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Abstract

We investigate the index If (G) =∑
vw∈E(G) f(dG(v), dG(w)) of a graph G, where f is a

symmetric function of two variables satisfying certain condi-
tions, E(G) is the edge set of G, and dG(v) and dG(w) are the
degrees of vertices v and w in G, respectively. Those conditions
are satisfied by functions that can be used to define the general
sum-connectivity index χa, general Randić index Ra, general
reduced second Zagreb index GRMa for some a ∈ R, general
Sombor index SOa,b, general augmented Zagreb index AZIa,b
and by one other generalization Ma,b for some a, b ∈ R. The
general augmented Zagreb index is a new index defined in this
paper.

We obtain a sharp upper bound on If for graphs with given
order and connectivity, and a sharp lower bound on If for
2-connected graphs with given order. Our upper bound holds
for Ma,b and SOa,b where a, b ≥ 1; χa and Ra where a ≥ 1; and
GRMa where a > −1. Our lower bound holds for Ma,b where
a ≥ 0 and b ≥ −a; SOa,b where a, b ≥ 0 or a, b ≤ 0; AZIa,b
where a ≥ −2 and b ≥ 0; χa and Ra where a ≥ 0; and GRMa

where a > −2.

c© 2023 University of Kashan Press. All rights reserved.

1 Introduction
Let V (G) and E(G) be the vertex set and the edge set of a connected graph G. The order of G
is the number of vertices in V (G). The degree of v ∈ V (G), denoted by dG(v), is the number
of vertices adjacent to v. The vertex connectivity or just the connectivity of a connected graph
G is the smallest number of vertices whose removal from G disconnects G. For k ≥ 1, a graph
is k-connected if its connectivity is at least k.
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For a graph G, we study degree-based indices defined as

If (G) =
∑

vw∈E(G)

f(dG(v), dG(w)),

where f is a real-valued symmetric function of two variables. If f(dG(v), dG(w)) = [dG(v) +
dG(w)]

a where a ∈ R, we obtain the general sum-connectivity index

χa(G) =
∑

vw∈E(G)

[dG(v) + dG(w)]
a,

of G defined by Zhou and Trinajstić [1]. From χa(G) we obtain the reciprocal sum-connectivity
index if a = 1

2 , first Zagreb index if a = 1 and first hyper-Zagreb index if a = 2.
If f(dG(v), dG(w)) = [dG(v)dG(w)]

a where a ∈ R, we obtain the general Randić index

Ra(G) =
∑

vw∈E(G)

[dG(v)dG(w)]
a,

of a graph G which was first investigated by Bollobás and Erdős [2]. From Ra(G) we get the
reciprocal Randić index if a = 1

2 , the second Zagreb index if a = 1, and the second hyper-Zagreb
index if a = 2.

We can generalize the general Randić index and general sum-connectivity index even more
by using f(dG(v), dG(w)) = [dG(v)dG(w)]

a[dG(v) + dG(w)]
b where a, b ∈ R. We obtain the

generalization
Ma,b(G) =

∑
vw∈E(G)

[dG(v)dG(w)]
a[dG(v) + dG(w)]

b,

(see [3]). From Ma,b(G) we get the third redefined Zagreb index also called second Gourava
index (see [4]) if a = 1 and b = 1, second redefined Zagreb index also known as inverse sum
indeg index if a = 1 and b = −1, second hyper-Gourava index (see [5]) if a = 2 and b = 2,
general Randić index if b = 0 and general sum-connectivity index if a = 0.

We also consider the general Sombor index of a graph G,

SOa,b(G) =
∑

vw∈E(G)

([dG(v)]
a + [dG(w)]

a)b,

defined for a, b ∈ R; see [6]. We obtain SOa,b(G) from If (G) if f(dG(v), dG(w)) = ([dG(v)]
a +

[dG(w)]
a)b. From SOa,b(G) we get the classical Sombor index if a = 2 and b = 1

2 (see [7]),
forgotten index if a = 2 and b = 1, and general sum-connectivity index if a = 1.

If f(dG(v), dG(w)) = (dG(v) + a)(dG(w) + a) where a ∈ R, we obtain the general reduced
second Zagreb index

GRMa(G) =
∑

vw∈E(G)

(dG(v) + a)(dG(w) + a),

of a graph G from If (G). This index was defined in [8]. From GRMa(G) we get the second
Zagreb index if a = 0 and reduced second Zagreb index if a = −1.

For a, b ∈ R where a > −3, we introduce the general augmented Zagreb index

AZIa,b(G) =
∑

vw∈E(G)

(
dG(v)dG(w)

dG(v) + dG(w) + a

)b
,
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of a graph G. We obtain AZIa,b(G) from If (G) if f(dG(v), dG(w)) =
(

dG(v)dG(w)
dG(v)+dG(w)+a

)b
. We

call it “general augmented Zagreb index”, because for a = −2 and b = 3, we get the classical
augmented Zagreb index.

Indices are usually studied for connected graphs G of order n ≥ 3. The reason for defining
the general augmented Zagreb index for a > −3 is that dG(v) + dG(w) is 3 if G contains an
edge vw incident with vertices having degrees 1 and 2. In that case, if a = −3, we would have
dG(v) + dG(w) + a = 0 in the denominator of dG(v)dG(w)

dG(v)+dG(w)+a .
Indices of graphs are investigated due to their extensive applications, especially in chemistry.

Indices using a degree-based edge-weight function were investigated by Hu et al. [9], who
presented extremal results for graphs with given order and size. Degree-based indices called
bond incident degree indices were investigated for example in [10–14]. Ali and Dimitrov [10]
studied graphs with a small number of cycles, Ali et al. [11] considered graphs with given order
and size, Liu et al. [12] studied complex structures in drugs, Ye et al. [13] investigated polygonal
cacti and Zhou et al. [14] studied graphs with a given number of pendant vertices. General
degree-based indices were studied also in [15–22] and some related indices in [23, 24]. Chen and
Guo [25] obtained bipartite graphs with prescribed connectivity having the maximum Zagreb
indices. Tomescu, Arshad, and Jamil [26] presented the graph of given order and connectivity
having the maximum χa and Ra for a ≥ 1, and the 2-connected graph having the minimum χa
and Ra for a > 0.

For a function f satisfying certain conditions, we obtain a sharp upper bound on If for
graphs with given order and connectivity, and a sharp lower bound on If for 2-connected
graphs with given order. Our upper bound holds for Ma,b and SOa,b where a, b ≥ 1; χa and
Ra where a ≥ 1; and GRMa where a > −1. Our lower bound holds for Ma,b where a ≥ 0 and
b ≥ −a; SOa,b where a, b ≥ 0 or a, b ≤ 0; AZIa,b where a ≥ −2 and b ≥ 0; χa and Ra where
a ≥ 0; and GRMa where a > −2.

2 Preliminary results
We investigate degree-based indices with the help of Definition 2.1.

Definition 2.1. A symmetric function f(x, y) of two variables x and y having property Q is
any function satisfying the following conditions:

(i) f(x, y) > 0 for x, y ≥ 2,

(ii) f(x1, y1) ≤ f(x2, y2) for 2 ≤ x1 ≤ x2 and 2 ≤ y1 ≤ y2.

There are many functions that have the property Q. In Lemma 2.2 we present those ones
which can be used to obtain some well-known indices. In the proof of Lemma 2.2, we consider
the functions (xy)a(x+y)b and (xa+ya)b for x, y ≥ 1, because we use those values in Lemma 2.5.

Lemma 2.2. The following functions of two variables x and y have property Q:

• (xy)a(x+ y)b for a ≥ 0, b ≥ −a,

• (xa + ya)b for a, b ≥ 0 or a, b ≤ 0,

• ( xy
x+y+a )

b for a ≥ −2, b ≥ 0,

• (x+ a)(y + a) for a > −2.

Proof. We show that f(x, y) = (xy)a(x+y)b has property Q for a ≥ 0 and b ≥ −a. Let x, y ≥ 1.
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(i) We get (xy)a(x+ y)b > 0.

(ii) Let b = c− a where a, c ≥ 0. Then

∂f(x, y)

∂x
= a(xy)a−1y(x+ y)c−a + (c− a)(xy)a(x+ y)c−a−1

= a(xy)a−1(x+ y)c−a−1[y(x+ y)− xy] + c(xy)a(x+ y)c−a−1

= ay2(xy)a−1(x+ y)c−a−1 + c(xy)a(x+ y)c−a−1

≥ 0.

Since f(x, y) is symmetric, we get ∂f(x,y)
∂y ≥ 0. Thus, for 1 ≤ x1 ≤ x2 and 1 ≤ y1 ≤ y2,

we have f(x1, y1) ≤ f(x2, y2).

Let f(x, y) = (xa + ya)b where both a, b ≥ 0 or both a, b ≤ 0. Let x, y ≥ 1.

(i) We obtain (xa + ya)b > 0.

(ii) We get
∂f(x, y)

∂x
= b(xa + ya)b−1axa−1 ≥ 0,

since (xa + ya)b−1 > 0 and xa−1 > 0. Similarly, ∂f(x,y)∂y > 0, so part (ii) holds.

We show that f(x, y) = ( xy
x+y+a )

b has property Q for a ≥ −2 and b ≥ 0. Let x, y ≥ 2.

(i) We get xy ≥ 4 and x+ y + a ≥ 2, thus ( xy
x+y+a )

b > 0.

(ii) We obtain

∂f(x, y)

∂x
= b

(
xy

x+ y + a

)b−1
y(y + a)

(x+ y + a)2
=
bxb−1yb(y + a)

(x+ y + a)b+1
≥ 0,

since b ≥ 0, y + a ≥ 0 and x, y, x+ y + a > 0.

The function f(x, y) = (x+ a)(y + a) for a > −2 has property Q, since for x, y ≥ 2:

(i) (x+ a)(y + a) > 0 and (ii)
∂f(x, y)

∂x
= y + a > 0.

�

Let us present a few functions, which are special cases of (xy)a(x+y)b for a ≥ 0 and b ≥ −a.

Corollary 2.3. The functions xy(x + y), (xy)2(x + y)2, xy
x+y , (xy)

a and (x + y)a for a ≥ 0
have property Q.

Proof. By Lemma 2.2, (xy)a(x+ y)b has property Q for a ≥ 0 and b ≥ −a.

• If a = 1 and b = 1, we get xy(x+ y).

• If a = 2 and b = 2, we get (xy)2(x+ y)2.

• If a = 1 and b = −1, we get xy
x+y .

• If b = 0, we get (xy)a for a ≥ 0.
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• If a = 0, we get (x+ y)b for b ≥ 0.

�

The first two conditions of Definitions 2.1 and 2.4 are almost equal. In Definition 2.1 we
consider f(x, y) for x, y ≥ 2. In Definition 2.4 we consider f(x, y) for x, y ≥ 1. Moreover, in
Definition 2.4 we have a new third condition.

Definition 2.4. A symmetric function f(x, y) of two variables x and y having property P is
any function satisfying the following conditions:

(i) f(x, y) > 0 for x, y ≥ 1,

(ii) f(x1, y1) ≤ f(x2, y2) for 1 ≤ x1 ≤ x2 and 1 ≤ y1 ≤ y2,

(iii) g(x1, y1) = f(x1 + c, y1 + c′) − f(x1, y1) ≤ f(x2 + c, y2 + c′) − f(x2, y2) = g(x2, y2) for
1 ≤ x1 ≤ x2, 1 ≤ y1 ≤ y2 and c, c′ ≥ 0.

Since we have an additional condition in Definition 2.4, there are functions that have prop-
erty Q, but not property P .

Lemma 2.5. The following functions of two variables x and y have property P :

• (xy)a(x+ y)b and (xa + ya)b for a, b ≥ 1,

• (x+ y)a and (xy)a for a ≥ 1,

• (x+ a)(y + a) for a > −1.

Proof. Let f(x, y) = (x+ a)(y + a) where a > −1. Let x, y ≥ 1.

(i) We have (x+ a)(y + a) > 0.

(ii) We get ∂f(x,y)
∂x = y + a > 0. Similarly, ∂f(x,y)∂y > 0.

(iii) For

g(x, y) = f(x+ c, y + c′)− f(x, y) = (x+ c+ a)(y + c′ + a)− (x+ a)(y + a),

we have
∂g(x, y)

∂x
= (y + c′ + a)− (y + a) = c′ ≥ 0.

The function f(x, y) is symmetric, thus g(x, y) is symmetric. Therefore ∂g(x,y)
∂y ≥ 0.

Thus, for 1 ≤ x1 ≤ x2, 1 ≤ y1 ≤ y2 and c, c′ ≥ 0, we have g(x1, y1) = f(x1 + c, y1 + c′)−
f(x1, y1) ≤ f(x2 + c, y2 + c′)− f(x2, y2) = g(x2, y2).

Hence, f(x, y) = (x+ a)(y + a) has property P for a > −1.
Conditions (i) and (ii) of Definition 2.4 for the functions (xa + ya)b and (xy)a(x + y)b

(containing special cases (x + y)a and (xy)a) are proved in Lemma 2.2. Condition (iii) for
(x+ y)a, (xy)a and (xy)a(x+ y)b, where a, b ≥ 1, was proved in [20]. It remains to show that
(xa + ya)b satisfies condition (iii).

Let f(x, y) = (xa + ya)b where a, b ≥ 1. We consider

g(x, y) = f(x+ c, y + c′)− f(x, y) = ([x+ c]a + [y + c′]a)b − (xa + ya)b.
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We obtain

∂g(x, y)

∂x
= ab([x+ c]a + [y + c′]a)b−1[x+ c]a−1 − ab(xa + ya)b−1xa−1 ≥ 0,

since for a, b ≥ 1, we have [x+ c]a−1 ≥ xa−1, [x+ c]a ≥ xa, [y + c′]a ≥ ya and ([x+ c]a + [y +

c′]a)b−1 ≥ (xa + ya)b−1. Similarly, ∂g(x,y)∂y ≥ 0. So condition (iii) of Definition 2.4 is satisfied
by the function (xa + ya)b. Hence, (xa + ya)b has property P for a, b ≥ 1. �

Let us compare If of two graphs that differ only by one edge. We use Lemma 2.6 in the
proofs of Theorems 3.1 and 4.2.

Lemma 2.6. Let G be a connected/2-connected graph containing two non-adjacent vertices v1
and v2. Then for a function f(x, y) satisfying conditions (i) and (ii) of Definition 2.4/Defini-
tion 2.1, we get If (G) < If (G+ v1v2).

Proof. For connected graphs and a function with slightly different condition (ii) in Definition 2.4,
Lemma 2.6 was proved in [20]. The proof for our function introduced in Definition 2.4 is
identical. Let us consider Lemma 2.6 for 2-connected graphs. Note that in Definition 2.4, we
use f(x, y) for x, y ≥ 1, but in Definition 2.1, we use f(x, y) for x, y ≥ 2.

If G is 2-connected, then also G + v1v2 is 2-connected. 2-connected graphs do not contain
vertices of degree 1, therefore for any vertex v ∈ V (G), we get dG+v1v2(v) ≥ dG(v) ≥ 2. Then,
similarly as in [20], it can be easily shown that If (G) < If (G+ v1v2). �

3 Upper bound for graphs with given connectivity
For two graphs G1 and G2, the union G1 ∪ G2 and the join G1 + G2 have the vertex set
V (G1) ∪ V (G2). The edge set of G1 ∪G2 is E(G1) ∪E(G2). The edge set of G1 +G2 consists
of E(G1), E(G2), and every vertex of G1 is adjacent to every vertex of G2. Let us denote the
complete graph of order n by Kn. Note that 1 ≤ κ ≤ n − 2 for the connectivity κ of any
connected graph of order n except for Kn.

Theorem 3.1. Let G be any graph with n vertices and connectivity κ, where 1 ≤ κ ≤ n− 2. If
f has property P , then

If (G) ≤
(
n− κ− 1

2

)
f(n− 2, n− 2) +

(
κ

2

)
f(n− 1, n− 1)

+ κ(n− κ− 1)f(n− 1, n− 2) + κf(n− 1, κ).

with equality if and only if G is (Kn−κ−1 ∪K1) +Kκ.

Proof. Among graphs with n vertices and connectivity κ, let G′ be any graph with the largest
If . Thus there is a set S ⊂ V (G′) with κ vertices, such that G′ − S is disconnected. So, it is
possible to divide the vertices in V (G′) \ S into two sets S1 and S2, such that no vertex in S1

is adjacent to a vertex in S2. The function f has property P , thus by Lemma 2.6, If increases
with the addition of edges. So any two vertices in S1 are adjacent, any two vertices in S2 are
adjacent and every vertex of S has degree n − 1 in G′. Let |S1| = n1 and |S2| = n2. Without
loss of generality, we can assume that n1 ≥ n2 ≥ 1. We obtain n1 + n2 = n − κ, so G′ is
(Kn1 ∪Kn2) +Kκ. Let us prove by contradiction that n2 = 1.

Suppose that n2 ≥ 2 (where n1 ≥ n2). Let us compare If of G′ = (Kn1
∪Kn2

) +Kκ and
G′′ = (Kn1+1 ∪Kn2−1) +Kκ. For every z ∈ S, we have

dG′(z) = dG′′(z) = n− 1.
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In G′, we have
dG′(v) = κ+ n1 − 1 and dG′(v′) = κ+ n2 − 1,

for every v ∈ V (Kn1
) and every v′ ∈ V (Kn2

). In G′′, we have

dG′′(w) = κ+ n1 and dG′′(w′) = κ+ n2 − 2,

for every w ∈ V (Kn1+1) and every w′ ∈ V (Kn2−1). We obtain

If (G
′′)− If (G′)

= κ(n1 + 1) f(n− 1, n1 + κ)− κn1 f(n− 1, n1 + κ− 1)

+ κ(n2 − 1) f(n− 1, n2 + κ− 2)− κn2 f(n− 1, n2 + κ− 1)

+

(
n1 + 1

2

)
f(n1 + κ, n1 + κ)−

(
n1
2

)
f(n1 + κ− 1, n1 + κ− 1)

+

(
n2 − 1

2

)
f(n2 + κ− 2, n2 + κ− 2)−

(
n2
2

)
f(n2 + κ− 1, n2 + κ− 1)

= κ f(n− 1, n1 + κ)− κ f(n− 1, n2 + κ− 2)

+ κn1[f(n− 1, n1 + κ)− f(n− 1, n1 + κ− 1)]

− κn2[f(n− 1, n2 + κ− 1)− f(n− 1, n2 + κ− 2)]

+

[
n1(n1 − 1)

2
+ n1

]
f(n1 + κ, n1 + κ)− n1(n1 − 1)

2
f(n1 + κ− 1, n1 + κ− 1)

+

[
n2(n2 − 1)

2
− (n2 − 1)

]
f(n2 + κ− 2, n2 + κ− 2)

− n2(n2 − 1)

2
f(n2 + κ− 1, n2 + κ− 1)

= κ[f(n− 1, n1 + κ)− f(n− 1, n2 + κ− 2)]

+ κ(n1 − n2)[f(n− 1, n1 + κ)− f(n− 1, n1 + κ− 1)]

+ κn2[f(n− 1, n1 + κ)− f(n− 1, n1 + κ− 1)]

− κn2[f(n− 1, n2 + κ− 1)− f(n− 1, n2 + κ− 2)]

+
n1(n1 − 1)− n2(n2 − 1)

2
[f(n1 + κ, n1 + κ)− f(n1 + κ− 1, n1 + κ− 1)]

+
n2(n2 − 1)

2
[f(n1 + κ, n1 + κ)− f(n1 + κ− 1, n1 + κ− 1)]

− n2(n2 − 1)

2
[f(n2 + κ− 1, n2 + κ− 1)− f(n2 + κ− 2, n2 + κ− 2)]

+ (n2 − 1)[f(n1 + κ, n1 + κ)− f(n2 + κ− 2, n2 + κ− 2)]

+ (n1 − n2 + 1)f(n1 + κ, n1 + κ).

Since n1 ≥ n2 ≥ 2, κ ≥ 1 and the function f has property P , from part (ii) of Definition 2.1,
we obtain

f(n− 1, n1 + κ) ≥ f(n− 1, n2 + κ− 2), f(n− 1, n1 + κ) ≥ f(n− 1, n1 + κ− 1),

f(n1 + κ, n1 + κ) ≥ f(n1 + κ− 1, n1 + κ− 1), f(n1 + κ, n1 + κ) ≥ f(n2 + κ− 2, n2 + κ− 2).

By Definition 2.1 (i), we have f(n1 + κ, n1 + κ) > 0. By Definition 2.1 (iii), we have

f(n− 1, n1 + κ)− f(n− 1, n1 + κ− 1) ≥ f(n− 1, n2 + κ− 1)− f(n− 1, n2 + κ− 2),
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and

f(n1 + κ, n1 + κ)− f(n1 + κ− 1, n1 + κ− 1)

≥ f(n2 + κ− 1, n2 + κ− 1)− f(n2 + κ− 2, n2 + κ− 2).

Thus If (G′′)− If (G′) > 0, so If (G′′) > If (G
′), which means that G′ does not have the largest

If . We have a contradiction.
Thus n2 = 1. Then n1 = n− κ− 1, so G′ is (Kn−κ−1 ∪K1) +Kκ and

If ((Kn−κ−1 ∪K1) +Kκ) =

(
n− κ− 1

2

)
f(n− 2, n− 2) +

(
κ

2

)
f(n− 1, n− 1)

+ κ(n− κ− 1)f(n− 1, n− 2) + κf(n− 1, κ).

�

4 Lower bound for 2-connected graphs
A proper ear decomposition of G is a decomposition of G into a sequence of ears P0, P1, . . . , Pk,
where k ≥ 1, P0 is a cycle and Pi for 1 ≤ i ≤ k is a path whose terminal vertices are in
V (P0)∪ · · · ∪ V (Pi−1) and internal vertices (if any) are not in V (P0)∪ · · · ∪ V (Pi−1). Whitney
[27] gave a well-known characterization of 2-connected graphs.

Lemma 4.1. A graph is 2-connected if and only if it has a proper ear decomposition.

We use Lemma 4.1 to obtain a lower bound on If for 2-connected graphs.

Theorem 4.2. Let G be any 2-connected graph with n vertices, where n ≥ 3. If f has property
Q, then

If (G) ≥ nf(2, 2),

with equality if and only if G is the cycle Cn.

Proof. For n = 3, we have only one 2-connected graph which is C3, so Theorem 4.2 holds for
n = 3. We prove Theorem 4.2 by induction on n. Assume that n ≥ 4 and for any graph G of
order m < n, we have If (G) ≥ mf(2, 2) with equality if and only if G is Cm.

Let H be a graph with the smallest If among 2-connected graphs with n vertices except
for Cn. From Lemma 4.1, we know that H has a proper ear decomposition P0, P1, . . . , Pk.
Since H is not a cycle, we have k ≥ 1. Let u and v be the terminal vertices of Pk. So
u, v ∈ V (P0) ∪ · · · ∪ V (Pk−1). Let r be the number of internal vertices of Pk. We have r ≥ 0.
Let H ′ be obtained from H by the removal of all r internal vertices of Pk and all r + 1 edges
of Pk. Then H ′ is a 2-connected graph containing the ears P0, P1, . . . , Pk−1. The order of H ′
is n− r. We consider the cases r = 0 and r ≥ 1.

Case 1: r = 0.

Then Pk contains only one edge uv. We have V (H ′) = V (H) and E(H ′) = E(H) \ {uv}.
So, the order of H ′ is n. By Lemma 2.6, If (H ′) < If (H).

If k ≥ 2, then H ′ is not Cn, but the inequality If (H ′) < If (H) contradicts the fact that H
is a graph with the smallest If among 2-connected graphs with n vertices except for Cn.

If k = 1, then H ′ is P0 which is Cn, so If (Cn) < If (H) which means that Cn is the
2-connected graph of order n with the smallest If . Hence, the proof of the case r = 0 is
complete.
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Case 2: r ≥ 1.

If uv ∈ E(H), then uv ∈ E(Pi) for some i ∈ {0, 1, . . . , k − 1}. Let us construct P ′i with
V (P ′i ) = V (Pi) ∪ V (Pk) and E(P ′i ) = E(Pi) ∪ E(Pk) \ {uv}. Let P ′k contain only one edge uv.
Clearly, when we replace Pi and Pk in P0, P1, . . . , Pk by P ′i and P ′k, we again obtain a proper
ear decomposition, where P ′k contains only one edge and such situation was solved in Case 1.

Therefore, we can assume that uv 6∈ E(H). Let NH′(u) = {u1, . . . , us} and NH′(v) =
{v1, . . . , vt}. Note that s, t ≥ 2. By the induction hypothesis, we have If (H ′) ≥ (n− r)f(2, 2).
Thus

If (H) = If (H
′) + (r − 1)f(2, 2) + f(dH(u), 2) + f(dH(v), 2)

+

s∑
i=1

[f(dH(u), dH(ui))− f(dH(u)− 1, dH(ui))]

+

t∑
i=1

[f(dH(v), dH(vi))− f(dH(v)− 1, dH(vi))]

≥ (n− 1)f(2, 2) + f(dH(u), 2) + f(dH(v), 2)

+

s∑
i=1

[f(dH(u), dH(ui))− f(dH(u)− 1, dH(ui))]

+

t∑
i=1

[f(dH(v), dH(vi))− f(dH(v)− 1, dH(vi))].

Since dH(u) ≥ 3, dH(v) ≥ 3 and the function f has property Q, from part (ii) of Definition 2.1,
we obtain

f(dH(u), 2) ≥ f(2, 2), f(dH(v), 2) ≥ f(2, 2),

f(dH(u), dH(ui)) ≥ f(dH(u)− 1, dH(ui)) and f(dH(v), dH(vi)) ≥ f(dH(v)− 1, dH(vi)).

By Definition 2.1 (i), we have f(2, 2) > 0. Thus

If (H) ≥ (n+ 1)f(2, 2) > nf(2, 2) = If (Cn),

which means that Cn is the 2-connected graph of order n with the smallest If . �

5 Conclusion

In Theorem 3.1, we presented a bound on If , where f is a function having property P introduced
in Definition 2.4. In Lemma 2.5, we obtained several functions having property P . Hence, by
Theorem 3.1 and Lemma 2.5, we get Corollary 5.1.

Corollary 5.1. Among graphs with n vertices and connectivity κ, where 1 ≤ κ ≤ n − 2,
(Kn−κ−1 ∪K1) +Kκ is the unique graph with the maximum

• Ma,b and SOa,b for a, b ≥ 1,

• χa and Ra for a ≥ 1,

• GRMa for a > −1.
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So, Corollary 5.1 holds also for the following special cases of χa, Ra, Ma,b and SOa,b: first
Zagreb index χ1, first hyper-Zagreb index χ2, second Zagreb index R1, second hyper-Zagreb
index R2, second Gourava index M1,1, second hyper-Gourava index M2,2 and forgotten index
SO2,1.

By Theorem 4.2 and Lemma 2.2, we obtain Corollary 5.2.

Corollary 5.2. Among 2-connected graphs with n vertices, where n ≥ 3, the cycle Cn is the
unique graph with the minimum

• Ma,b for a ≥ 0, b ≥ −a,

• SOa,b for a, b ≥ 0 or a, b ≤ 0,

• AZIa,b for a ≥ −2, b ≥ 0,

• χa and Ra for a ≥ 0,

• GRMa for a > −2.

All the indices covered by Corollary 5.1 are covered also by Corollary 5.2. However, Corol-
lary 5.2 holds for a larger number of indices. The following indices are special cases of general
indices presented in Corollary 5.2, but not special cases of general indices given in Corollary 5.1:
inverse sum indeg index M1,−1, Sombor index SO2, 12

, augmented Zagreb index AZI−2,3, recip-
rocal sum-connectivity index χ 1

2
, reciprocal Randić index R 1

2
and reduced second Zagreb index

GRM−1.
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