_{2}. The function f has property P, thus by Lemma 2.6, I_{f} increases with the addition of edges. So any two vertices in S_{1} are adjacent, any two vertices in S_{2} are adjacent and every vertex of S has degree $n-1$ in G^{\prime}. Let $\left|S_{1}\right|=n_{1}$ and $\left|S_{2}\right|=n_{2}$. Without loss of generality, we can assume that $n_{1} \geq n_{2} \geq 1$. We obtain $n_{1}+n_{2}=n-\kappa$, so G^{\prime} is $\left(K_{n_{1}} \cup K_{n_{2}}\right)+K_{\kappa}$. Let us prove by contradiction that $n_{2}=1$.

Suppose that $n_{2} \geq 2$ (where $n_{1} \geq n_{2}$). Let us compare I_{f} of $G^{\prime}=\left(K_{n_{1}} \cup K_{n_{2}}\right)+K_{\kappa}$ and $G^{\prime \prime}=\left(K_{n_{1}+1} \cup K_{n_{2}-1}\right)+K_{\kappa}$. For every $z \in S$, we have

$$
d_{G^{\prime}}(z)=d_{G^{\prime \prime}}(z)=n-1 .
$$

In G^{\prime}, we have

$$
d_{G^{\prime}}(v)=\kappa+n_{1}-1 \text { and } d_{G^{\prime}}\left(v^{\prime}\right)=\kappa+n_{2}-1,
$$

for every $v \in V\left(K_{n_{1}}\right)$ and every $v^{\prime} \in V\left(K_{n_{2}}\right)$. In $G^{\prime \prime}$, we have

$$
d_{G^{\prime \prime}}(w)=\kappa+n_{1} \quad \text { and } \quad d_{G^{\prime \prime}}\left(w^{\prime}\right)=\kappa+n_{2}-2
$$

for every $w \in V\left(K_{n_{1}+1}\right)$ and every $w^{\prime} \in V\left(K_{n_{2}-1}\right)$. We obtain

$$
\begin{aligned}
& I_{f}\left(G^{\prime \prime}\right)-I_{f}\left(G^{\prime}\right) \\
& =\kappa\left(n_{1}+1\right) f\left(n-1, n_{1}+\kappa\right)-\kappa n_{1} f\left(n-1, n_{1}+\kappa-1\right) \\
& +\kappa\left(n_{2}-1\right) f\left(n-1, n_{2}+\kappa-2\right)-\kappa n_{2} f\left(n-1, n_{2}+\kappa-1\right) \\
& +\binom{n_{1}+1}{2} f\left(n_{1}+\kappa, n_{1}+\kappa\right)-\binom{n_{1}}{2} f\left(n_{1}+\kappa-1, n_{1}+\kappa-1\right) \\
& +\binom{n_{2}-1}{2} f\left(n_{2}+\kappa-2, n_{2}+\kappa-2\right)-\binom{n_{2}}{2} f\left(n_{2}+\kappa-1, n_{2}+\kappa-1\right) \\
& =\kappa f\left(n-1, n_{1}+\kappa\right)-\kappa f\left(n-1, n_{2}+\kappa-2\right) \\
& +\kappa n_{1}\left[f\left(n-1, n_{1}+\kappa\right)-f\left(n-1, n_{1}+\kappa-1\right)\right] \\
& -\kappa n_{2}\left[f\left(n-1, n_{2}+\kappa-1\right)-f\left(n-1, n_{2}+\kappa-2\right)\right] \\
& +\left[\frac{n_{1}\left(n_{1}-1\right)}{2}+n_{1}\right] f\left(n_{1}+\kappa, n_{1}+\kappa\right)-\frac{n_{1}\left(n_{1}-1\right)}{2} f\left(n_{1}+\kappa-1, n_{1}+\kappa-1\right) \\
& +\left[\frac{n_{2}\left(n_{2}-1\right)}{2}-\left(n_{2}-1\right)\right] f\left(n_{2}+\kappa-2, n_{2}+\kappa-2\right) \\
& -\frac{n_{2}\left(n_{2}-1\right)}{2} f\left(n_{2}+\kappa-1, n_{2}+\kappa-1\right) \\
& =\kappa\left[f\left(n-1, n_{1}+\kappa\right)-f\left(n-1, n_{2}+\kappa-2\right)\right] \\
& +\kappa\left(n_{1}-n_{2}\right)\left[f\left(n-1, n_{1}+\kappa\right)-f\left(n-1, n_{1}+\kappa-1\right)\right] \\
& +\kappa n_{2}\left[f\left(n-1, n_{1}+\kappa\right)-f\left(n-1, n_{1}+\kappa-1\right)\right] \\
& -\kappa n_{2}\left[f\left(n-1, n_{2}+\kappa-1\right)-f\left(n-1, n_{2}+\kappa-2\right)\right] \\
& +\frac{n_{1}\left(n_{1}-1\right)-n_{2}\left(n_{2}-1\right)}{2}\left[f\left(n_{1}+\kappa, n_{1}+\kappa\right)-f\left(n_{1}+\kappa-1, n_{1}+\kappa-1\right)\right] \\
& +\frac{n_{2}\left(n_{2}-1\right)}{2}\left[f\left(n_{1}+\kappa, n_{1}+\kappa\right)-f\left(n_{1}+\kappa-1, n_{1}+\kappa-1\right)\right] \\
& -\frac{n_{2}\left(n_{2}-1\right)}{2}\left[f\left(n_{2}+\kappa-1, n_{2}+\kappa-1\right)-f\left(n_{2}+\kappa-2, n_{2}+\kappa-2\right)\right] \\
& +\left(n_{2}-1\right)\left[f\left(n_{1}+\kappa, n_{1}+\kappa\right)-f\left(n_{2}+\kappa-2, n_{2}+\kappa-2\right)\right] \\
& +\left(n_{1}-n_{2}+1\right) f\left(n_{1}+\kappa, n_{1}+\kappa\right) .
\end{aligned}
$$

Since $n_{1} \geq n_{2} \geq 2, \kappa \geq 1$ and the function f has property P, from part (ii) of Definition 2.1, we obtain

$$
f\left(n-1, n_{1}+\kappa\right) \geq f\left(n-1, n_{2}+\kappa-2\right), f\left(n-1, n_{1}+\kappa\right) \geq f\left(n-1, n_{1}+\kappa-1\right)
$$

$f\left(n_{1}+\kappa, n_{1}+\kappa\right) \geq f\left(n_{1}+\kappa-1, n_{1}+\kappa-1\right), f\left(n_{1}+\kappa, n_{1}+\kappa\right) \geq f\left(n_{2}+\kappa-2, n_{2}+\kappa-2\right)$.
By Definition 2.1 (i), we have $f\left(n_{1}+\kappa, n_{1}+\kappa\right)>0$. By Definition 2.1 (iii), we have

$$
f\left(n-1, n_{1}+\kappa\right)-f\left(n-1, n_{1}+\kappa-1\right) \geq f\left(n-1, n_{2}+\kappa-1\right)-f\left(n-1, n_{2}+\kappa-2\right),
$$

and

$$
\begin{aligned}
& f\left(n_{1}+\kappa, n_{1}+\kappa\right)-f\left(n_{1}+\kappa-1, n_{1}+\kappa-1\right) \\
& \geq f\left(n_{2}+\kappa-1, n_{2}+\kappa-1\right)-f\left(n_{2}+\kappa-2, n_{2}+\kappa-2\right)
\end{aligned}
$$

Thus $I_{f}\left(G^{\prime \prime}\right)-I_{f}\left(G^{\prime}\right)>0$, so $I_{f}\left(G^{\prime \prime}\right)>I_{f}\left(G^{\prime}\right)$, which means that G^{\prime} does not have the largest I_{f}. We have a contradiction.

Thus $n_{2}=1$. Then $n_{1}=n-\kappa-1$, so G^{\prime} is $\left(K_{n-\kappa-1} \cup K_{1}\right)+K_{\kappa}$ and

$$
\begin{aligned}
I_{f}\left(\left(K_{n-\kappa-1} \cup K_{1}\right)+K_{\kappa}\right) & =\binom{n-\kappa-1}{2} f(n-2, n-2)+\binom{\kappa}{2} f(n-1, n-1) \\
& +\kappa(n-\kappa-1) f(n-1, n-2)+\kappa f(n-1, \kappa)
\end{aligned}
$$

4 Lower bound for 2-connected graphs

A proper ear decomposition of G is a decomposition of G into a sequence of ears $P_{0}, P_{1}, \ldots, P_{k}$, where $k \geq 1, P_{0}$ is a cycle and P_{i} for $1 \leq i \leq k$ is a path whose terminal vertices are in $V\left(P_{0}\right) \cup \cdots \cup V\left(P_{i-1}\right)$ and internal vertices (if any) are not in $V\left(P_{0}\right) \cup \cdots \cup V\left(P_{i-1}\right)$. Whitney [27] gave a well-known characterization of 2-connected graphs.

Lemma 4.1. A graph is 2-connected if and only if it has a proper ear decomposition.
We use Lemma 4.1 to obtain a lower bound on I_{f} for 2-connected graphs.
Theorem 4.2. Let G be any 2 -connected graph with n vertices, where $n \geq 3$. If f has property Q, then

$$
I_{f}(G) \geq n f(2,2)
$$

with equality if and only if G is the cycle C_{n}.
Proof. For $n=3$, we have only one 2-connected graph which is C_{3}, so Theorem 4.2 holds for $n=3$. We prove Theorem 4.2 by induction on n. Assume that $n \geq 4$ and for any graph G of order $m<n$, we have $I_{f}(G) \geq m f(2,2)$ with equality if and only if G is C_{m}.

Let H be a graph with the smallest I_{f} among 2 -connected graphs with n vertices except for C_{n}. From Lemma 4.1, we know that H has a proper ear decomposition $P_{0}, P_{1}, \ldots, P_{k}$. Since H is not a cycle, we have $k \geq 1$. Let u and v be the terminal vertices of P_{k}. So $u, v \in V\left(P_{0}\right) \cup \cdots \cup V\left(P_{k-1}\right)$. Let r be the number of internal vertices of P_{k}. We have $r \geq 0$. Let H^{\prime} be obtained from H by the removal of all r internal vertices of P_{k} and all $r+1$ edges of P_{k}. Then H^{\prime} is a 2-connected graph containing the ears $P_{0}, P_{1}, \ldots, P_{k-1}$. The order of H^{\prime} is $n-r$. We consider the cases $r=0$ and $r \geq 1$.

Case 1: $r=0$.
Then P_{k} contains only one edge $u v$. We have $V\left(H^{\prime}\right)=V(H)$ and $E\left(H^{\prime}\right)=E(H) \backslash\{u v\}$. So, the order of H^{\prime} is n. By Lemma 2.6, $I_{f}\left(H^{\prime}\right)<I_{f}(H)$.

If $k \geq 2$, then H^{\prime} is not C_{n}, but the inequality $I_{f}\left(H^{\prime}\right)<I_{f}(H)$ contradicts the fact that H is a graph with the smallest I_{f} among 2-connected graphs with n vertices except for C_{n}.

If $k=1$, then H^{\prime} is P_{0} which is C_{n}, so $I_{f}\left(C_{n}\right)<I_{f}(H)$ which means that C_{n} is the 2 -connected graph of order n with the smallest I_{f}. Hence, the proof of the case $r=0$ is complete.

Case 2: $r \geq 1$.

If $u v \in E(H)$, then $u v \in E\left(P_{i}\right)$ for some $i \in\{0,1, \ldots, k-1\}$. Let us construct P_{i}^{\prime} with $V\left(P_{i}^{\prime}\right)=V\left(P_{i}\right) \cup V\left(P_{k}\right)$ and $E\left(P_{i}^{\prime}\right)=E\left(P_{i}\right) \cup E\left(P_{k}\right) \backslash\{u v\}$. Let P_{k}^{\prime} contain only one edge $u v$. Clearly, when we replace P_{i} and P_{k} in $P_{0}, P_{1}, \ldots, P_{k}$ by P_{i}^{\prime} and P_{k}^{\prime}, we again obtain a proper ear decomposition, where P_{k}^{\prime} contains only one edge and such situation was solved in Case 1.

Therefore, we can assume that $u v \notin E(H)$. Let $N_{H^{\prime}}(u)=\left\{u_{1}, \ldots, u_{s}\right\}$ and $N_{H^{\prime}}(v)=$ $\left\{v_{1}, \ldots, v_{t}\right\}$. Note that $s, t \geq 2$. By the induction hypothesis, we have $I_{f}\left(H^{\prime}\right) \geq(n-r) f(2,2)$. Thus

$$
\begin{aligned}
I_{f}(H) & =I_{f}\left(H^{\prime}\right)+(r-1) f(2,2)+f\left(d_{H}(u), 2\right)+f\left(d_{H}(v), 2\right) \\
& +\sum_{i=1}^{s}\left[f\left(d_{H}(u), d_{H}\left(u_{i}\right)\right)-f\left(d_{H}(u)-1, d_{H}\left(u_{i}\right)\right)\right] \\
& +\sum_{i=1}^{t}\left[f\left(d_{H}(v), d_{H}\left(v_{i}\right)\right)-f\left(d_{H}(v)-1, d_{H}\left(v_{i}\right)\right)\right] \\
& \geq(n-1) f(2,2)+f\left(d_{H}(u), 2\right)+f\left(d_{H}(v), 2\right) \\
& +\sum_{i=1}^{s}\left[f\left(d_{H}(u), d_{H}\left(u_{i}\right)\right)-f\left(d_{H}(u)-1, d_{H}\left(u_{i}\right)\right)\right] \\
& +\sum_{i=1}^{t}\left[f\left(d_{H}(v), d_{H}\left(v_{i}\right)\right)-f\left(d_{H}(v)-1, d_{H}\left(v_{i}\right)\right)\right] .
\end{aligned}
$$

Since $d_{H}(u) \geq 3, d_{H}(v) \geq 3$ and the function f has property Q, from part (ii) of Definition 2.1, we obtain

$$
f\left(d_{H}(u), 2\right) \geq f(2,2), f\left(d_{H}(v), 2\right) \geq f(2,2)
$$

$$
f\left(d_{H}(u), d_{H}\left(u_{i}\right)\right) \geq f\left(d_{H}(u)-1, d_{H}\left(u_{i}\right)\right) \text { and } f\left(d_{H}(v), d_{H}\left(v_{i}\right)\right) \geq f\left(d_{H}(v)-1, d_{H}\left(v_{i}\right)\right)
$$

By Definition 2.1 (i), we have $f(2,2)>0$. Thus

$$
I_{f}(H) \geq(n+1) f(2,2)>n f(2,2)=I_{f}\left(C_{n}\right)
$$

which means that C_{n} is the 2-connected graph of order n with the smallest I_{f}.

5 Conclusion

In Theorem 3.1, we presented a bound on I_{f}, where f is a function having property P introduced in Definition 2.4. In Lemma 2.5, we obtained several functions having property P. Hence, by Theorem 3.1 and Lemma 2.5, we get Corollary 5.1.

Corollary 5.1. Among graphs with n vertices and connectivity κ, where $1 \leq \kappa \leq n-2$, $\left(K_{n-\kappa-1} \cup K_{1}\right)+K_{\kappa}$ is the unique graph with the maximum

- $M_{a, b}$ and $S O_{a, b}$ for $a, b \geq 1$,
- χ_{a} and R_{a} for $a \geq 1$,
- $G R M_{a}$ for $a>-1$.

So, Corollary 5.1 holds also for the following special cases of $\chi_{a}, R_{a}, M_{a, b}$ and $S O_{a, b}$: first Zagreb index χ_{1}, first hyper-Zagreb index χ_{2}, second Zagreb index R_{1}, second hyper-Zagreb index R_{2}, second Gourava index $M_{1,1}$, second hyper-Gourava index $M_{2,2}$ and forgotten index $S O_{2,1}$.

By Theorem 4.2 and Lemma 2.2, we obtain Corollary 5.2.
Corollary 5.2. Among 2 -connected graphs with n vertices, where $n \geq 3$, the cycle C_{n} is the unique graph with the minimum

- $M_{a, b}$ for $a \geq 0, b \geq-a$,
- $S O_{a, b}$ for $a, b \geq 0$ or $a, b \leq 0$,
- $A Z I_{a, b}$ for $a \geq-2, b \geq 0$,
- χ_{a} and R_{a} for $a \geq 0$,
- $G R M_{a}$ for $a>-2$.

All the indices covered by Corollary 5.1 are covered also by Corollary 5.2. However, Corollary 5.2 holds for a larger number of indices. The following indices are special cases of general indices presented in Corollary 5.2, but not special cases of general indices given in Corollary 5.1: inverse sum indeg index $M_{1,-1}$, Sombor index $S O_{2, \frac{1}{2}}$, augmented Zagreb index $A Z I_{-2,3}$, reciprocal sum-connectivity index $\chi_{\frac{1}{2}}$, reciprocal Randić index $R_{\frac{1}{2}}$ and reduced second Zagreb index $G R M_{-1}$.

Conflicts of Interest. The author declares that he has no conflicts of interest regarding the publication of this article.

References

[1] B. Zhou and N. Trinajstić, On general sum-connectivity index, J. Math. Chem. 47 (2010) 210-218, https://doi.org/10.1007/s10910-009-9542-4.
[2] B. Bollobás and P. Erdös, Graphs of extremal weights, Ars Combin. 50 (1998) 225-233.
[3] I. Gutman, E. Milovanović and I. Milovanović, Beyond the Zagreb indices, AKCE Int. J. Graphs Combin. 17 (1) (2020) 74-85, https://doi.org/10.1016/j.akcej.2018.05.002.
[4] V. R. Kulli, The Gourava indices and coindices of graphs, Ann. Pure Appl. Math. 14 (1) (2017) 33-38, https://doi.org/10.22457/apam.v14n1a4.
[5] V. R. Kulli, On hyper Gourava indices and coindices, Int. J. Math. Arch. 8 (12) (2017) 116-120.
[6] J. C. Hernández, J. M. Rodríguez, O. Rosario and J. M. Sigarreta, Extremal problems on the general Sombor index of a graph, AIMS Math. 7 (5) (2022) 8330-8343, https://doi.org/10.3934/math. 2022464.
[7] I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem. 86 (2021) 11-16.
[8] B. Horoldagva, L. Buyantogtokh, K. C. Das and S.-G. Lee, On general reduced second Zagreb index of graphs, Hacet. J. Math. Stat. 48 (4) (2019) 1046-1056, https://doi.org/10.15672/HJMS.2019.660.
[9] Z. Hu, L. Li, X. Li and D. Peng, Extremal graphs for topological index defined by a degreebased edge-weight function, MATCH Commun. Math. Comput. Chem. 88 (3) (2022) 505520, https://doi.org/10.46793/match. $88-3.505 \mathrm{H}$.
[10] A. Ali and D. Dimitrov, On the extremal graphs with respect to bond incident degree indices, Discrete Appl. Math. 238 (2018) 32-40, https://doi.org/10.1016/j.dam.2017.12.007.
[11] A. Ali, I. Gutman, H. Saber and A. M. Alanazi, On bond incident degree indices of (n, m)-graphs, MATCH Commun. Math. Comput. Chem. 87 (2022) 89-96, https://doi.org/10.46793/match.87-1.089A.
[12] J. B. Liu, A. Q. Baig, M. Imran, W. Khalid, M. Saeed and M. R. Farahani, Computation of bond incident degree (BID) indices of complex structures in drugs, Eurasian Chem. Commun. 2 (6) (2020) 672-679.
[13] J. Ye, M. Liu, Y. Yao and K. C. Das, Extremal polygonal cacti for bond incident degree indices, Discrete Appl. Math. 257 (2019) 289-298, https://doi.org/10.1016/j.dam.2018.10.035.
[14] W. Zhou, S. Pang, M. Liu and A. Ali, On bond incident degree indices of connected graphs with fixed order and number of pendent vertices, MATCH Commun. Math. Comput. Chem. 88 (3) (2022) 625-642, https://doi.org/10.46793/match.88-3.625Z.
[15] R. Cruz and J. Rada, The path and the star as extremal values of vertex-degree-based topological indices among trees, MATCH Commun. Math. Comput. Chem. 82 (2019) 715732.
[16] D. He, Z. Ji, C. Yang and K. C. Das, Extremal graphs to vertex degree function index for convex functions, Axioms 12 (1) (2022) p. 31, https://doi.org/10.3390/axioms12010031.
[17] Z. Hu, X. Li and D. Peng, Graphs with minimum vertex-degree function-index for convex functions, MATCH Commun. Math. Comput. Chem. 88 (3) (2022) 521-533, https://doi.org/10.46793/match. $88-3.521 \mathrm{H}$.
[18] I. Tomescu, Extremal vertex-degree function index for trees and unicyclic graphs with given independence number, Discrete Appl. Math. 306 (2022) 83-88, https://doi.org/10.1016/j.dam.2021.09.028.
[19] I. Tomescu, Graphs with given cyclomatic number extremal relatively to vertex degree function index for convex functions, MATCH Commun. Math. Comput. Chem. 87 (1) (2022) 109-114, https://doi.org/10.46793/match.87-1.109T.
[20] T. Vetrík, Degree-based function index for graphs with given diameter, Discrete Appl. Math. 333 (2023) 59-70, https://doi.org/10.1016/j.dam.2023.02.018.
[21] T. Vetrík, General approach for obtaining extremal results on degree-based indices illustrated on the general sum-connectivity index, Electron. J. Graph Theory Appl. 11 (1) (2023) 125-133, http://doi.org/10.5614/ejgta.2023.11.1.10.
[22] M. Azari and A. Iranmanesh, Generalized Zagreb index of graphs, Stud. Univ. Babes-Bolyai Chem. 56 (3) (2011) 59-70.
[23] M. Aghel, A. Erfanian and T. Dehghan-Zadeh, Upper and lower bounds for the first and second Zagreb indices of quasi bicyclic graphs, Iranian J. Math. Chem. 12 (2) (2021) 79-88, https://doi.org/10.22052/IJMC.2021.202592.1466.
[24] S. Salimi and A. Iranmanesh, Topological indices of a kind of altans, Iranian J. Math. Chem. 12 (4) (2021) 217-224, https://doi.org/10.22052/IJMC.2021.242983.1577.
[25] H. Chen and Q. Guo, On maximum Zagreb indices of bipartite graphs with a given connectivity, Asian-Eur. J. Math. 16 (3) (2023) p. 2350038, https://doi.org/10.1142/S1793557123500389.
[26] I. Tomescu, M. Arshad and M. K. Jamil, Extremal topological indices for graphs of given connectivity, Filomat 29 (7) (2015) 1639-1643.
[27] H. Whitney, Congruent graphs and the connectivity of graphs, Am. J. Math. 54 (1) (1932) 150-168, https://doi.org/10.2307/2371086.

[^0]: *Corresponding author
 E-mail address: vetrikt@ufs.ac.za (T. Vetrík)
 Academic Editor: Kinkar Chandra Das

