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Abstract

We use the underlying hexagonal structure of graphene to
identify uniquely the position pertaining to a divacancy defect
of type V2(555 − 777). This is achieved by considering at most
three closed path readings and the symmetry of the defective
structure. We work in the corresponding rectangular model but
still rely on the rotational symmetry of the original hexagonal
grid. Our approach is purely mathematical and therefore there
is no need for imaging technologies.

c© 2023 University of Kashan Press. All rights reserved

1 Introduction
The two-dimensional honeycomb structure of pristine (defect-free) graphene is a one-atom-thick
layer of covalently-bonded carbon atoms. Graphene exhibits important mechanical, electrical,
thermal and optical properties which lead to applications in various fields such as electronics
(batteries, transistors and sensors) and even in the process of gas purification.

When a graphene nano-ribbon contains defects, it affects the properties of the material
which can influence its performance, for example in graphene-based nanodevices. There are
several existing methods to detect defects in graphene but many are expensive or complicated to
implement. Our approach uses inverse spectral theory with the advantage that it avoids imaging
technologies such as reflectance mapping, Raman imaging, transmission electron microscopy
(TEM) or scanning tunneling microscopy (STM). The authors of [1] give an alternative approach
by observing the thermal vibration properties of a graphene sheet and then detecting the break
using machine learning.

*Corresponding author
E-mail addresses: margaret.archibald@wits.ac.za (M. Archibald), sonja.currie@wits.ac.za (S. Currie),
marlena17nowaczyk@gmail.com (M. Nowaczyk)
Academic Editor: G. H. Fath-Tabar



56 M. Archibald et al. / Finding the V2(555− 777) Double Vacancy Defect....

In [2], the authors evaluate the effects of structural defects on the Young’s modulus of
graphene. This is done by using molecular dynamics (a computer simulation method for analyz-
ing the physical movements of atoms and molecules) to obtain information about the underlying
structures.

A review of defects in graphene together with atomic images can be found in [3] or [4]. In
[5] we identified the position of a single vacancy (SV) defect and then extended the analysis to
the Stone-Wales SW(55-77) and the double vacancy V2(5− 8− 5) defects in [6].

The particular defect that we consider in this paper occurs when a piece of graphene has two
adjacent nodes missing in such a way that three pentagons and three heptagons are formed and
alternated in a clockwise circle. This divacancy defect is called V2(555− 777) and its graphical
depiction is given in Figure 1.
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Figure 1: Hexagonal grid with a V2(555− 777) defect

A mathematical representation of graphene is given by a quantum graph as follows. The
carbon atoms are denoted by the nodes and the bonds by edges, each of length one, creating a
metric graph. The movement of low energy free electrons in the structure can be modelled by
the Laplace equation together with Kirchhoff boundary conditions at the nodes. The lengths
of the closed paths in the graph and the eigenvalues (spectrum) of the Laplace operator are
related to each other by the trace formula see [7, 8]. Thus, by reading the spectrum from a
detector we can determine almost all the lengths of closed paths in the graph model. Note that
defects in the grid cause changes in the spectra.

We show that the position of this defect can be uniquely identified using at most three
readings using a detector to measure the lengths of closed paths from each point. The fact that
the new polygons have an odd number of sides is crucial, as this leads to closed paths of odd
length starting at the point where the detector is placed, travelling around a pentagon/heptagon,
and then ending back at the detector. Note that the absence of closed paths of odd length does
not necessarily indicate that the graphene has no defects since some defects do not result in
polygons with an odd number of sides.

The structure of the paper is as follows. In Section 2 we depict the V2(555−777) defect in the
rectangular grid. Depending on the length (modulo 4) of the shortest closed path of odd length
from the detector, round part of the defect and back again, we partition the rectangular grid
into 12 distinct regions. Moreover, we identify the region in which the detector was originally
placed. In Section 3 we discuss the symmetry of the defect within the hexagonal structure
and consequently how this translates to the rectangular grid. We divide the regions into three
(equivalent) groups in order to take advantage of this symmetry in our analysis. We introduce
an algorithm for locating the coordinates of the center node of the defect relative to the first
reference point (first position of the detector) for nodes in the base group in Section 4. Due
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to the symmetry explained in the previous section, this is sufficient for finding the defect from
any given reference point in the grid. The algorithm is illustrated in Section 5 by an example.

2 The V2(555− 777) defect
The hexagonal grid is transformed to a rectangular grid resembling a brick wall on an (x, y)
coordinate system. As noted in [5] this distortion is a compression in the vertical direction
causing the non-vertical lines to become horizontal. Therefore, we can use the (x, y) coordinate
system to reference the nodes on the grid more easily.

The V2(555−777) break is modelled by three pentagons and three heptagons as shown by the
shaded region in Figure 2. On the rectangular grid, this is obtained by one brick disappearing
and being replaced by a single vertex (where H1, H2, H3 meet) joined to the three internal
vertices of each pentagon by an edge. In other words, the hexagon (six vertices and six edges)
becomes a ‘Y’ shape on its side (four vertices and three edges). This has been highlighted in
bold in Figure 2.
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Figure 2: A wall model containing the V2(555− 777) defect

Recall the following definition and theorems from [5].

Definition 2.1. Let R be a reference point on the rectangular grid. We define S to be the
length of the shortest closed path with odd length starting and ending at R.

Theorem 2.2. Let R be positioned at the top of a vertical line, then

a) R lies in region A if and only if S ≡ 1 (mod 4),

b) R lies in region B if and only if S ≡ 3 (mod 4).

Theorem 2.3. Let R be positioned at the bottom of a vertical line, then
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Figure 3: Regions of a wall model for a V2(555− 777) defect

a) R lies in region A if and only if S ≡ 3 (mod 4),

b) R lies in region B if and only if S ≡ 1 (mod 4).

We will denote by Si the length of the shortest path of odd length starting and ending at
the reference point Ri, i = 1, 2, 3.

Theorem 2.4. Given S1 and then obtaining S2 (by moving the detector to the right by S1+1
units) and in some cases S3 (by moving the detector left by S1 + 1 units) it is possible to
determine in which region the detector was initially placed i.e., in which region R1 lies.

Proof. (a) Suppose that S1 and S2 are both congruent to 1 (mod 4). If

(i) S2 = 2S1 + 3, then R1 is in A3 and R2 in A5,

(ii) S2 < 2S1 + 3, then R1 is in A1 and R2 in A5.

(b) If S1 and S2 are both congruent to 1 (mod 4) and S2 = 3S1 + 2, then R1 is either in A5
or in A6 and R2 is getting further away from the break. Thus instead move the detector
S1 + 1 units to the left of R1 to position R3. Then

(i) S3 ≡ 1 (mod 4) implies that R1 is in A5 (and thus R3 is in A1),

(ii) S3 ≡ 3 (mod 4) gives R1 is in A6 (and so R3 is in B1).

(c) When S1 ≡ 1 (mod 4) and S2 ≡ 3 (mod 4) and

(i) S2 = 2S1− 3 then R1 is in A2 and R2 in B5,

(ii) S2 > 2S1− 3 then R1 is in A4 and R2 in B5.
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(d) If S1 ≡ 1 (mod 4) and S2 ≡ 3 (mod 4) and if S2 = S1 + 2 then R1 is in A1 and R2 is in
B6.

(e) Suppose that S1 and S2 are both congruent to 3 (mod 4). Then

(i) S2 = 2S1 + 1 implies that R1 is in B3 and R2 in B5,

(ii) S2 < 2S1 + 1 gives that R1 is in B1 and R2 in B5.

(f) When S1 and S2 are both congruent to 3 (mod 4) but S2 = 3S1 + 2, then R1 is either in
B5 or in B6 and R2 is further away from the break than R1. As in (b) move the detector
to R3. If

(i) S3 ≡ 1 (mod 4) then R1 is in B6 (and thus R3 is in A1),

(ii) S3 ≡ 3 (mod 4) then R1 is in B5 (and R3 is in B1).

(g) Assume that S1 ≡ 3 (mod 4) and S2 ≡ 1 (mod 4). If

(i) S2 = 2S1− 1 then R1 is in B2 and R2 in A5,

(ii) S2 > 2S1− 1 then R1 is in B4 and R2 in A5.

(h) If S1 ≡ 3 (mod 4) and S2 ≡ 1 (mod 4) and S2 = S1 + 2 then R1 is in B1 and R2 is in A6.
�

3 Symmetry
In this section we introduce three groups of regions which we will prove are symmetrical about
the break by a rotation of 120 degrees (with respect to the hexagonal grid). The nodes within re-
gions A2, B1, A1 and B2 are in the base group, called Group 1. The nodes in regions A3, B4, A5
and B6 are in Group 2. The nodes in regions A6, B5, A4 and B3 are in Group 3.

We will use the variable n to aid in the navigation between the triangular regions in these
three groups. The value of n indicates how far we are from the boundary with the other
triangular region in the same group. More specifically, all nodes closest to the boundary between
A1 and B1 will have an n value of zero. Considering nodes, with the same S1, further away
from this boundary, n increases by 2 for every two edges traversed between nodes. Equivalently,
all nodes closest to the boundary between A5 and B4, as well as the boundary between A4
and B5, will have an n value of 0. For example, in Figure 3, the point (8,−1) in region A4
has an n value of 0 (and an S1 value of 13), and the corresponding points in A5 and A1 are
(9, 6) and (−2, 3) respectively. For S1 = 13 and n = 4 in A4, the coordinates are (4,−1) and
the corresponding points in A5 and A1 are (11, 4) and (0, 5) respectively. The formulae to find
explicit values of n are provided in Corollary 3.2.

Theorem 3.1. The nodes within Group 1 are symmetrical about the break, by a clockwise
rotation of 120 degrees (in the hexagonal grid), with the nodes in Group 2. Equivalent vertices
in Group 3 are obtained by a further 120 degrees clockwise rotation. Explicit formulae for this
symmetry between equivalent nodes in the rectangular grid exist in terms of S1 and n.

Proof. Note that the symmetry is with respect to the shortest paths and in the rectangular grid
is given in terms of movements vertically and horizontally. In the rectangular grid in Figure 3,
the rotation is about the point (5, 5

2 ), but is not generally 120 degrees.
We will show that a vertex R1 at the top of a vertical line in region A3 (respectively B4,

A5, B6) has a unique image called R1′ in A2 (respectively B1, A1, B2). Similarly a vertex R1
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in region A6 at the top of a vertical line (respectively B5, A4, B3) corresponds to a unique
vertex R1′ in A2 (respectively B1, A1, B2). We give the formulae for moving from a node R1 in
Group 2 or 3 to the equivalent node R1′ in Group 1. A detailed explanation is given for finding
the corresponding nodes in regions A6 and B5 to those in regions A2 and B1 respectively, while
the other transformations follow the same argument.

(a) Consider the node with S1 = 5 in A6 and the corresponding node in A2. To move from
the former to the latter requires a shift of 4 units to the left and 0 units down.

For an arbitrary node R1 with coordinates (x1, y1) in A6, when S1 increases by 4, we move
within A6 two units to the right, i.e., to the coordinates (x1+2, y1) and within A2 we move
one unit left and one unit down, i.e., from the point (x2, y2) to the point (x2 − 1, y2 − 1).
Thus the corresponding shift from A6 to A2 increases by 3 units to the left and 1 unit down
(compared to the shift for the smaller/previous S1).

Therefore, for any node in A6 we go left by 3S1+1
4 units and down by S1−5

4 units to reach
the corresponding node in A2.

(b) For n = 0, when moving in B5 from some node with S1 to the node with S1 + 4 and
n = 0 we are moving one unit down and one unit to the right, while in B1 the equivalent
movement is given by moving two units to the left. This is because in the rectangular grid,
the vertical edges (in B5) become horizontal edges in B1 (based on the original rotation in
the hexagonal grid). In a similar manner, the horizontal edges in B5 that are immediately
to the right of the top of the vertical line become vertical edges in B1.

First, note that the smallest S1 value in B5 is 7 and to move from that node to the
corresponding node in B1, we move left by 7 units and up by 1 unit.

Now inductively, for any node in B5 where n = 0, denoted by (x1, y1), if we increase S1 by
4 this corresponds to moving to the node (x1 + 1, y1 − 1). The equivalent change in B1 is
from the node (x2, y2) to the node (x2 − 2, y2). This means that the horizontal change (to
the left) when moving from B5 to B1 is increased by three units. Similarly, when moving
from B5 to B1 there is a vertical increase by one (up). So the linear relation between S1
and the number of steps to the left is given by 3S1+7

4 and the number of steps up is S1−3
4 .

In B5 the nodes on the border with A4 correspond to n = 0. Then n increases by 2 each
time we move one unit right and one unit up to the next vertex with the same S1 value in
B5.

For a fixed S1 if the node in B5 with n = 0 is (x1, y1) then the coordinates of the other
nodes with the same S1 are given by (x1 +

n
2 , y1 +

n
2 ) and recall that we increment n by 2.

The corresponding nodes in B1 have coordinates (x2, y2) and (x2 +
n
2 , y2 −

n
2 ). Thus the

horizontal change is the same as for n = 0, i.e. 3S1+7
4 . Now, the difference in the second

coordinate for nodes in B5 is n
2 while for the nodes in B1 this difference is −n

2 , this leads
to a change of −n in the vertical shift. Hence the total vertical shift is S1−3

4 −n. Note that
for large values of n this may be negative, in which case the movement is downwards.

Hence, for any node in B5, we move left by 3S1+7
4 and up by S1−3

4 −n to reach the equivalent
node in B1.

(c) Consider the nodes in A4 on the border of B5 (right-most nodes in A4). For these nodes
let n = 0 and let n increase by 2 for each movement along two edges to the left. Note that
this node is also at the top of a vertical line. To get to the corresponding node in A1, we
shift 3S1+1

4 − 3
2n units to the left and S1+3

4 + n
2 units up.
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(d) For any node in B3, the corresponding node in B2 is given by going 1 unit to the left and
S1−1

2 units up.

(e) To get from a node in A3 to the equivalent node in A2 we shift 2 steps to the left and S1−1
2

steps down.

(f) In B4, n = 0 for the nodes closest to the boundary with A5. To get from a node in B4 to
the corresponding node in B1 we go 3S1−1

4 − 3
2n units to the left and S1+5

4 + n
2 units down.

(g) To translate nodes from A5 to A1, recall that n = 0 for the nodes closest to the border
with B4, we shift 3S1+5

4 steps to the left and S1−1
4 −n steps down (for negative values this

would mean going up).

(h) Finally, when moving from vertices in B6 to equivalent vertices in B2 we go left by 3S1−1
4

units and up by S1−3
4 units.

�

The following result can be obtained using the same technique as in the proofs of (a) and
(b) in the above theorem, since the pairings of S1 and S2 (respectively S1 and S3) are unique.
Note that the n values defined prior to Theorem 3.1 are only required in regions A4, B4, A5
and B5 since the other regions are either strips with no repeated S1 values or are in Group 1.

Corollary 3.2. The n values in terms of S1 and S2 (or S3) are given by the following expres-
sions. For region

• B5, n = 2S1−S3−3
2 ,

• A4, n = 3S1−S2
2 ,

• B4, n = 3S1−S2
2 and

• A5, n = 2S1−S3−1
2 .

Thus, if we are in any of the regions of Group 2 or Group 3 and we have S1 and S2 (or S3)
then we know n. Consequently, we can give what the value of S2 would be if we moved from
the equivalent node in Group 1 by S1+ 1 units to the right. We denote this by S2′ and then we
can apply the algorithm below with S2 replaced by S2′. For vertices in

• A3 or A6, S2′ = 2S1− 3 if S1 > 5 otherwise S2′ = 9,

• B3 or B6, S2′ = 2S1− 1 and

• A4, A5, B4 or B5, S2′ = S1 + 2n when n 6= 0 and S2′ = S1 + 2 when n = 0.

4 Algorithm to locate the break
Consider a reference point positioned at the top of a vertical line in Group 1 (A2, B1, A1 or
B2). The following algorithm locates the break uniquely by determining the point labelled D in
Figure 3. Note that if the reference point is in Group 2 or 3, then we use S2′ (see Corollary 3.2)
instead of S2 in this algorithm.

Algorithm 4.1. Determining uniquely the coordinates of D for a V2(555− 777) defect.
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1) Label point R1 (which is at the top of a vertical line) as the origin, i.e., R1(0, 0). Note
that this R1 is not the same origin (used to illustrate the rectangular grid) in Figure 2
and Figure 3.

2) Select a second reference point R2 by moving S1+1 units horizontally to the right of R1,
i.e., the coordinates of R2 are (S1+1, 0). Now S2, which is either 1 (mod 4) or 3 (mod 4),
can be obtained experimentally from the detector.

3a) If S1 = 5 and S2 = 9 then R1 is in A2 (it is on the break) and R2 is in A6. The
coordinates of D are (2, 1

2 ).

3b) If S1 ≡ 1 (mod 4), S2 ≡ 1 (mod 4) and S1 > 5, then R1 is in A1 and R2 is in A5. The
coordinates of D are ( 3S1−S2+2

4 ,−S2−S1+2
4 ).

4) If S1 ≡ 3 (mod 4), S2 ≡ 3 (mod 4) and S1 > 5, then R1 is in B1 and R2 is in B5. The
coordinates of D are ( 3S1−S2+2

4 , S2−S1+2
4 ).

5a) If S1 ≡ 1 (mod 4), S2 ≡ 3 (mod 4) and S2 = S1 + 2, then R1 is in A1 and R2 is in B6.
The coordinates of D are (S1+1

2 ,− 1
2 ).

5b) If S1 ≡ 1 (mod 4), S2 ≡ 3 (mod 4) and S2 > S1 + 2, then R1 is in A2 and R2 is in B5.
The coordinates of D are (S1+3

4 , S1−3
4 ).

6a) If S1 ≡ 3 (mod 4), S2 ≡ 1 (mod 4) and S2 > S1 + 2, then R1 is in B2 and R2 is in A5.
The coordinates of D are (S1+1

4 ,−S1−1
4 ).

6b) If S1 ≡ 3 (mod 4), S2 ≡ 1 (mod 4) and S2 = S1 + 2, then R1 is in B1 and R2 is in A6.
The coordinates of D are (S1+1

2 , 1
2 ).

Note. The algorithm gives the coordinates of D from Group 1. If R1 was not in Group 1 then
we need to change/compensate to get D relative to the original reference point in Group 2 or
Group 3 using Theorem 3.1.

5 Example
Assume we are given S1 = 15 and S2 = 47 from detectors placed at R1 and R2 respectively.
Both are 3 (mod 4) so part (f) of Theorem 2.4 applies. Thus, moving to the left and placing
the detector at R3 we get S3 = 23 which is also 3 (mod 4). Hence R1 is in B5. The equivalent
point to R1 in B1 is denoted by R1′ and has coordinates (−13, 1) and this consequently gives
an R2′ by moving 16 units to the right, see Figure 4. From Corollary 3.2 we find n = 2 and
thus S2′ = 19. Using part 4) of Algorithm 4.1 with S2 replaced by S2′ gives the coordinates
of D as (7, 3

2 ) relative to R1′. Lastly, we need to shift accordingly to find D from the initial
origin at R1 in B5 which is done using part (b) of Theorem 3.1. Thus we shift 3S1+7

4 = 13

units to the left and S1−3
4 − n = 1 unit up. Thus D = (−6, 5

2 ). This example is demonstrated
in Figure 4, where the solid blue closed path has length S1 and the solid red closed path has
length S3. The dotted blue and red closed paths indicate S1′ and S2′ respectively.

In summary, given a graphene nano-ribbon containing at least one V2(555 − 777) defect,
the algorithm uses only the electrical properties of graphene to determine the exact position of
the V2(555− 777) defect closest to the initial position of the detector. These defects affect the
properties of the pristine system, which can be beneficial or detrimental from the application
point of view. The above could be utilised in patching (i.e., mending) such defects where it
would be necessary first to know the position of the defect.
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Figure 4: Example of locating a V2(555− 777) defect
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