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Abstract

A rapidly developing field of science and technology is
nanobiotechnology. Nanotube, nanostar and polyomino chain
are critical and widespread molecular structures extensively
used in the domains of pharmaceuticals, chemical engineering,
and medical science. Additionally, these structures serve as the
foundational building blocks for other, more intricate chemical
molecular structures. In this paper, certain chemical structures
like nanostar dendrimer, oxide network, silicate network, boron
nanosheet and polyomino chains have been acyclically colored
using the concept of vertex cut and matching. Also, we de-
termine the acyclic coloring parameters for the networks under
consideration and find a relation between them.

c© 2023 University of Kashan Press. All rights reserved

1 Introduction
Nanobiotechnology is an advancing area that uses nanofabrication tools to create devices for
studying biological systems. In this field of study, dendrimers are commercially available build-
ing blocks. They have a three-dimensional architecture consisting of a core, branches and end
groups that is regular and highly branched forming a tree-like structure [1]. The biological
characteristics of dendrimers include polyvalency, self-assembly, chemical stability, electrostatic
interactions, solubility and low cytotoxicity. Dendrimers are a good option in the medical and
pharmaceutical industries due to their varied characteristics. Nanostar dendrimer is a collection
of macromolecules that resemble photon funnels which is similar to artificial antennas and have
a variety of applications.

The silicates are by far the largest, most significant, and complicated group of minerals.
A silicate network is a ring of tetrahedrons with oxygen ions representing the corner vertices
and the silicon ion representing the center vertex. A new network called an oxide network is
created when all the silicon vertices in a silicate network are removed. Oxide networks are very
important when studying silicate networks [2].

Carbon nanotubes, boron triangular nanotubes and boron α-nanotubes are the three most
significant nanostructures. The first boron triangular nanotubes, made from a triangular sheet,
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were created in 2004 [3, 4]. Researchers [5–7] have created a particular boron sheet from a
triangular sheet of boron in which one-ninth of the atoms will be absent. The term boron
α-sheet refers to this unique boron sheet. Due to the remarkable properties like electronic
structure, structural stability, transport properties, and work function, boron nanotubes are
becoming increasingly interesting [8].

Polyomino graphs (finite 2-connected plane graph) have applications in modeling problems
of surface chemistry and crystal physics [9, 10]. In a polyomino system, interior face is bordered
by a regular square with a side length of one [11, 12]. A polyomino system, in which every
square is connected to every other square by no more than two squares, is a polyomino chain.

Grünbaum introduced the concept of acyclic vertex coloring [13] and Jozef Fiamčik intro-
duced the idea of acyclic edge coloring [14]. It is an NP-complete problem to calculate the
number of cycles and the acyclic chromatic index for any graph [15, 16]. As a result, deter-
mining the acyclic chromatic index is challenging. For a given graph G and an integer k, A.V.
Kostochka proved that determining whether the acyclic chromatic number of G is at most k, is
an NP-complete problem [17].

The acyclic colorings of graphs have applications in various fields like multivariable calcu-
lus [18], optical networks [19], statistical mechanics [20], and so on. A Kekulé structure in a
molecular graph is a perfect matching in the graph. The acyclic coloring of graphs enables
categorization of Kekulé structures into equivalence classes of structures, where all of the struc-
tures in a class have the same resonance energy (measure of stability) [21]. Applications of the
acyclic edge-colorings of graphs include enumeration of unsaturated isomers of a certain class
of organic compounds [22].

Many significant results have been produced in acyclic coloring of graphs [23–25]. As far
as we are aware, not much work has been done on finding the acyclic coloring of chemical
structures except for the acyclic chromatic index of carbon nanosheets [26]. In this paper,
utilizing the idea of vertex cut and matching, some chemical structures including nanostar
dendrimers, silicate networks, oxide networks, boron nanosheets, and polyomino chains have
been acyclically colored. We find the acyclic chromatic number χa(G) and acyclic chromatic
index χ′a(G) and prove that χa(G) ≤ χ′a(G).

The rest of the paper is organized as follows. The definitions and other preliminaries are
presented in Section 2. The key findings are laid up in Section 3. Finally, Section 4 concludes
the paper with further research directions.

2 Basic concepts

A simple undirected graph G consists of the vertex set represented by V and the edge set
represented by E. Thus, a graph G = (V,E) is a mathematical representation of a network
describing the relationship between its vertices and edges. Molecular graphs are frequently
used to model molecules and molecular compounds. A molecular graph is a graph-theoretical
depiction of the structural formula of a chemical compound, where the vertices represent the
compound’s atoms and the edges represent its chemical bonds. All the graphs considered in
this paper are simple and finite. Let deg(v) denote the degree of a vertex v, which is the number
of edges incident to a vertex v of a graph G. Let ∆(G) denote the maximum degree of a graph
G.

Matching theory is one of the most fundamental and significant theories in network flow
theory and combinatorial theory. A matching M in G is a set of edges which are pairwise non-
adjacent. A matching that cannot be extended by adding any more edges is called a maximal
matching. If every vertex of G is covered by an edge of M , then the matching M is said to
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be a perfect matching. In the chemical structure, an aromatic compound’s Kekulé structure
coincides with a perfect matching of its carbon skeleton, showing the locations of double bonds.
If a perfect matching exists, a benzenoid system is Kekuléan.

A labeling f : V (G)→ [k] is a k-vertex coloring of a graph G in which the labels are colors
and a color class is a set of vertices with the same color. A k-vertex coloring is said to be
proper if adjacent vertices have distinct colors. The chromatic number of a graph G is defined
as the least number of colors required for a proper vertex coloring of G. A vertex coloring of a
graph G is acyclic if it is a proper vertex coloring with no 2-colored (bichromatic) cycle in G
[13]. Alternatively, the subgraph induced by the vertices of any two of the colors will not have
any cycle in it. The acyclic chromatic number of G is the least number of colors in an acyclic
coloring of G, which is denoted by χa(G).

A labeling f : E(G)→ [k] is a k-edge coloring of a graph G. Here, the labels are colors, and
a color class is a set of edges with the same color. The k edge-coloring of G is said to be proper if
the adjacent edges have distinct colors. The chromatic index of a graph G is defined as the least
number of colors required for a proper edge coloring of G. If there are no bichromatic cycles
in a graph G, then the proper coloring of the edges of G is acyclic [14]. The least number of
colors required to acyclically edge-color a graph G, denoted by χ′a(G), is the acyclic chromatic
index of G.

3 Main results
In this paper, we define the f-vertex cut set to find the acyclic chromatic number of nanostar
dendrimer, oxide network, silicate network, boron nanosheet and polyomino chains.

Definition 3.1. Consider a graph G. A set V ⊂ V (G) is called an f -vertex cut set (denoted
by fvcs) of G if the conditions listed below are satisfied.

(a) Each element in V is a cut vertex of G such that no two vertices in V share a common
edge of G,

(b) G \ V induces a forest in G.

3.1 Acyclic coloring of nanostar dendrimer
Nanostar dendrimers are one of the most fundamental nanobiotechnology objects having a wide
range of applications in the medical field. It is denoted by Dn and has (57(2n−1)− 38) vertices
and (33(2n)− 45) edges.

Theorem 3.2. χa(Dn) = 3.

Proof. Consider the vertices vi of degree 3 which are not part of a hexagon. Each of the adjacent
vertices of vi is an end vertex of the 6-cycle (hexagon) which forms the f -vertex cut set of Dn.
The f -vertex cut set represents one color class (say 1) whose removal results in a forest. Each
component of the forest is either a path, a tree or an isolated vertex.

Case 1: Path
A path is properly colored using two colors (say 2 and 3). The f -vertex cut set together

with the path results in disjoint cycles of length 6. Since, the cycle is of even length, it can be
properly colored using 3 colors.

Case 2: Tree
Two hexagons connected by an edge have their f -vertex cut set vertices to be the opposite

end vertices, whose removal results in disjoint trees. The trees can be properly colored using
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2 colors. The trees together with the vertices in the f -vertex cut set results in a 3-coloring
ensuring the absence of bichromatic cycles.

Case 3: Isolated vertex
If one of the components of the forest is an isolated vertex, then it is always a vertex of

degree 3. Each of its adjacent vertices belongs to the f -vertex cut set. Thus, the isolated vertex
receives either color 2 or color 3. The isolated vertex together with the f -vertex cut set result
in a tree. Hence, there exists no bichromatic cycles.

It can be seen that, in all of the above cases, only three colors have been used and there are
no bichromatic cycles. Hence, for the nanostar dendrimer, the acyclic chromatic number is 3.
See Figure 1(a). �
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Figure 1: (a) Acyclic vertex coloring of nanostar dendrimer D2. (b) Acyclic edge coloring of
nanostar dendrimer D2.

Theorem 3.3. χ′a(Dn) = 3.

Proof. Consider a maximal matching of Dn such that at least one of the edges, incident to a
vertex with degree 3, is considered. The edges belonging to such a maximal matching form one
color class (say 1). Consider the vertices of degree 3. One edge has been assigned color 1, by
the previous argument. Hence, assign color 2 and 3 to the other two edges. Next, consider the
hexagons with two edges colored 1. Then, the non-colored adjacent edges are assigned color
2 and 3, since they form a path. Consider the hexagons with three edges colored 1. Then,
properly color at least one edge with color 2 and the remaining edges with color 3 so that there
are no bichromatic cycles. For the remaining uncolored edges, assign color 2 or 3 such that a
proper coloring of the edges is ensured. Thus, three colors are sufficient for the acyclic proper
coloring. Hence, the ayclic chromatic index of Dn is 3. See Figure 1(b). �

Remark 1. χa(Dn) = χ′a(Dn).
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3.2 Acyclic coloring of oxide and silicate network

The silicate and oxide network are formed by the following procedure. Let HC(n) be a hexag-
onal network of dimension n, where silicon ions are placed in its vertices. Then, place oxygen
ions on the new vertices of HC(n) obtained by subdividing each of its edges once. At each
of the 2-degree silicon ions, introduce 6n new pendant edges. Then, on each of the pendant
vertices, oxygen ions are placed. Each silicon ion associates with the three adjacent oxygen
ions and they form a tetrahedron. This results in the silicate network SL(n). In SL(n), the
parameter n represents the dimension. There are 15n2 + 3n vertices and 36n2 edges in SL(n).
When all the silicon vertices are deleted from a silicate network, a new network called an oxide
network is obtained. Let OX(n) denote an n-dimensional oxide network. There are 9n2 + 3n
vertices and 18n2 edges in OX(n).

Consider the following procedure for the formation of dominating oxide network and dom-
inating silicate network. Consider a hexagonal network and place oxygen ions to its vertices
obtained by subdividing each of its edges once. If the new vertices in a cell are separated by a
distance of four units, connect them by an edge and add oxygen ions to the new edge crossings.
Deleting the vertices and edges of the hexagonal network results in dominating oxide network
DOX(n). To get the dominating silicate network DSL(n), place a silicon vertex to the centroid
of each subgraph K3 of dominating oxide network and connect it with other oxide vertex in the
same K3 [27].

Theorem 3.4. χa(OX(n)) = 3.

Proof. The oxide network has (4n + 1) levels. Every vertex in the odd levels represents the
f -vertex cut set.The f -vertex cut set represents one color class (say 1) whose removal results
in a forest. Each component of the forest is a path which can be properly colored using 2
colors (say 2 and 3). The union of f -vertex cut set together with the disjoint paths gives rise to
cycles. To find the acyclic chromatic number and to ensure the absence of bichromatic cycles,
it is enough to check for 3-cycles and 6-cycles.

Case 1: Cycles of length 3

Every 3-cycle can be acyclically colored using three colors. To check whether three colors
are sufficient for all the cycles of length 3, consider the 3-cycle C1 = (v, v1, v2, v) adjacent to
another 3-cycle C2 = (v, v3, v4, v), having a common vertex v. v either belongs to the f -vertex
cut set or has colors 2 or 3. If v ∈ fvcs, then the vertices v1 and v3 have color 2 whereas v3 and
v4 have color 3. If v has color 2 or 3, then the other vertices have color 1 and 3 or the colors 1
and 2 respectively. This is because the 3-cycles are part of the f -vertex cut set and the disjoint
paths. Hence, three colors are sufficient for a proper ayclic coloring.

Case 2: Cycles of length 6
Every edge of a 6-cycle is a common edge of the 3-cycles. Consider the labeling of the

vertices of the 6-cycle as v1, v2, v3, v4, v5 and v6. Then, two of the opposite vertices belong to
the f -vertex cut set. Let us call those vertices as v3 and v6. Removal of these vertices results
in a path, which is the two opposite edges of the 6-cycle, namely (v1, v2) and (v4, v5). The
vertices v1 and v2 have been assigned colors 2 and 3. Similarly, the vertices v4 and v5 have been
assigned colors 2 and 3. Thus, every 6-cycle in the network has been assigned three colors.

It can be seen from case 1 and case 2 that, three colors are sufficient to properly color the
entire network and there doesn’t exist any bichromatic cycle. Hence, χa(OX(n)) = 3. See
Figure 2(a). �

Theorem 3.5. χ′a(OX(n)) = 4.
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Figure 2: (a) Acyclic vertex coloring of oxide network OX(2). (b) Acyclic edge coloring of oxide
network OX(2).

Proof. The oxide network OX(n) can be given a proper and acyclic edge coloring using at
least four colors, since ∆(OX(n)) = 4. It has (4n + 1) levels and every three levels in the
network consists of a triangle and an inverted triangle joined by a common vertex. Denote the
triangles (3-cycles) by (c, a, b, c) and (c, d, e, c), where c is the common vertex. The edges (a, c)
and (c, e) are straight edges whereas the edges (a, b), (b, c), (c, d) and (d, e) are slanting edges.
The straight edges and slanting edges form paths which can be colored using two colors each.
Consider the following approach for a proper edge coloring of the oxide network:

For the levels 2, 6, . . . , 4n − 2, assign the colors 1 and 2 alternately to the straight edges.
For the levels 4, 8, . . . , 4n, assign the colors 3 and 4 alternately to the straight edges. The
slanting edges between the levels 1 and 3, 5 and 7, . . . , 4n − 3 and 4n − 1 are assigned the
colors 3 and 4 alternately. The slanting edges between the levels 3 and 5, 7 and 9, . . . , 4n− 1
and 4n+ 1 are assigned the colors 1 and 2 alternately.

Claim: Coloring by the above procedure is acyclic.
Every 3-cycle consists of a straight edge and two slanting edges. Hence, three colors are

required for coloring the 3-cycles. Every edge of a 6-cycle consists of straight edges and slanting
edges from six different cycles, thereby receiving four colors. Any cycle of length greater than
six is either a part of the 3-cycle or a 6-cycle and hence must have at least three colors. Thus,
the coloring is acyclic since there are no bichromatic cycles. Hence, χ′a(OX(n)) = 4. See
Figure 2(b). �

Corollary 3.6. Each of the color class in the acyclic edge coloring of the oxide network OX(n)
is a maximal matching.

Remark 2. χa(OX(n)) < χ′a(OX(n)).

Theorem 3.7. χa(SL(n)) = 4.

Proof. By Theorem 3.4, a proper acyclic coloring of the oxide network requires at least three
colors. The silicon vertex represents the internal vertex of the tetrahedron which is a complete
graph on four vertices and can be properly colored using four colors. Therefore, the silicon
vertex could be assigned the fourth color. Since the coloring of oxide network is proper and
acyclic, it is ensured for the silicate network as well. Hence, χa(SL(n)) = 4. See Figure 3(a). �
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Figure 3: (a) Acyclic vertex coloring of silicate network SL(2). (b) Acyclic edge coloring of
silicate network SL(2).

Theorem 3.8. χ′a(SL(n)) = 6.

Proof. The silicate network SL(n) can be properly and acyclically edge colored using at least
six colors, since ∆(SL(n)) = 6. It consists of tetrahedrons and inverted tetrahedrons joined by
a common vertex. Let T1 be a tetrahedron consisting of the vertices v1, v2, v3 and v4. Let T2
be an inverted tetrahedron on the left of T1 consisting of the vertices v4, v5, v6 and v7. Here,
v4 is common to both the tetrahedrons. Also, assume that v1 and v7 are the central vertices of
T1 and T2 respectively. Further, let v3 be the top vertex of T1 and v5 be the bottom vertex of
T2. The colors 1, 2, 3, 4, 5 and 6 are assigned to the edges (v4, v6), (v4, v7), (v4, v5), (v4, v2),
(v4, v1) and (v4, v3) respectively. Then, for the remaining edges, assign the colors 1, 2 and 3 to
the edges opposite to the edges colored 4, 5 and 6 respectively and vice versa. This procedure
is repeated for all the tetrahedrons in the network. The coloring is proper, since every edge
incident on a common vertex receives different colors. Further, every edge in a tetrahedron gets
six different colors. Hence, every 3-cycle gets three distinct colors. Therefore, the coloring is
acyclic, since there are no bichromatic cycles. Also, six colors are enough for the proper acyclic
coloring of the silicate network. Hence, χ′a(SL(n)) = 6. See Figure 3(b). �

Corollary 3.9. Each color class in the acyclic edge coloring of the silicate network SL(n) is a
maximal matching.

Remark 3. χa(SL(n)) < χ′a(SL(n)).

Remark 4. The results obtained for the oxide and silicate network are true for the dominating
oxide and dominating silicate network.
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3.3 Acyclic coloring of boron nanosheet
A boron triangular sheet is a chemical graph obtained from a hexagonal sheet by including
one additional atom to the center of each hexagon. By creating an assortment of triangles
and hexagons, a special boron sheet has been designed from the original boron triangular sheet
known as the boron α-sheet which lacks one-ninth of the atoms [6, 7]. We denote the boron
triangular sheet by BS and the boron α-sheet by BSα.

Theorem 3.10. χa(BS) = 4.

Proof. Consider the oxide network after the removal of the vertices protruding from the hexagons
on the outer boundary. Then, the boron triangular sheet, with the deletion of center atom in
every hexagon, resembles the oxide network. By Theorem 3.4, the oxide network has an acyclic
chromatic number 3. Further, the center atom could be assigned a new color say 4. This
coloring is proper as all adjacent vertices get distinct colors. Further, there are no bichromatic
cycles. This is because the center atom, which is adjacent to all the vertices in a hexagon has
been assigned a new color. The coloring of the oxide network is acyclic, thereby ruling out the
presence of bichromatic cycles. Hence, χa(BS) = 4. See Figure 4(a). �

Corollary 3.11. χa(BSα) = 4.

Proof. By the definition of boron α-sheet, since some of the atoms are missing from the original
boron sheet, the acyclic vertex coloring remains the same. Therefore, χa(BSα) = 4. �
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Figure 4: (a) Acyclic vertex coloring of boron network BS. (b) Acyclic edge coloring of boron
network BS.

Theorem 3.12. χ′a(BS) = 6.

Proof. The boron triangular sheet can be properly and acyclically edge colored using at least
six colors, since ∆(BS) = 6. Consider a perfect matching consisting of alternate edges in every
row. It forms one color class (say 1). Since every row is a path, which could be acyclically
colored using two colors, the remaining edges in the row are colored using color 2. Consider a
hexagon with the central atom. The edges between the first two rows could be assigned four
distinct colors say 3, 4, 5 and 6 in order and the edges between the second and third rows could
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be assigned the colors 5, 6, 3 and 4 in order. This procedure is repeated for the remaining edges
in the nanosheet. The coloring is proper, since every edge incident on a common vertex receives
different colors. Further, every edge connecting the vertices of a hexagon to the central atom
gets six different colors. Hence, every 3-cycle gets three distinct colors. Therefore, the coloring
is acyclic due to the absence of bichromatic cycles. Also, six colors are enough for the proper
acyclic coloring. Hence, χ′a(BS) = 6. See Figure 4(b). �

Corollary 3.13. χ′a(BSα) = 6.

Proof. By the definition of boron α-sheet, since some of the atoms are missing from the original
boron sheet, the acyclic edge coloring remains the same. Therefore, χ′a(BSα) = 6. �

Remark 5. χa(BS) < χ′a(BS) and χa(BSα) < χ′a(BSα).

3.4 Acyclic coloring of polyomino chain system

A k-polyomino system has each of its interior face being surrounded by a regular 4k-cycle of
length one [12]. Terminal (respectively non-terminal) refers to a square that is adjacent to just
one (respectively two) additional square(s). A non-terminal square with a degree 2 vertex is
called a kink. A segment is the longest possible linear chain in a polyomino chain which includes
any terminal squares and/or kinks at its ends. In particular, the zig-zag chain Zn and the linear
chain Ln with exactly one segment are polyomino chains of length n and 2 respectively. The
polyomino chain system is denoted by P kn with two defining parameters k and n , where k is
the sum of the number of kinks and number of terminals in a unit of any particular polyomino
chain and n is the defining parameter (dimension) of the chain. P kn has 3kn+ 1 edges.

Theorem 3.14. χa(P kn ) = 3.

Proof. Consider any set of vertices whose removal results in a forest as a f -vertex cut set fvcs in
the polyomino chain system. Deleting all the vertices from fvcs leaves the graph with connected
components where each component consists of a path or a tree which is acyclic. For an acyclic
graph, the acyclic chromatic number corresponds to the chromatic number of the graph which
is two. One color could be assigned to all the vertices in fvcs. Hence, three colors are required
for the acyclic coloring of polyomino chains. The coloring is proper since adjacent vertices get
distinct colors. Further, any two cycles are connected by means of a common edge. Hence, there
are no bichromatic cycles as every cycle gets three distinct colors. Thus, the acyclic chromatic
number of polyomino chain system is three. See Figure 5(a). �

Theorem 3.15. χ′a(P kn ) = ∆.

Proof. Consider a perfect matching of the graph. The edges of this perfect matching form one
color class. Deletion of these edges results in a forest which could be colored with a maximum of
∆− 1 colors. Further, any two cycles are connected by means of a common edge. Hence, there
are no bichromatic cycles. Thus, ∆ colors are required for the acyclic coloring of polyomino
chain system. See Figure 5(b). �

Remark 6. χa(P kn ) ≤ χ′a(P kn ), since ∆(P kn ) is either 3 or 4.
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Figure 5: (a) Acyclic vertex coloring of polyomino chain P 2
5 . (b) Acyclic edge coloring of

polyomino chain P 2
5 .

4 Concluding remarks

In this paper, we have considered the concept of vertex cut and matching to find the acyclic
coloring parameters for certain chemical structures like nanostar dendrimer, oxide network,
silicate network, boron nanosheets, and polyomino chains. Also, we have proved that χa(G) ≤
χ′a(G) for all the networks under consideration. As a further research direction, chemical
structure of drugs will be explored along with their properties and the application of acyclic
coloring parameters to pharmaceuticals will be investigated.
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