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Abstract

The total structure connectivity and Narumi-Katayama in-
dices of a simple graph G are defined as TS(G) =

∏
u∈V (G)

1√
du

and NK(G) =
∏
u∈V (G) du respectively, where du represents

the degree of vertex u in G. In this paper, we determine the ex-
tremal values of total structure connectivity index on the class of
unicyclic and bicyclic graphs and characterize the corresponding
extremal graphs. In addition, we determine the bicyclic graphs
extremal with respect to the Narumi-Katayama index.

c© 2023 University of Kashan Press. All rights reserved.

1 Introduction

Topological indices are molecular descriptors calculated from the molecular graph of a chem-
ical compound. There is a strong correlation between the structural properties of a chemical
compound and its topological indices [1–6].

Let G be a graph with the vertex set V (G) and edge set E(G). If u ∈ V (G), then the degree
of u is the number of edges incident with u and it is denoted by dG(u) = du. A vertex v ∈ V (G) is
said to be a pendant, whenever dv = 1. If G has n vertices, then the n-tuple D = (d1, d2, . . . , dn)
of vertex degrees is called the degree sequence of G, where d1 ≥ d2 ≥ ... ≥ dn. Let G be a simple
graph with p vertices and q edges. If G has n components, then γ = γ(G) = q − p+ n is called
the cyclomatic number of G. If G is a connected graph and γ(G) = 0, then G is called a tree.
Graphs with γ = 1, 2 are called unicyclic and bicyclic, respectively. In this paper, all graphs
are simple and connected. In addition, the path and the cycle with n vertices are indicated by
Pn and Cn, respectively.
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One of the oldest topological indices is the Zagreb index first introduced in [7], when Gutman
and Trinajstic studied the relation between π−electron energy and molecule structure (see also
[8]). The total structure connectivity index of a simple graph G is defined in [9] as

TS(G) =
∏

v∈V (G)

1√
dv
.

In 1984, Narumi and Katayama [10] introduced the simple topological index by

N = NK(G) =
∏

v∈V (G)

dv.

This index was called the Narumi-Katayama index in later works [11, 12]. In 2017, Bozovic et
al. [13] used graph transformations and obtained extremal values of some topological indices
on unicyclic and bicyclic graphs. In [14], we determined extremal values of the inverse degree
and the forgotten indices on the class of all unicyclic graphs. In this paper, we use some
graph transformations and obtain extremal values of the total structure connectivity index on
the class of all unicyclic and bicyclic graphs. Moreover, in [15] You and Liu determined the
minimal Narumi-Katayama index of bicyclic graphs. Here, we use a different method and obtain
the maximum and minimum values of the Narumi-Katayama index on the class of all bicyclic
graphs with n vertices.

2 Some graph transformations and their affection on the
total structure connectivity and the Narumi-Katayama
indices

Let G be a graph, V1 ⊆ V (G) and E1 ⊆ E(G). The subgraph of G obtained by removing the
vertices of V1 and the edges incident with them is denoted by G− V1. Similarly, the subgraph
of G obtained by deleting the edges of E1 is denoted by G − E1. Let a, b ∈ V (G), V1 = {a}
and E1 = {ab}. Then the subgraphs G− V1 and G− E1 will be written as G− a and G− ab,
respectively. In addition, G · ab is a graph, obtained from G by the contraction of edge ab onto
vertex a. Finally, if a, b are nonadjacent vertices of G, then G+ ab is the graph obtain from G
by adding an edge ab.

Theorem 2.1. Let G and G̃ be two graphs and V (G) = V (G̃) = V. Suppose that u, v ∈ V (G),
where dG(u) = m, dG(v) = n, dG̃(u) = m + k and dG̃(v) = n − k, for some k ≥ 0. If
dG(a) = dG̃(a) for each a ∈ V \ {u, v}, then the following statements hold:
(i) k = 0 or k = n−m if and only if TS(G̃) = TS(G),
(ii) k < n−m if and only if TS(G̃) < TS(G),
(iii) k > n−m if and only if TS(G̃) > TS(G).

Proof. We set W = V − {u, v}. Then dG(a) = dG̃(a), for each a ∈ W . Now, by the definition
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of the total structure connectivity index, we have

TS(G)

TS(G̃)
=

∏
a∈V (G)

1√
da∏

a∈V (G̃)
1√
da

=

1√
dG(u)

× 1√
dG(v)

1√
dG̃(u)

× 1√
dG̃(v)

=

1√
m
× 1√

n

1√
m+k

× 1√
n−k

=

√
(m+ k)(n− k)√

mn

=

√
mn+ k(n−m− k)√

mn
.

Now, it is easy to see that (i), (ii) and (iii) are hold. �

Theorem 2.2. Let G and G̃ be two graphs and V (G) = V (G̃) = V. Suppose that u, v ∈ V (G),
where dG(u) = m, dG(v) = n, dG̃(u) = m + k and dG̃(v) = n − k, for some k ≥ 0. If
dG(a) = dG̃(a) for each a ∈ V \ {u, v}, then the following statements hold:
(i) k = 0 or k = n−m if and only if NK(G̃) = NK(G),
(ii) k < n−m if and only if NK(G̃) > NK(G),
(iii) k > n−m if and only if NK(G̃) < NK(G).

Proof. By the same way as in the proof of Theorem 2.1 and the definition of the Narumi-
Katayama index, we have

NK(G)

NK(G̃)
=

∏
a∈V (G)da∏
a∈V (G̃)da

=
dG(u)× dG(v)

dG̃(u)× dG̃(v)

=
m× n

(m+ k)× (n− k)
=

mn

mn+ k(n−m− k)
.

Now, we can see that (i), (ii) and (iii) are hold. �

A graph transformation converts the information from the primary graph into a new con-
verted structure. Now, we present several well-known graph transformations [13, 16, 17] that
will be used to attain our main results.

Transformation A: Let G be a nontrivial graph, u, v ∈ V (G) and dG(v) ≥ 3. Suppose that
P1 : uu1u2 . . . us and P2 : vv1v2 . . . vt are two paths, that hang on u and v, respectively. Let
G̃ be the graph achieved from G by interconnecting P1 and P2 ( see Figure 1). Therefore, the
uu1...usv1...vt is a path in the new graph G̃. If we use transformation A on G, then the degree
of us increases by k = 1 and the degree of v decreases by k = 1. Also, the degrees of other
vertices in G and G̃ are equal. Therefore, Theorems 2.1 and 2.2 show that TS(G̃) < TS(G)

and NK(G̃) > NK(G).
Transformation B: Let G be a nontrivial graph. Consider two adjacent vertices u and v

in G and let dG(u) ≥ 3 and P : uu1u2 . . . us be a path in G. We remove the edge uv and add
the new edge usv. We denote the new obtained graph by G̃ ( see Figure 2).

Let dG(us) = m, dG(u) = n and n ≥ 3. If we use transformation B on G, then dG̃(us) =

m + 1, dG̃(u) = n + 1, and the degrees of other vertices in G and G̃ are the same. Now by
Theorems 2.1 and 2.2 , TS(G̃) < TS(G) and NK(G̃) > NK(G).

For n ≥ 4 and i = 3, .., n−1, the unicyclic graph COn,i consisting of the cycle Ci that is con-
nected to a path of length n− i, is called a comet (Figure 3). All the comets COn,3,...,COn,n−1
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Figure 1: Transformation A.

Figure 2: Transformation B.

have the same degree sequence, thus these comets have the same total structure connectivity
and the Narumi-Katayama indices.

Figure 3: Comet.

Transformation C: Suppose that G is a graph, u, v ∈ V (G) and u and v have no shared
neighbor. Let dG(u) = m and dG(v) = n, where m ≥ n ≥ 2. If e = uv, we show (G.e) + uv by
G̃ (Figure 4).

Let u and v be two vertices of a graph G with dG(u) = m and dG(v) = n. If we use transfor-
mation C on G, then dG̃(v) = n− (n−1) = 1 and dG̃(u) = m+ (n−1) and the degrees of other
vertices in G and G̃ are equal. By Theorems 2.1 and 2.2, if m ≥ n ≥ 2, then TS(G̃) > TS(G)

and NK(G̃) < NK(G).

Remark 1. If we apply the transformation C to Cn, then we conclude that TS(Cn) < TS(COn,n−1)
and NK(COn,n−1) < NK(Cn). In addition, since all the comets COn,3,...,COn,n−1 have the
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Figure 4: Transformation C.

same total structure connectivity and the Narumi-Katayama indices, so TS(Cn) < TS(COn,i)
and NK(COn,i) < NK(Cn), for each i = 3, ..., n− 1.

Transformation D: Let G be a graph, v ∈ V (G) and v1, v2, . . . , vt be pendant vertices and
neighbors of vertex v. If u ∈ V (G)− {v1, v2, . . . , vt}, then we show (G− {vv1, vv2, . . . , vvt}) +

{uv1, uv2, . . . , uvt} by G̃ (Figure 5). Now, if dG(u) = m and dG(v) = n, then by Theorems 2.1
and 2.2 we have

(a) if t = n−m, then TS(G̃) = TS(G) and NK(G̃) = NK(G),
(b) if n−m > t and t > 0, then TS(G̃) < TS(G) and NK(G̃) > NK(G),
(c) if t > n−m, then TS(G̃) > TS(G) and NK(G̃) < NK(G).

Figure 5: Transformation D.

Remark 2. For n ≥ 4, the unicyclic graph Ckn consists of the cycle Ck and n − k pendant
vertices that are attached to a vertex of Ck (Figure 6). By frequent use of the transformation
C, we conclude that if k > 3, then TS(Ckn) < TS(C3

n) and NK(C3
n) < NK(Ckn).

Figure 6: Ckn.
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3 Extremal unicyclic graphs with respect to the total struc-
ture connectivity and the Narumi-Katayama indices

In this section, we determine the extremal values of the total structure connectivity and the
Narumi-Katayama indices on the class of all unicyclic graphs and characterize corresponding
extremal unicyclic graphs.

Theorem 3.1. Let G be a unicyclic graph of order n, where n ≥ 3. Then TS(Cn) ≤ TS(G) ≤
TS(C3

n).

Proof. If the transformation A is repeatedly applied to G, then any tree of G is transformed
into a path and all paths will make a unique path, again by transformation A. In fact, the
transformation A converts G into a comet. Thus, Remark 1 shows that TS(G) ≥ TS(Cn).

If the transformation C is repeatedly applied to G, we obtain a graph with stars connected
on its cycle. Now, with sufficient use of the transformation D, we get a unicyclic graph G̃ with
exactly one star connected on its cycle and TS(G) ≤ TS(G̃). In addition, if the transformation
C is repeatedly applied to G̃, we achieve the unicyclic graph C3

n. Hence TS(G̃) ≤ TS(C3
n) and

by Remark 2, we conclude that TS(G) ≤ TS(C3
n).

�

The following theorem is proved with a similar argument.

Theorem 3.2. Let G be a unicyclic graph of order n, where n ≥ 3. Then NK(C3
n) ≤ NK(G) ≤

NK(Cn).

Corollary 3.3. If G is a unicyclic graph with n vertices, where n ≥ 3 and G 6= Cn, C
3
n, then

(i)
√

2n

2n < TS(G) <
√
n−1

2n−2 ,
(ii) 4n− 4 < NK(G) < 2n.

4 Maximal and minimal values of total structure connec-
tivity and the Narumi-Katayama indices on bicyclic graphs

In this section, we obtain maximal and minimal graphs with respect to the total structure
connectivity and the Narumi-Katayama indices on the class of all bicyclic graphs, by considering
the main subgraphs of the bicyclic graphs.

If G is a bicyclic graph, then G possesses two independent cycles and these cycles are denoted
by Cp and Cq as in [17, 18]. Now, one of the following cases will be occurred:
(I) The subgraphs Cp and Cq in graph G possess exactly one shared vertex u.
(II) The subgraphs Cp and Cq in graph G are connected by a path of length r, where r > 0.
(III) The subgraphs Cl+i and Cl+j in G, posses a shared path of length l, where 0 < l ≤
min{i, j}.
The subgraphs Cp,q, Cp,r,q and Θl,i,j , depending on the previous three cases, are called main
subgraphs of G, respectively (see Figure 7).

If G is a bicyclic graph, we transform each tree of G into a path by frequentative use of
transformation A. Then, we transform all the paths with the same transformation into a unique
path such as P : w1w2 . . . wt. Thereupon, we acquire a bicyclic graph G̃ such that the main
subgraph of G̃ is one of the graphs Cp,q, Cp,r,q or Θl,i,j and it has a unique pendant path P

attached at one of its vertices. According to the main subgraph of G̃, we consider the following
three cases:
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Figure 7: Main subgraphs of bicyclic graphs.

Case A: The main subgraph of G̃ is Cp,q.
If the path P was connected to the vertex u, then we displace P and paste it to a vertex in

Cp or Cq except u. Thus, we assume that P is attached to the vertex s, where s 6= u. Now, if
the transformation B is used for s and one of its neighbors of degree 2, we obtain a graph of
type I, where the length of one of its cycles is increased by the length of P as Figure 8. Also,
we show that transformation B increases the Narumi-Katayama index and decreases the total
structure connectivity index.

Figure 8: Bicyclic graph ϕ1 of type I.
.

Case B: The main subgraph of G̃ is Cp,r,q.
If the path P was connected to the vertices {u, u1, u2, . . . , ur−1, v}, then we displace and

paste it to a vertex s in Cp or Cq except u and v. Now, if the transformation B is used for s
and one of its neighbors of degree 2, then we obtain a graph of type II, where the length of one
of its cycles is increased by the length of P . In addition, the vertices {u1, u2, . . . , ur−1} can be
inserted into one of the cycles Cp or Cq. In this way, the degree sequence of the graph does not
change, so the total structure connectivity and the Narumi-Katayama indices do not change.
Eventually, we achieve a bicyclic graph, where its cycles are linked by uv as in the Figure 9.

Figure 9: Bicyclic graph ϕ2 of type II.

Case C: The main subgraph of G̃ is Θl,i,j

Similar to the previous cases, if the path P was connected to one of the vertices {g, v1, v2, . . . , vl−1, h},
then we displace and paste it to a vertex s in Cp or Cq except g and h. Now, if the trans-
formation B is used for s and one of its neighbors of degree 2, then we obtain a graph of
type III, where the length of one of its cycles is increased by the length of P . In addition,
the vertices {v1, v2, . . . , vl−1} can be inserted into one of the cycles Cp or Cq. In this way,
the degree sequence of the graph does not change, so the total structure connectivity and the
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Narumi-Katayama indices do not change. Eventually, we achieve a bicyclic graph of type III,
where its cycles are shared in the edge gh as Figure 10.

Figure 10: Bicyclic graph ϕ3 of type III.

Therefore, every bicyclic graph G can be converted into one of the graphs ϕ1 (Figure 8),
ϕ2 (Figure 9) or ϕ3 (Figure 10). The degree sequences of ϕ2 and ϕ3 are the same. In the next
lemma, we compare the total structure connectivity and the Narumi-Katayama indices of ϕ1

and ϕ2.

Lemma 4.1. Let ϕ1, ϕ2 and ϕ3 be the simple bicyclic graphs Figures 8 to 10, respectively.
Then

(a) TS(ϕ1) > TS(ϕ2) = TS(ϕ3),
(b) NK(ϕ1) < NK(ϕ2) = NK(ϕ3).

Proof. (a) We can see that the degree sequence of ϕ1 is (4,2,2,. . . ,2) and ϕ2 is (3,3,2,2,. . . ,2).
Then by the definition we have

TS(ϕ1)

TS(ϕ2)
=

∏n
i=1

1√
d́i∏n

i=1
1√
di

=

1√
2
× . . .× 1√

2
× 1√

4
1√
2
× . . .× 1√

2
× 1√

3
× 1√

3

=

1

2
√

2n−1

1

3
√

2n−2

=
3
√

2

4
.

Thus, TS(ϕ1)
TS(ϕ2) > 1 and TS(ϕ2) < TS(ϕ1), for each n ≥ 5.

(b)With a similar argument for the Narumi-Katayama index, we have

NK(ϕ1)

NK(ϕ2)
=

∏n
i=1d́i∏n
i=1di

=
2× 2× . . .× 2× 4

2× 2× . . .× 2× 3× 3

=
8

9
.

Therefore, NK(ϕ1)
NK(ϕ2) < 1 and NK(ϕ1) < NK(ϕ2), for each n n ≥ 5. �

If G is a bicyclic graph, then by iterative use of transformation C, G can be converted to a
bicyclic graph G̃, where G̃ consists of two triangles and some hanging stars and the Narumi-
Katayama index of G̃ is less than the Narumi-Katayama index of G and its total structure
connectivity index is greater than the total structure connectivity index of G. Now, we repeat
transformation D until G converts to ψ1 or ψ2 of Figure 11. Also, transformation D decreases
the Narumi-Katayama index and increases the total structure connectivity index.

In the next lemma, we compare the total structure connectivity and the Narumi-Katayama
indices of the graphs ψ1 and ψ2.
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Figure 11: Bicyclic graphs ψ1 and ψ2.

Lemma 4.2. Let ψ1 and ψ2 be the simple bicyclic graphs Figure 11. Then
(a) TS(ψ1) < TS(ψ2),
(b) NK(ψ1) > NK(ψ2).

Proof. (a) We can see that the degree sequence of ψ1 is (n-1,2,2,2,2,1,1,. . . ,1) and ψ2 is (n-
1,3,2,2,1,1,. . . ,1), so by the definition we have

TS(ψ1)

TS(ψ2)
=

∏n
i=1

1√
d́i∏n

i=1
1√
di

=

1√
1
× . . .× 1√

1
× 1√

n−1
× 1√

24

1√
1
× . . .× 1√

1
× 1√

22
× 1√

3
× 1√

n−1

=

√
3

2
.

Thus, TS(ψ1)
TS(ϕ2) < 1 and TS(ψ1) < TS(ψ2), for each n ≥ 5.

(b)With a similar argument above for the Narumi-Katayama index, we have

NK(ψ1)

NK(ψ2)
=

∏n
i=1d́i∏n
i=1di

=
1× 1× . . .× 1× 24 × (n− 1)

1× 1× . . .× 1× 22 × 3× (n− 1)

=
4

3
.

Therefore,NK(ψ1)
NK(ψ2) > 1 and NK(ψ2) < NK(ψ1), for each n ≥ 5. �

Now, by the above explanations we can prove the main results of this section.

Theorem 4.3. Let G be a bicyclic graph of order n, where n ≥ 5. Then
(i) TS(ϕ2) ≤ TS(G) ≤ TS(ψ2),
(ii) NK(ψ2) ≤ NK(G) ≤ NK(ϕ2).

Proof. (i) If G is a bicyclic graph, then we show that G can be converted into one of the
graphs ϕ1, ϕ2 or ϕ3 of Lemma 4.1, by the transformations A and B and these transformations
decrease the total structure connectivity index. Therefore, Lemma 4.1 implies that TS(ϕ2) ≤
TS(G). Similarly, G can be converted into one of the graphs ψ1 or ψ2 of Lemma 4.2 by the
transformations C and D and these transformations increase the total structure connectivity
index. Therefore, Lemma 4.2 shows that TS(G) ≤ TS(ψ2).

Another part can be proved by a similar argument. �
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Corollary 4.4. Let G be a bicyclic graph of order n, where n ≥ 5 and G 6= ϕ2 and ψ2. Then
(i) 1

3
√

2n−2
< TS(G) < 1

2
√

3(n−1)
,

(ii) 12× (n− 1) < NK(G) < 9× 2n−2.
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