Iranian Journal of Mathematical Chemistry

DOI: 10.22052/IJMC.2023.252646.1699 Vol. 14, No. 3, 2023, pp. 183-194 Research Paper

Degree-Based Function Index of Graphs with Given Connectivity

Tomáš Vetrík^{1*}

¹Department of Mathematics and Applied Mathematics, University of the Free State, Bloemfontein, South Africa

Keywords:	Abstract
General augmented Zagreb index,	We investigate the index $I_f(G) =$
Randić index,	$\sum_{vw \in E(G)} f(d_G(v), d_G(w))$ of a graph G, where f is a
Sombor index,	symmetric function of two variables satisfying certain condi- tions, $E(G)$ is the edge set of G , and $d_G(v)$ and $d_G(w)$ are the
AMS Subject Classification	degrees of vertices v and w in G , respectively. Those conditions
(2020):	are satisfied by functions that can be used to define the general
05C09; 05C07; 05C40	sum-connectivity index χ_a , general Randić index R_a , general reduced second Zagreb index GRM_a for some $a \in \mathbb{R}$, general
Article History:	Sombor index $SO_{a,b}$, general augmented Zagreb index $AZI_{a,b}$
Received: 13 March 2023 Accepted: 3 June 2023	and by one other generalization $M_{a,b}$ for some $a, b \in \mathbb{R}$. The general augmented Zagreb index is a new index defined in this
	paper.
	We obtain a sharp upper bound on I_f for graphs with given order and connectivity, and a sharp lower bound on I_f for 2-connected graphs with given order. Our upper bound holds for $M_{a,b}$ and $SO_{a,b}$ where $a, b \ge 1$; χ_a and R_a where $a \ge 1$; and GRM_a where $a > -1$. Our lower bound holds for $M_{a,b}$ where $a \ge 0$ and $b \ge -a$; $SO_{a,b}$ where $a, b \ge 0$ or $a, b \le 0$; $AZI_{a,b}$ where $a \ge -2$ and $b \ge 0$; χ_a and R_a where $a \ge 0$; and GRM_a where $a > -2$.
	© 2023 University of Kashan Press. All rights reserved.

1 Introduction

Let V(G) and E(G) be the vertex set and the edge set of a connected graph G. The order of G is the number of vertices in V(G). The degree of $v \in V(G)$, denoted by $d_G(v)$, is the number of vertices adjacent to v. The vertex connectivity or just the connectivity of a connected graph G is the smallest number of vertices whose removal from G disconnects G. For $k \geq 1$, a graph is k-connected if its connectivity is at least k.

^{*}Corresponding author

E-mail address: vetrikt@ufs.ac.za (T. Vetrík)

Academic Editor: Kinkar Chandra Das

For a graph G, we study degree-based indices defined as

$$I_f(G) = \sum_{vw \in E(G)} f(d_G(v), d_G(w)),$$

where f is a real-valued symmetric function of two variables. If $f(d_G(v), d_G(w)) = [d_G(v) + d_G(w)]^a$ where $a \in \mathbb{R}$, we obtain the general sum-connectivity index

$$\chi_a(G) = \sum_{vw \in E(G)} [d_G(v) + d_G(w)]^a,$$

of G defined by Zhou and Trinajstić [1]. From $\chi_a(G)$ we obtain the reciprocal sum-connectivity index if $a = \frac{1}{2}$, first Zagreb index if a = 1 and first hyper-Zagreb index if a = 2.

If $f(d_G(v), d_G(w)) = [d_G(v)d_G(w)]^a$ where $a \in \mathbb{R}$, we obtain the general Randić index

$$R_a(G) = \sum_{vw \in E(G)} [d_G(v)d_G(w)]^a,$$

of a graph G which was first investigated by Bollobás and Erdős [2]. From $R_a(G)$ we get the reciprocal Randić index if $a = \frac{1}{2}$, the second Zagreb index if a = 1, and the second hyper-Zagreb index if a = 2.

We can generalize the general Randić index and general sum-connectivity index even more by using $f(d_G(v), d_G(w)) = [d_G(v)d_G(w)]^a[d_G(v) + d_G(w)]^b$ where $a, b \in \mathbb{R}$. We obtain the generalization

$$M_{a,b}(G) = \sum_{vw \in E(G)} [d_G(v)d_G(w)]^a [d_G(v) + d_G(w)]^b,$$

(see [3]). From $M_{a,b}(G)$ we get the third redefined Zagreb index also called second Gourava index (see [4]) if a = 1 and b = 1, second redefined Zagreb index also known as inverse sum indeg index if a = 1 and b = -1, second hyper-Gourava index (see [5]) if a = 2 and b = 2, general Randić index if b = 0 and general sum-connectivity index if a = 0.

We also consider the general Sombor index of a graph G,

$$SO_{a,b}(G) = \sum_{vw \in E(G)} ([d_G(v)]^a + [d_G(w)]^a)^b,$$

defined for $a, b \in \mathbb{R}$; see [6]. We obtain $SO_{a,b}(G)$ from $I_f(G)$ if $f(d_G(v), d_G(w)) = ([d_G(v)]^a + [d_G(w)]^a)^b$. From $SO_{a,b}(G)$ we get the classical Sombor index if a = 2 and $b = \frac{1}{2}$ (see [7]), forgotten index if a = 2 and b = 1, and general sum-connectivity index if a = 1.

If $f(d_G(v), d_G(w)) = (d_G(v) + a)(d_G(w) + a)$ where $a \in \mathbb{R}$, we obtain the general reduced second Zagreb index

$$GRM_a(G) = \sum_{vw \in E(G)} (d_G(v) + a)(d_G(w) + a),$$

of a graph G from $I_f(G)$. This index was defined in [8]. From $GRM_a(G)$ we get the second Zagreb index if a = 0 and reduced second Zagreb index if a = -1.

For $a, b \in \mathbb{R}$ where a > -3, we introduce the general augmented Zagreb index

$$AZI_{a,b}(G) = \sum_{vw \in E(G)} \left(\frac{d_G(v)d_G(w)}{d_G(v) + d_G(w) + a} \right)^b,$$

of a graph G. We obtain $AZI_{a,b}(G)$ from $I_f(G)$ if $f(d_G(v), d_G(w)) = \left(\frac{d_G(v)d_G(w)}{d_G(v)+d_G(w)+a}\right)^b$. We call it "general augmented Zagreb index", because for a = -2 and b = 3, we get the classical augmented Zagreb index.

Indices are usually studied for connected graphs G of order $n \ge 3$. The reason for defining the general augmented Zagreb index for a > -3 is that $d_G(v) + d_G(w)$ is 3 if G contains an edge vw incident with vertices having degrees 1 and 2. In that case, if a = -3, we would have $d_G(v) + d_G(w) + a = 0$ in the denominator of $\frac{d_G(v)d_G(w)}{d_G(v)+d_G(w)+a}$.

Indices of graphs are investigated due to their extensive applications, especially in chemistry. Indices using a degree-based edge-weight function were investigated by Hu et al. [9], who presented extremal results for graphs with given order and size. Degree-based indices called bond incident degree indices were investigated for example in [10–14]. Ali and Dimitrov [10] studied graphs with a small number of cycles, Ali et al. [11] considered graphs with given order and size, Liu et al. [12] studied complex structures in drugs, Ye et al. [13] investigated polygonal cacti and Zhou et al. [14] studied graphs with a given number of pendant vertices. General degree-based indices were studied also in [15–22] and some related indices in [23, 24]. Chen and Guo [25] obtained bipartite graphs with prescribed connectivity having the maximum Zagreb indices. Tomescu, Arshad, and Jamil [26] presented the graph of given order and connectivity having the maximum χ_a and R_a for $a \geq 1$, and the 2-connected graph having the minimum χ_a and R_a for a > 0.

For a function f satisfying certain conditions, we obtain a sharp upper bound on I_f for graphs with given order and connectivity, and a sharp lower bound on I_f for 2-connected graphs with given order. Our upper bound holds for $M_{a,b}$ and $SO_{a,b}$ where $a, b \ge 1$; χ_a and R_a where $a \ge 1$; and GRM_a where a > -1. Our lower bound holds for $M_{a,b}$ where $a \ge 0$ and $b \ge -a$; $SO_{a,b}$ where $a, b \ge 0$ or $a, b \le 0$; $AZI_{a,b}$ where $a \ge -2$ and $b \ge 0$; χ_a and R_a where $a \ge 0$; and GRM_a where a > -2.

2 Preliminary results

We investigate degree-based indices with the help of Definition 2.1.

Definition 2.1. A symmetric function f(x, y) of two variables x and y having property Q is any function satisfying the following conditions:

- (i) f(x, y) > 0 for $x, y \ge 2$,
- (ii) $f(x_1, y_1) \le f(x_2, y_2)$ for $2 \le x_1 \le x_2$ and $2 \le y_1 \le y_2$.

There are many functions that have the property Q. In Lemma 2.2 we present those ones which can be used to obtain some well-known indices. In the proof of Lemma 2.2, we consider the functions $(xy)^a(x+y)^b$ and $(x^a+y^a)^b$ for $x, y \ge 1$, because we use those values in Lemma 2.5.

Lemma 2.2. The following functions of two variables x and y have property Q:

- $(xy)^{a}(x+y)^{b}$ for $a \ge 0, b \ge -a$,
- $(x^{a} + y^{a})^{b}$ for $a, b \ge 0$ or $a, b \le 0$,
- $\left(\frac{xy}{x+y+a}\right)^b$ for $a \ge -2, b \ge 0$,
- (x+a)(y+a) for a > -2.

Proof. We show that $f(x,y) = (xy)^a (x+y)^b$ has property Q for $a \ge 0$ and $b \ge -a$. Let $x, y \ge 1$.

- (i) We get $(xy)^a (x+y)^b > 0$.
- (ii) Let b = c a where $a, c \ge 0$. Then

$$\frac{\partial f(x,y)}{\partial x} = a(xy)^{a-1}y(x+y)^{c-a} + (c-a)(xy)^a(x+y)^{c-a-1}$$

= $a(xy)^{a-1}(x+y)^{c-a-1}[y(x+y) - xy] + c(xy)^a(x+y)^{c-a-1}$
= $ay^2(xy)^{a-1}(x+y)^{c-a-1} + c(xy)^a(x+y)^{c-a-1}$
 $\ge 0.$

Since f(x, y) is symmetric, we get $\frac{\partial f(x, y)}{\partial y} \ge 0$. Thus, for $1 \le x_1 \le x_2$ and $1 \le y_1 \le y_2$, we have $f(x_1, y_1) \le f(x_2, y_2)$.

- Let $f(x,y) = (x^a + y^a)^b$ where both $a, b \ge 0$ or both $a, b \le 0$. Let $x, y \ge 1$.
 - (i) We obtain $(x^a + y^a)^b > 0$.
 - (ii) We get

$$\frac{\partial f(x,y)}{\partial x} = b(x^a + y^a)^{b-1}ax^{a-1} \ge 0,$$

since $(x^a + y^a)^{b-1} > 0$ and $x^{a-1} > 0$. Similarly, $\frac{\partial f(x,y)}{\partial y} > 0$, so part (ii) holds.

We show that $f(x,y) = \left(\frac{xy}{x+y+a}\right)^b$ has property Q for $a \ge -2$ and $b \ge 0$. Let $x, y \ge 2$.

- (i) We get $xy \ge 4$ and $x + y + a \ge 2$, thus $\left(\frac{xy}{x+y+a}\right)^b > 0$.
- (ii) We obtain

$$\frac{\partial f(x,y)}{\partial x} = b \left(\frac{xy}{x+y+a} \right)^{b-1} \frac{y(y+a)}{(x+y+a)^2} = \frac{bx^{b-1}y^b(y+a)}{(x+y+a)^{b+1}} \ge 0.$$

since $b \ge 0$, $y + a \ge 0$ and x, y, x + y + a > 0.

The function f(x,y) = (x+a)(y+a) for a > -2 has property Q, since for $x, y \ge 2$:

(i)
$$(x+a)(y+a) > 0$$
 and (ii) $\frac{\partial f(x,y)}{\partial x} = y+a > 0.$

Let us present a few functions, which are special cases of $(xy)^a(x+y)^b$ for $a \ge 0$ and $b \ge -a$. **Corollary 2.3.** The functions xy(x+y), $(xy)^2(x+y)^2$, $\frac{xy}{x+y}$, $(xy)^a$ and $(x+y)^a$ for $a \ge 0$ have property Q.

Proof. By Lemma 2.2, $(xy)^a(x+y)^b$ has property Q for $a \ge 0$ and $b \ge -a$.

- If a = 1 and b = 1, we get xy(x + y).
- If a = 2 and b = 2, we get $(xy)^2(x+y)^2$.
- If a = 1 and b = -1, we get $\frac{xy}{x+y}$.
- If b = 0, we get $(xy)^a$ for $a \ge 0$.

• If a = 0, we get $(x + y)^b$ for $b \ge 0$.

The first two conditions of Definitions 2.1 and 2.4 are almost equal. In Definition 2.1 we consider f(x, y) for $x, y \ge 2$. In Definition 2.4 we consider f(x, y) for $x, y \ge 1$. Moreover, in Definition 2.4 we have a new third condition.

Definition 2.4. A symmetric function f(x, y) of two variables x and y having property P is any function satisfying the following conditions:

- (i) f(x, y) > 0 for $x, y \ge 1$,
- (ii) $f(x_1, y_1) \le f(x_2, y_2)$ for $1 \le x_1 \le x_2$ and $1 \le y_1 \le y_2$,
- (iii) $g(x_1, y_1) = f(x_1 + c, y_1 + c') f(x_1, y_1) \le f(x_2 + c, y_2 + c') f(x_2, y_2) = g(x_2, y_2)$ for $1 \le x_1 \le x_2, 1 \le y_1 \le y_2$ and $c, c' \ge 0$.

Since we have an additional condition in Definition 2.4, there are functions that have property Q, but not property P.

Lemma 2.5. The following functions of two variables x and y have property P:

- $(xy)^{a}(x+y)^{b}$ and $(x^{a}+y^{a})^{b}$ for $a, b \ge 1$,
- $(x+y)^a$ and $(xy)^a$ for $a \ge 1$,
- (x+a)(y+a) for a > -1.

Proof. Let f(x,y) = (x+a)(y+a) where a > -1. Let $x, y \ge 1$.

- (i) We have (x + a)(y + a) > 0.
- (ii) We get $\frac{\partial f(x,y)}{\partial x} = y + a > 0$. Similarly, $\frac{\partial f(x,y)}{\partial y} > 0$.
- (iii) For

$$g(x,y) = f(x+c, y+c') - f(x,y) = (x+c+a)(y+c'+a) - (x+a)(y+a),$$

we have

$$\frac{\partial g(x,y)}{\partial x} = (y+c'+a) - (y+a) = c' \ge 0.$$

The function f(x, y) is symmetric, thus g(x, y) is symmetric. Therefore $\frac{\partial g(x, y)}{\partial y} \ge 0$. Thus, for $1 \le x_1 \le x_2$, $1 \le y_1 \le y_2$ and $c, c' \ge 0$, we have $g(x_1, y_1) = f(x_1 + c, y_1 + c') - f(x_1, y_1) \le f(x_2 + c, y_2 + c') - f(x_2, y_2) = g(x_2, y_2)$.

Hence, f(x, y) = (x + a)(y + a) has property P for a > -1.

Conditions (i) and (ii) of Definition 2.4 for the functions $(x^a + y^a)^b$ and $(xy)^a(x + y)^b$ (containing special cases $(x + y)^a$ and $(xy)^a$) are proved in Lemma 2.2. Condition (iii) for $(x + y)^a$, $(xy)^a$ and $(xy)^a(x + y)^b$, where $a, b \ge 1$, was proved in [20]. It remains to show that $(x^a + y^a)^b$ satisfies condition (iii).

Let $f(x,y) = (x^a + y^a)^b$ where $a, b \ge 1$. We consider

$$g(x,y) = f(x+c,y+c') - f(x,y) = ([x+c]^a + [y+c']^a)^b - (x^a + y^a)^b$$

We obtain

$$\frac{\partial g(x,y)}{\partial x} = ab([x+c]^a + [y+c']^a)^{b-1}[x+c]^{a-1} - ab(x^a+y^a)^{b-1}x^{a-1} \ge 0$$

since for $a, b \ge 1$, we have $[x+c]^{a-1} \ge x^{a-1}$, $[x+c]^a \ge x^a$, $[y+c']^a \ge y^a$ and $([x+c]^a + [y+c']^a)^{b-1} \ge (x^a + y^a)^{b-1}$. Similarly, $\frac{\partial g(x,y)}{\partial y} \ge 0$. So condition (iii) of Definition 2.4 is satisfied by the function $(x^a + y^a)^b$. Hence, $(x^a + y^a)^b$ has property P for $a, b \ge 1$.

Let us compare I_f of two graphs that differ only by one edge. We use Lemma 2.6 in the proofs of Theorems 3.1 and 4.2.

Lemma 2.6. Let G be a connected/2-connected graph containing two non-adjacent vertices v_1 and v_2 . Then for a function f(x, y) satisfying conditions (i) and (ii) of Definition 2.4/Definition 2.1, we get $I_f(G) < I_f(G + v_1v_2)$.

Proof. For connected graphs and a function with slightly different condition (ii) in Definition 2.4, Lemma 2.6 was proved in [20]. The proof for our function introduced in Definition 2.4 is identical. Let us consider Lemma 2.6 for 2-connected graphs. Note that in Definition 2.4, we use f(x, y) for $x, y \ge 1$, but in Definition 2.1, we use f(x, y) for $x, y \ge 2$.

If G is 2-connected, then also $G + v_1v_2$ is 2-connected. 2-connected graphs do not contain vertices of degree 1, therefore for any vertex $v \in V(G)$, we get $d_{G+v_1v_2}(v) \ge d_G(v) \ge 2$. Then, similarly as in [20], it can be easily shown that $I_f(G) < I_f(G + v_1v_2)$.

3 Upper bound for graphs with given connectivity

For two graphs G_1 and G_2 , the union $G_1 \cup G_2$ and the join $G_1 + G_2$ have the vertex set $V(G_1) \cup V(G_2)$. The edge set of $G_1 \cup G_2$ is $E(G_1) \cup E(G_2)$. The edge set of $G_1 + G_2$ consists of $E(G_1)$, $E(G_2)$, and every vertex of G_1 is adjacent to every vertex of G_2 . Let us denote the complete graph of order n by K_n . Note that $1 \leq \kappa \leq n-2$ for the connectivity κ of any connected graph of order n except for K_n .

Theorem 3.1. Let G be any graph with n vertices and connectivity κ , where $1 \leq \kappa \leq n-2$. If f has property P, then

$$I_f(G) \le \binom{n-\kappa-1}{2} f(n-2, n-2) + \binom{\kappa}{2} f(n-1, n-1) \\ + \kappa (n-\kappa-1) f(n-1, n-2) + \kappa f(n-1, \kappa).$$

with equality if and only if G is $(K_{n-\kappa-1} \cup K_1) + K_{\kappa}$.

Proof. Among graphs with n vertices and connectivity κ , let G' be any graph with the largest I_f . Thus there is a set $S \subset V(G')$ with κ vertices, such that G' - S is disconnected. So, it is possible to divide the vertices in $V(G') \setminus S$ into two sets S_1 and S_2 , such that no vertex in S_1 is adjacent to a vertex in S_2 . The function f has property P, thus by Lemma 2.6, I_f increases with the addition of edges. So any two vertices in S_1 are adjacent, any two vertices in S_2 are adjacent and every vertex of S has degree n - 1 in G'. Let $|S_1| = n_1$ and $|S_2| = n_2$. Without loss of generality, we can assume that $n_1 \geq n_2 \geq 1$. We obtain $n_1 + n_2 = n - \kappa$, so G' is $(K_{n_1} \cup K_{n_2}) + K_{\kappa}$. Let us prove by contradiction that $n_2 = 1$.

Suppose that $n_2 \ge 2$ (where $n_1 \ge n_2$). Let us compare I_f of $G' = (K_{n_1} \cup K_{n_2}) + K_{\kappa}$ and $G'' = (K_{n_1+1} \cup K_{n_2-1}) + K_{\kappa}$. For every $z \in S$, we have

$$d_{G'}(z) = d_{G''}(z) = n - 1.$$

In G', we have

for every
$$v \in V(K_{n_1})$$
 and every $v' \in V(K_{n_2})$. In G'' , we have

$$d_{G''}(w) = \kappa + n_1$$
 and $d_{G''}(w') = \kappa + n_2 - 2$,

for every $w \in V(K_{n_1+1})$ and every $w' \in V(K_{n_2-1})$. We obtain

$$\begin{split} &I_f(G'') - I_f(G') \\ &= \kappa(n_1+1) \, f(n-1,n_1+\kappa) - \kappa n_1 \, f(n-1,n_1+\kappa-1) \\ &+ \kappa(n_2-1) \, f(n-1,n_2+\kappa-2) - \kappa n_2 \, f(n-1,n_2+\kappa-1) \\ &+ \left(\frac{n_1+1}{2}\right) \, f(n_1+\kappa,n_1+\kappa) - \left(\frac{n_1}{2}\right) \, f(n_1+\kappa-1,n_1+\kappa-1) \\ &+ \left(\frac{n_2-1}{2}\right) \, f(n_2+\kappa-2,n_2+\kappa-2) - \left(\frac{n_2}{2}\right) \, f(n_2+\kappa-1,n_2+\kappa-1) \\ &= \kappa \, f(n-1,n_1+\kappa) - \kappa \, f(n-1,n_2+\kappa-2) \\ &+ \kappa n_1 [f(n-1,n_1+\kappa) - f(n-1,n_1+\kappa-1)] \\ &- \kappa n_2 [f(n-1,n_2+\kappa-1) - f(n-1,n_2+\kappa-2)] \\ &+ \left[\frac{n_1(n_1-1)}{2} + n_1\right] \, f(n_1+\kappa,n_1+\kappa) - \frac{n_1(n_1-1)}{2} \, f(n_1+\kappa-1,n_1+\kappa-1) \\ &+ \left[\frac{n_2(n_2-1)}{2} - (n_2-1)\right] \, f(n_2+\kappa-2,n_2+\kappa-2) \\ &- \frac{n_2(n_2-1)}{2} \, f(n_2+\kappa-1,n_2+\kappa-1) \\ &= \kappa [f(n-1,n_1+\kappa) - f(n-1,n_2+\kappa-2)] \\ &+ \kappa (n_1-n_2) [f(n-1,n_1+\kappa) - f(n-1,n_1+\kappa-1)] \\ &- \kappa n_2 [f(n-1,n_2+\kappa-1) - f(n-1,n_2+\kappa-2)] \\ &+ \frac{n_1(n_1-1) - n_2(n_2-1)}{2} \, [f(n_1+\kappa,n_1+\kappa) - f(n_1+\kappa-1,n_1+\kappa-1)] \\ &+ \frac{n_2(n_2-1)}{2} \, [f(n_1+\kappa,n_1+\kappa) - f(n_1+\kappa-1,n_1+\kappa-1)] \\ &- \frac{n_2(n_2-1)}{2} \, [f(n_2+\kappa-1,n_2+\kappa-1) - f(n_2+\kappa-2,n_2+\kappa-2)] \\ &+ (n_1-n_2+1) [f(n_1+\kappa,n_1+\kappa) - f(n_2+\kappa-2,n_2+\kappa-2)] \\ &+ (n_1-n_2+1) [f(n_1+\kappa,n_1+\kappa) - f(n_2+\kappa-2,n_2+\kappa-2)] \\ &+ (n_1-n_2+1) f(n_1+\kappa,n_1+\kappa) - f(n_2+\kappa-2,n_2+\kappa-2)] \\ &+ (n_1-n_2+1) f(n_1+\kappa,n_1+\kappa) - f(n_2+\kappa-2,n_2+\kappa-2)] \end{aligned}$$

Since $n_1 \ge n_2 \ge 2$, $\kappa \ge 1$ and the function f has property P, from part (ii) of Definition 2.1, we obtain

$$f(n-1, n_1+\kappa) \ge f(n-1, n_2+\kappa-2), \ f(n-1, n_1+\kappa) \ge f(n-1, n_1+\kappa-1),$$

$$\begin{split} f(n_1+\kappa,n_1+\kappa) &\geq f(n_1+\kappa-1,n_1+\kappa-1), \ f(n_1+\kappa,n_1+\kappa) \geq f(n_2+\kappa-2,n_2+\kappa-2). \\ \text{By Definition 2.1 (i), we have } f(n_1+\kappa,n_1+\kappa) > 0. \text{ By Definition 2.1 (iii), we have} \end{split}$$

$$f(n-1, n_1+\kappa) - f(n-1, n_1+\kappa-1) \ge f(n-1, n_2+\kappa-1) - f(n-1, n_2+\kappa-2),$$

and

$$f(n_1 + \kappa, n_1 + \kappa) - f(n_1 + \kappa - 1, n_1 + \kappa - 1) \\\geq f(n_2 + \kappa - 1, n_2 + \kappa - 1) - f(n_2 + \kappa - 2, n_2 + \kappa - 2)$$

Thus $I_f(G'') - I_f(G') > 0$, so $I_f(G'') > I_f(G')$, which means that G' does not have the largest I_f . We have a contradiction.

Thus $n_2 = 1$. Then $n_1 = n - \kappa - 1$, so G' is $(K_{n-\kappa-1} \cup K_1) + K_{\kappa}$ and

$$I_f((K_{n-\kappa-1} \cup K_1) + K_{\kappa}) = \binom{n-\kappa-1}{2} f(n-2, n-2) + \binom{\kappa}{2} f(n-1, n-1) \\ + \kappa(n-\kappa-1) f(n-1, n-2) + \kappa f(n-1, \kappa).$$

4 Lower bound for 2-connected graphs

A proper ear decomposition of G is a decomposition of G into a sequence of ears P_0, P_1, \ldots, P_k , where $k \ge 1$, P_0 is a cycle and P_i for $1 \le i \le k$ is a path whose terminal vertices are in $V(P_0) \cup \cdots \cup V(P_{i-1})$ and internal vertices (if any) are not in $V(P_0) \cup \cdots \cup V(P_{i-1})$. Whitney [27] gave a well-known characterization of 2-connected graphs.

Lemma 4.1. A graph is 2-connected if and only if it has a proper ear decomposition.

We use Lemma 4.1 to obtain a lower bound on I_f for 2-connected graphs.

Theorem 4.2. Let G be any 2-connected graph with n vertices, where $n \ge 3$. If f has property Q, then

$$I_f(G) \ge nf(2,2),$$

with equality if and only if G is the cycle C_n .

Proof. For n = 3, we have only one 2-connected graph which is C_3 , so Theorem 4.2 holds for n = 3. We prove Theorem 4.2 by induction on n. Assume that $n \ge 4$ and for any graph G of order m < n, we have $I_f(G) \ge mf(2,2)$ with equality if and only if G is C_m .

Let H be a graph with the smallest I_f among 2-connected graphs with n vertices except for C_n . From Lemma 4.1, we know that H has a proper ear decomposition P_0, P_1, \ldots, P_k . Since H is not a cycle, we have $k \ge 1$. Let u and v be the terminal vertices of P_k . So $u, v \in V(P_0) \cup \cdots \cup V(P_{k-1})$. Let r be the number of internal vertices of P_k . We have $r \ge 0$. Let H' be obtained from H by the removal of all r internal vertices of P_k and all r + 1 edges of P_k . Then H' is a 2-connected graph containing the ears $P_0, P_1, \ldots, P_{k-1}$. The order of H'is n - r. We consider the cases r = 0 and $r \ge 1$.

Case 1: r = 0.

Then P_k contains only one edge uv. We have V(H') = V(H) and $E(H') = E(H) \setminus \{uv\}$. So, the order of H' is n. By Lemma 2.6, $I_f(H') < I_f(H)$.

If $k \geq 2$, then H' is not C_n , but the inequality $I_f(H') < I_f(H)$ contradicts the fact that H is a graph with the smallest I_f among 2-connected graphs with n vertices except for C_n .

If k = 1, then H' is P_0 which is C_n , so $I_f(C_n) < I_f(H)$ which means that C_n is the 2-connected graph of order n with the smallest I_f . Hence, the proof of the case r = 0 is complete.

Case 2: $r \ge 1$.

If $uv \in E(H)$, then $uv \in E(P_i)$ for some $i \in \{0, 1, \ldots, k-1\}$. Let us construct P'_i with $V(P'_i) = V(P_i) \cup V(P_k)$ and $E(P'_i) = E(P_i) \cup E(P_k) \setminus \{uv\}$. Let P'_k contain only one edge uv. Clearly, when we replace P_i and P_k in P_0, P_1, \ldots, P_k by P'_i and P'_k , we again obtain a proper ear decomposition, where P'_k contains only one edge and such situation was solved in Case 1.

Therefore, we can assume that $uv \notin E(H)$. Let $N_{H'}(u) = \{u_1, \ldots, u_s\}$ and $N_{H'}(v) = \{v_1, \ldots, v_t\}$. Note that $s, t \geq 2$. By the induction hypothesis, we have $I_f(H') \geq (n-r)f(2,2)$. Thus

$$\begin{split} I_f(H) &= I_f(H') + (r-1)f(2,2) + f(d_H(u),2) + f(d_H(v),2) \\ &+ \sum_{i=1}^s [f(d_H(u),d_H(u_i)) - f(d_H(u) - 1,d_H(u_i))] \\ &+ \sum_{i=1}^t [f(d_H(v),d_H(v_i)) - f(d_H(v) - 1,d_H(v_i))] \\ &\geq (n-1)f(2,2) + f(d_H(u),2) + f(d_H(v),2) \\ &+ \sum_{i=1}^s [f(d_H(u),d_H(u_i)) - f(d_H(u) - 1,d_H(u_i))] \\ &+ \sum_{i=1}^t [f(d_H(v),d_H(v_i)) - f(d_H(v) - 1,d_H(v_i))]. \end{split}$$

Since $d_H(u) \ge 3$, $d_H(v) \ge 3$ and the function f has property Q, from part (ii) of Definition 2.1, we obtain

$$f(d_H(u), 2) \ge f(2, 2), \ f(d_H(v), 2) \ge f(2, 2),$$

 $f(d_H(u), d_H(u_i)) \ge f(d_H(u) - 1, d_H(u_i)) \text{ and } f(d_H(v), d_H(v_i)) \ge f(d_H(v) - 1, d_H(v_i)).$

By Definition 2.1 (i), we have f(2,2) > 0. Thus

$$I_f(H) \ge (n+1)f(2,2) > nf(2,2) = I_f(C_n),$$

which means that C_n is the 2-connected graph of order n with the smallest I_f .

5 Conclusion

In Theorem 3.1, we presented a bound on I_f , where f is a function having property P introduced in Definition 2.4. In Lemma 2.5, we obtained several functions having property P. Hence, by Theorem 3.1 and Lemma 2.5, we get Corollary 5.1.

Corollary 5.1. Among graphs with n vertices and connectivity κ , where $1 \leq \kappa \leq n-2$, $(K_{n-\kappa-1} \cup K_1) + K_{\kappa}$ is the unique graph with the maximum

- $M_{a,b}$ and $SO_{a,b}$ for $a, b \ge 1$,
- χ_a and R_a for $a \ge 1$,
- GRM_a for a > -1.

So, Corollary 5.1 holds also for the following special cases of χ_a , R_a , $M_{a,b}$ and $SO_{a,b}$: first Zagreb index χ_1 , first hyper-Zagreb index χ_2 , second Zagreb index R_1 , second hyper-Zagreb index R_2 , second Gourava index $M_{1,1}$, second hyper-Gourava index $M_{2,2}$ and forgotten index $SO_{2,1}$.

By Theorem 4.2 and Lemma 2.2, we obtain Corollary 5.2.

Corollary 5.2. Among 2-connected graphs with n vertices, where $n \ge 3$, the cycle C_n is the unique graph with the minimum

- $M_{a,b}$ for $a \ge 0, b \ge -a$,
- $SO_{a,b}$ for $a, b \ge 0$ or $a, b \le 0$,
- $AZI_{a,b}$ for $a \ge -2$, $b \ge 0$,
- χ_a and R_a for $a \ge 0$,
- GRM_a for a > -2.

All the indices covered by Corollary 5.1 are covered also by Corollary 5.2. However, Corollary 5.2 holds for a larger number of indices. The following indices are special cases of general indices presented in Corollary 5.2, but not special cases of general indices given in Corollary 5.1: inverse sum indeg index $M_{1,-1}$, Sombor index $SO_{2,\frac{1}{2}}$, augmented Zagreb index $AZI_{-2,3}$, reciprocal sum-connectivity index $\chi_{\frac{1}{2}}$, reciprocal Randić index $R_{\frac{1}{2}}$ and reduced second Zagreb index GRM_{-1} .

Conflicts of Interest. The author declares that he has no conflicts of interest regarding the publication of this article.

References

- B. Zhou and N. Trinajstić, On general sum-connectivity index, J. Math. Chem. 47 (2010) 210–218, https://doi.org/10.1007/s10910-009-9542-4.
- [2] B. Bollobás and P. Erdös, Graphs of extremal weights, Ars Combin. 50 (1998) 225-233.
- [3] I. Gutman, E. Milovanović and I. Milovanović, Beyond the Zagreb indices, AKCE Int. J. Graphs Combin. 17 (1) (2020) 74–85, https://doi.org/10.1016/j.akcej.2018.05.002.
- [4] V. R. Kulli, The Gourava indices and coindices of graphs, Ann. Pure Appl. Math. 14 (1) (2017) 33–38, https://doi.org/10.22457/apam.v14n1a4.
- [5] V. R. Kulli, On hyper Gourava indices and coindices, Int. J. Math. Arch. 8 (12) (2017) 116-120.
- [6] J. C. Hernández, J. M. Rodríguez, O. Rosario and J. M. Sigarreta, Extremal problems on the general Sombor index of a graph, AIMS Math. 7 (5) (2022) 8330–8343, https://doi.org/10.3934/math.2022464.
- [7] I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem. 86 (2021) 11–16.

- [8] B. Horoldagva, L. Buyantogtokh, K. C. Das and S.-G. Lee, On general reduced second Zagreb index of graphs, *Hacet. J. Math. Stat.* 48 (4) (2019) 1046–1056, https://doi.org/10.15672/HJMS.2019.660.
- [9] Z. Hu, L. Li, X. Li and D. Peng, Extremal graphs for topological index defined by a degreebased edge-weight function, *MATCH Commun. Math. Comput. Chem.* 88 (3) (2022) 505– 520, https://doi.org/10.46793/match.88-3.505H.
- [10] A. Ali and D. Dimitrov, On the extremal graphs with respect to bond incident degree indices, *Discrete Appl. Math.* 238 (2018) 32–40, https://doi.org/10.1016/j.dam.2017.12.007.
- [11] A. Ali, I. Gutman, H. Saber and A. M. Alanazi, On bond incident degree indices of (n,m)-graphs, MATCH Commun. Math. Comput. Chem. 87 (2022) 89–96, https://doi.org/10.46793/match.87-1.089A.
- [12] J. B. Liu, A. Q. Baig, M. Imran, W. Khalid, M. Saeed and M. R. Farahani, Computation of bond incident degree (BID) indices of complex structures in drugs, *Eurasian Chem. Commun.* 2 (6) (2020) 672–679.
- [13] J. Ye, M. Liu, Y. Yao and K. C. Das, Extremal polygonal cacti for bond incident degree indices, *Discrete Appl. Math.* 257 (2019) 289–298, https://doi.org/10.1016/j.dam.2018.10.035.
- [14] W. Zhou, S. Pang, M. Liu and A. Ali, On bond incident degree indices of connected graphs with fixed order and number of pendent vertices, *MATCH Commun. Math. Comput. Chem.* 88 (3) (2022) 625–642, https://doi.org/10.46793/match.88-3.625Z.
- [15] R. Cruz and J. Rada, The path and the star as extremal values of vertex-degree-based topological indices among trees, MATCH Commun. Math. Comput. Chem. 82 (2019) 715– 732.
- [16] D. He, Z. Ji, C. Yang and K. C. Das, Extremal graphs to vertex degree function index for convex functions, Axioms 12 (1) (2022) p. 31, https://doi.org/10.3390/axioms12010031.
- [17] Z. Hu, X. Li and D. Peng, Graphs with minimum vertex-degree function-index for convex functions, MATCH Commun. Math. Comput. Chem. 88 (3) (2022) 521–533, https://doi.org/10.46793/match.88-3.521H.
- [18] I. Tomescu, Extremal vertex-degree function index for trees and unicyclic graphs with given independence number, *Discrete Appl. Math.* **306** (2022) 83–88, https://doi.org/10.1016/j.dam.2021.09.028.
- [19] I. Tomescu, Graphs with given cyclomatic number extremal relatively to vertex degree function index for convex functions, MATCH Commun. Math. Comput. Chem. 87 (1) (2022) 109–114, https://doi.org/10.46793/match.87-1.109T.
- [20] T. Vetrík, Degree-based function index for graphs with given diameter, Discrete Appl. Math. 333 (2023) 59–70, https://doi.org/10.1016/j.dam.2023.02.018.
- [21] T. Vetrík, General approach for obtaining extremal results on degree-based indices illustrated on the general sum-connectivity index, *Electron. J. Graph Theory Appl.* **11** (1) (2023) 125–133, http://doi.org/10.5614/ejgta.2023.11.110.
- [22] M. Azari and A. Iranmanesh, Generalized Zagreb index of graphs, Stud. Univ. Babes-Bolyai Chem. 56 (3) (2011) 59–70.

- [23] M. Aghel, A. Erfanian and T. Dehghan-Zadeh, Upper and lower bounds for the first and second Zagreb indices of quasi bicyclic graphs, *Iranian J. Math. Chem.* 12 (2) (2021) 79–88, https://doi.org/10.22052/IJMC.2021.202592.1466.
- [24] S. Salimi and A. Iranmanesh, Topological indices of a kind of altans, Iranian J. Math. Chem. 12 (4) (2021) 217–224, https://doi.org/10.22052/IJMC.2021.242983.1577.
- [25] H. Chen and Q. Guo, On maximum Zagreb indices of bipartite graphs with a given connectivity, Asian-Eur. J. Math. 16 (3) (2023) p. 2350038, https://doi.org/10.1142/S1793557123500389.
- [26] I. Tomescu, M. Arshad and M. K. Jamil, Extremal topological indices for graphs of given connectivity, *Filomat* 29 (7) (2015) 1639–1643.
- [27] H. Whitney, Congruent graphs and the connectivity of graphs, Am. J. Math. 54 (1) (1932) 150–168, https://doi.org/10.2307/2371086.