Edge Metric Dimension of Fullerenes

Parvane Bonyabadi ${ }^{1}$, Kazem Khashyarmanesh ${ }^{1 \star}$, Mostafa Tavakoli ${ }^{2}$ and
Mojgan Afkhami ${ }^{3}$

${ }^{1}$ Department of pure Mathematics, Faculty of Mathematical Sciences, Ferdowsi University of Mashhad, P.O. Box 1159, Mashhad 91775, Iran
${ }^{2}$ Department of Applied Mathematics, Faculty of Mathematical Sciences, Ferdowsi University of Mashhad, P.O. Box 1159, Mashhad 91775, Iran
${ }^{3}$ Department of Mathematics, University of Neyshabur, P.O.Box 91136-899, Neyshabur, Iran.

Keywords:

(3, 6)-Fullerene,
(4, 6)-Fullerene,
Edge metric dimension

AMS Subject Classification (2020):

05C15; 05C69

Article History:
Received: 3 October 2022
Accepted: 7 November 2022

Abstract

A $(k, 6)$-fullerene graph is a planar 3-connected cubic graph whose faces are k-gons and hexagons. The aim of this paper is to study the edge metric dimension of $(3,6)$ - and $(4,6)$-fullerene graphs.

© 2023 University of Kashan Press. All rights reserved

1 Introduction

In a molecular graph G, atoms are represented as vertices and their relationships (bonds) as edges with the property that the number of edges of G incident with each vertex is at most four. The number of bonds incident with a given atom u is called the degree of u and denoted by $\operatorname{deg}(u)$. The molecular graph G is connected if for any two atoms u and v there exists a path between u and v. The distance between two atoms u and v is the number of edges in a shortest sequence of vertices from u to v. As usual, we use notation $d(u, v)$ for the distance between two atoms u and v. This graph is 3 -connected, if G has at least three atoms and remains connected whenever fewer than three atoms are removed from G. A molecular graph is said cubic, if each atom's degree is equal to 3 . A molecular graph is called planar, if it can be drawn in the plane in such a way that bonds meet only at atoms corresponding to their common ends. A planar 3 -connected cubic graph whose faces are only r-gons and hexagons is called an ($r, 6$)-fullerene

[^0]graph. These molecular graphs are topological models of fullerene molecules [1]. In [2], it was proved that 3,4 and 5 are the only values of k for which a $(k, 6)$-fullerene exists. By Euler's formula, we also know that a $(3,6)$-fullerene graph has exactly four faces of size 3 and $\frac{n}{2}-2$ hexagons.

If $S=\left\{v_{1}, \ldots, v_{k}\right\}$ is an ordered subset of $V(G)$, then the S-code of an edge $e \in E(G)$ is the vector $r_{G}(e \mid S)=\left(d_{G}\left(v_{1}, e\right), \ldots, d_{G}\left(v_{k}, e\right)\right)$. The set S distinguishes edges e and e^{\prime} if $r_{G}(e \mid S) \neq r_{G}\left(e^{\prime} \mid S\right)$ and S is an edge metric generator for G if each pair of edges of G is distinguished by S. A metric generator of the smallest cardinality is called an edge metric basis for G and its cardinality is said to the edge metric dimension of G and denoted by edim (G).

The source for the edge metric dimension is the paper [3]. The complexity of computing the edge metric dimension was investigated in [3]. One can also see [4] for application of edge metric generators in the intelligent transportation system (ITS). We recommend papers [5-9] for more information about mathematical properties of this invariant. In the present work, we are motivated by [10] to compute the edge metric dimension of $(3,6)$ - and $(4,6)$-fullerene graphs.

2 Main results

Let $F_{1}[n]$ be $(3,6)$-fullerene depicted in Figure 1 of order $8 n+4$. In the following, we proceed with labeling shown in this figure.

Figure 1: The graph $F_{1}[n]$.
Theorem 2.1. The edge metric dimension of fullerene graph $F_{1}[n]$ is equal to 3 .
Proof. First of all, we prove that $\operatorname{edim}\left(F_{1}[n]\right) \leq 3$. To achieve this aim, let

$$
S=\left\{u_{2 n-1}, v_{2 n-1}, w_{1}\right\} \subset V\left(F_{1}[n]\right)
$$

We claim that S is an edge metric generator of $F_{1}[n]$. Hence, we investigate the S-code of edges of $E\left(F_{1}[n]\right)$. Let $\left\{w_{1}, w_{2}, w_{3}\right\}$ and $\left\{w_{4}, w_{5}, w_{6}\right\}$ be the vertex sets of outer triangles of $F_{1}[n]$. The S-code of edges of $F_{1}[n]$ are as follows:

$$
\begin{aligned}
r\left(w_{1} w_{2} \mid S\right) & =(2 n-1,2 n, 0), \\
r\left(w_{1} w_{3} \mid S\right) & =(2 n, 2 n-1,0), \\
r\left(w_{3} v_{1} \mid S\right) & =(2 n, 2 n-2,1), \\
r\left(w_{4} w_{5} \mid S\right) & =(2 n, 2 n+1,1), \\
r\left(w_{4} w_{6} \mid S\right) & =(2 n+1,2 n, 1), \\
r\left(u_{4 n-1} w_{5} \mid S\right) & =(2 n-1,2 n+1,2) .
\end{aligned}
$$

$$
\begin{aligned}
& r\left(w_{2} w_{3} \mid S\right)=(2 n-1,2 n-1,1), \\
& r\left(w_{1} w_{4} \mid S\right)=(2 n, 2 n, 0) \\
& r\left(v_{4 n-1} w_{6} \mid S\right)=(2 n-2,2 n, 1) \\
& r\left(w_{5} w_{6} \mid S\right)=(2 n, 2 n, 2) \\
& r\left(w_{2} u_{1} \mid S\right)=(2 n-2,2 n-1,1),
\end{aligned}
$$

Also, for $j=i+1$, we have

$$
r\left(u_{i} u_{j} \mid S\right)= \begin{cases}(2 n-2-i, 2 n-i-1, i+1) ; & \text { if } 1 \leq i<2 n-1 \\ (0,2,2 n) ; & \text { if } i=2 n-1 \\ (1,2,2 n+1) ; & \text { if } i=2 n \\ (1,3,2 n+1) ; & \text { if } i=2 n+1 \\ (i-2 n, i-2 n+1,4 n-i+1) ; & \text { if } 2 n+1<i \leqslant 4 n-1\end{cases}
$$

In addition, in the case that $j=4 n-i$, we have $r\left(u_{i} u_{j} \mid S\right)=(2 n-i-1,2 n-i, i+1)$, where $i=2 k-1$ and k is a natural number. Moreover, the S-codes of the lower half of the fullerene graph $F_{1}[n]$ for $j=i+1$ are as follows:

$$
r\left(v_{i} v_{j} \mid S\right)= \begin{cases}(2 n-1-i, 2 n-i-2, i+1) ; & \text { if } 1 \leq i<2 n-1 \\ (2,0,2 n) ; & \text { if } i=2 n-1 \\ (2,1,2 n+1) ; & \text { if } i=2 n \\ (3,1,2 n+1) ; & \text { if } i=2 n+1 \\ (i-2 n+1, i-2 n, 4 n-i+1) ; & \text { if } 2 n+1<i \leqslant 4 n-1\end{cases}
$$

Furthermore, when $j=4 n-i$, we have $r\left(v_{i} v_{j} \mid S\right)=(2 n-i, 2 n-i-1, i+1)$, where $i=2 k-1$ and k is a natural number. Besides,

$$
r\left(u_{i} v_{i} \mid S\right)= \begin{cases}(2 n-1-i, 2 n-1-i, i+1) ; & \text { if } 1 \leq i \leq 2 n-1 \\ (1,1, i+1) ; & \text { if } i=2 n \\ (i-2 n, i-2 n, 4 n-i+2) ; & \text { if } 2 n+1 \leq i<4 n-1\end{cases}
$$

where $i=2 k$.
Clearly, the above information about the S-codes of $E\left(F_{1}[n]\right)$ shows that all edges of $F_{1}[n]$ have different S-codes and consequently, S is an edge metric generator of $F_{1}[n]$. Thus $\operatorname{edim}\left(F_{1}[n]\right) \leq|S|=3$.

It remains to prove that $\operatorname{edim}\left(F_{1}[n]\right) \geq 3$. To achieve this aim, let $A=\left\{w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, w_{6}\right\}$ be the set of vertices of outer triangles of $F_{1}[n]$. Assume, to the contrary, that edim $\left(F_{1}[n]\right)=2$ and S^{\prime} is an edge metric generator with $\left|S^{\prime}\right|=2$. We have the following cases:

Case 1. If both vertices of S^{\prime} are in the upper half of $F_{1}[n]$, then the S-codes of pair of edges $w_{4} w_{5}, w_{5} w_{6}$ and $w_{1} w_{2}, w_{2} w_{3}$ are the same. Thus S^{\prime} is not an edge metric generator of $F_{1}[n]$.

Case 2. If both vertices of S^{\prime} belong to A, then
subcase 2.1. If $S^{\prime}=\left\{w_{1} w_{2}\right\}$, then the S^{\prime}-codes of pair of edges $w_{4} w_{5}, w_{4} w_{6}$ are the same.
subcase 2.2. If $S^{\prime}=\left\{w_{1}, w_{4}\right\}$, then $r\left(w_{4} w_{5} \mid S^{\prime}\right)=r\left(w_{4} w_{6} \mid S^{\prime}\right)$ and $r\left(w_{1} w_{2} \mid S^{\prime}\right)=r\left(w_{1} w_{3} \mid S^{\prime}\right)$.
subcase 2.3. If $S^{\prime}=\left\{w_{3}, w_{2}\right\}$, then the S^{\prime}-codes of pair of edges $w_{2} u_{1}, w_{1} w_{2}$ are the same.
subcase 2.4. If $S^{\prime}=\left\{w_{6}, w_{2}\right\}$, then $r\left(w_{6} w_{5} \mid S^{\prime}\right)=r\left(v_{4 n-1} w_{6} \mid S^{\prime}\right)$.
subcase 2.5. If $S^{\prime}=\left\{w_{2}, w_{5}\right\}$, then the S^{\prime}-code of pair of edges $u_{4 n-1} w_{5}, w_{4} w_{5}$ and $w_{1} w_{2}, w_{2} w_{1}$ are the same.

Case 3. If one vertex of S^{\prime} belongs to the upper half of $F_{1}[n]$ and the other vertex belongs to A, i. e., $\left(S^{\prime}=\left\{u_{i}, w_{j}\right\}\right)$, then we have the following subcases:
subcase 3.1. For $i \leq 2 n-1$ and $j=2$, we have $r\left(w_{1} w_{2} \mid S^{\prime}\right)=r\left(w_{2} w_{3} \mid S^{\prime}\right)$.
subcase 3.2. If $i \leq 2 n-1$ and $j=5$, then the S^{\prime}-codes of pair of edges $w_{4} w_{5}, w_{5} w_{6}$ are the same.
subcase 3.3. If $i \leq 2 n-1$ and $j=3$, then the S^{\prime}-codes of pair of edges $w_{1} w_{3}$ and $v_{1} w_{3}$ are the same.
subcase 3.4. For $i \leq 2 n-1$ and $j=6$, we have $r\left(w_{1} w_{4} \mid S^{\prime}\right)=r\left(w_{4} w_{5} \mid S^{\prime}\right)$.
subcase 3.5. For $i \leq 2 n-1$ and $j=1$, we have $r\left(w_{1} w_{3} \mid S^{\prime}\right)=r\left(w_{1} w_{4} \mid S^{\prime}\right)$.
subcase 3.6. If $i \leq 2 n-1$ and $j=4$, then the S^{\prime}-codes of pair of edges $w_{1} w_{3}$ and $w_{5} w_{6}$ are the same.

Case 4. If one vertex of S^{\prime} is from $\left\{u_{1}, u_{2}, \ldots, x_{4 n-1}\right\}$ and other vertex is from $\left\{v_{1}, v_{2}, \ldots, v_{4 n-1}\right\}$, then we have the following subcases:
subcase 4.1. For $i<j \leqslant 2 n-1$, we have $r\left(v_{2 n} v_{2 n-1} \mid S^{\prime}\right)=r\left(v_{2 n-1} v_{2 n+1} \mid S^{\prime}\right)$.
subcase 4.2. If $j<i \leqslant 2 n-1$, then the representation of pair of edges $v_{4 n-2} y_{4 n-1}, v_{4 n-1} z_{6}$ are the same.
subcase 4.3. If $j=i \leqslant 2 n-1$, then the S^{\prime}-codes of pair of edges $w_{1} w_{2}, u_{4 n-1} w_{5}$ are the same.
subcase 4.4. For $i=j=1$, we have $r\left(u_{4 n-2} u_{4 n-1} \mid S^{\prime}\right)=r\left(w_{5} u_{4 n-1} \mid S^{\prime}\right)$.
Therefore, in each case, we reach a contradiction and consequently, there does not exit an edge metric generator S^{\prime} of size 2 for $F_{1}[n]$. Thus edim $\left(F_{1}[n]\right) \geq 3$ which completes the proof.

Figure 2: The graph $F_{1}[2]$.

For more illustration, we implement the proof of Theorem 2.1 on $F_{1}[2]$. Consider $F_{1}[2]$ shown in Figure 2. Let $\left\{z_{1}, z_{2}, z_{3}\right\}$ and $\left\{z_{4}, z_{5}, z_{6}\right\}$ be the vertex sets of outer triangles of $F_{1}[2]$, and $S=\left\{x_{3}, y_{3}, z_{1}\right\} \subset V\left(F_{1}[2]\right)$. Now, we prove that S is an edge metric generator of $F_{1}[n]$. To achieve this, we give the S-codes of $E\left(F_{1}[2]\right)$ as follows:

$$
\begin{array}{rlrl}
r\left(w_{1} w_{2} \mid S\right) & =(1,2,0), & r\left(w_{2} w_{3} \mid S\right) & =(1,1,1), \\
r\left(w_{4} w_{5} \mid S\right) & =(2,3,1), & r\left(w_{1} w_{3} \mid S\right) & =(2,1,0), \\
r\left(w_{5} w_{6} \mid S\right) & =(2,2,2), & r\left(w_{1} w_{4} \mid S\right)=(2,2,0), \\
r\left(w_{2} v_{1} \mid S\right) & =(2,0,1), & r\left(u_{1} u_{2} \mid S\right)=(3,2,1), & r\left(w_{2} u_{1} \mid S\right)=(0,2,1), \\
r\left(v_{2} \mid S\right) & =(1,1,3), & r\left(u_{3} w_{5} \mid S\right)=(1,3,2), & r\left(u_{2} u_{3} \mid S\right)=(1,2,2), \\
r\left(v_{1} v_{2} \mid S\right) & r\left(u_{1} u_{3} \mid S\right)=(0,0,2), & r\left(v_{2} v_{3} \mid S\right)=(2,1,3), \\
=(3,0,2), & r\left(v_{3} w_{6} \mid S\right) & =(3,1,2), & r\left(u_{2} u_{3} \mid S\right)=(1,2,2),
\end{array} \quad r\left(u_{1} u_{3} \mid S\right)=(0,3,2) .
$$

Thus, all the edges of this graph have different S-codes which implies that S is an edge metric generator of $F_{1}[2]$.

Figure 3: The graph $G_{1}[n]$.

Theorem 2.2. The edge metric dimension of $G_{1}[n]$, shown in Figure 3, is equal to 3 for $n \geq 2$.
Proof. For $S=\left\{x_{1}, y_{1}, x_{4 n}\right\} \subset V\left(G_{1}[n]\right)$, we need to show that S is an edge metric generator of $G_{1}[n]$. We first prove that $\operatorname{dim}\left(G_{1}[n]\right) \leq 3$. For this aim, we give the representation of the edges $G_{1}[n]$ with respect to S.
The representation of edges of the fullerene graph $G_{1}[n]$ is given below:

$$
r\left(x_{1} x_{i+1} \mid S\right)= \begin{cases}(i-1, i, i) ; & \text { if } 1 \leq i \leq 2 n \\ (4 n-1,4 n-i+1,4 n-i+1) ; & \text { if } 2 n+1 \leq i \leq 4 n-1\end{cases}
$$

The S-code of edges of lower half of $G_{1}[n]$ is given below:

$$
r\left(y_{i} y_{i+1} \mid S\right)= \begin{cases}(i, i-1, i+1) ; & \text { if } 1 \leq i \leq 2 n \\ (4 n-i+1,4 n-i, 4 n-i) ; & \text { if } 2 n+1 \leq i \leq 4 n-1\end{cases}
$$

Moreover, the S-codes of edges $x_{i} y_{i}(i=1,2,4,6, \ldots, 4 n-2,4 n-1,4 n)$ are as follows:

$$
\begin{aligned}
r\left(x_{i} y_{i} \mid S\right) & = \begin{cases}(i-1, i-1, i) ; & \text { if } 1 \leq i \leq 2 n, \\
(4 n-i+1,4 n-i+1,4 n-i) ; & \text { if } 2 n+1 \leq i \leq 4 n,\end{cases} \\
r\left(x_{1} x_{4 n-i+1} \mid S\right) & =(i-1, i, i-1) .
\end{aligned}
$$

Thus, all edges of $E\left(G_{1}[n]\right)$ can be resolved with respect to S and consequently, S is an edge metric generator of $G_{1}[n]$.

Now we show that $\operatorname{edim}\left(G_{1}[n]\right) \neq 2$. To achieve this aim, we consider the following cases:

Case 1. If both vertices are in the upper half of $G_{1}[n]$ and the edge metric generator is $S^{\prime}=$ $\left\{u_{s}, u_{t}\right\}$, for $1 \leq s \leq t \leq 4 n$, then the S^{\prime}-code of pair of edges $u_{i} u_{i-1}$ and $v_{i-2} v_{i-1}$, for $2 n+1 \leq i \leq 4 n-1$ are the same. Thus S^{\prime} is not an edge metric generator of $G_{1}[n]$. Therefore, the edge metric generator is not a subset of $\left\{u_{1}, u_{2}, \ldots, u_{4 n}\right\}$.

Case 2. If both vertices are in the lower half of $G_{1}[n]$ and the edge metric generator is $S^{\prime}=$ $\left\{v_{s}, v_{t}\right\}$, for $1 \leq s \leq t \leq 4 n$, then the S^{\prime}-codes of pair of edges $v_{i} v_{i-1}$ and $u_{i-2} u_{i-1}$, for $2 n+1 \leq i \leq 4 n-1$ are the same. Thus, S^{\prime} is not an edge metric generator of $G_{1}[n]$. Therefore, the edge metric generator is not a subset of $\left\{v_{1}, v_{2}, \ldots, v_{4 n}\right\}$.

Case 3. Assume that one vertex belongs to the set of vertices $\left\{u_{1}, u_{2}, \ldots, u_{4 n}\right\}$ and the other one is in the set of vertices $\left\{v_{1}, v_{2}, \ldots, v_{4 n}\right\}$. Without loss of generality, we may assume that the edge metric generator is $S^{\prime}=\left\{u_{s}, v_{t}\right\}$, where $1 \leq s \leq 4 n$ and $1 \leq t \leq 4 n$. We have the following subcases:
subcase 3.1. If $s=t$, then the S^{\prime}-codes of pair of edges $u_{s} u_{s+1}, u_{s-1} u_{s}$ and $v_{t} v_{t-1}, v_{t} v_{t+1}$ are the same.
subcase 3.2. If $s<t$, then the S^{\prime}-codes of pair of $u_{2 n} u_{2 n+1}$ and $u_{2 n+1} u_{2 n+2}$ are the same.
subcase 3.3. If $s>t$, then the S^{\prime}-codes of pair of $v_{2 n} v_{2 n+1}, v_{2 n+1} v_{2 n+2}$ are the same.
Thus in every subcases, we get a contradiction.
Based on the above cases, we conclude that there is no edge metric generator S^{\prime} with $\left|S^{\prime}\right|=2$, and so $\operatorname{edim}\left(G_{1}[n]\right) \geq 3$.

For more illustration, we implement the proof of Theorem 2.1 on $G_{1}[3]$, shown in Figure 4. Now, let $S=\left\{u_{1}, v_{1}, u_{12}\right\}$. We show that S is an edge metric generator of $G_{1}[3]$. To do this, we determine the S-codes of all edges as follows:

$$
\begin{aligned}
r\left(u_{1} u_{2} \mid S\right) & =(0,1,1) & r\left(y_{1} y_{2} \mid S\right) & =(1,0,2) & r\left(u_{2} u_{3} \mid S\right) & =(1,2,2) \\
r\left(v_{2} v_{3} \mid S\right) & =(2,1,3) & r\left(u_{3} u_{4} \mid S\right) & =(2,3,3) & r\left(v_{3} v_{4} \mid S\right) & =(3,2,4) \\
r\left(u_{4} u_{5} \mid S\right) & =(3,4,4) & r\left(v_{4} v_{5} \mid S\right) & =(4,3,5) & r\left(u_{5} u_{6} \mid S\right) & =(4,5,5) \\
r\left(v_{5} v_{6} \mid S\right) & =(5,4,6) & r\left(u_{6} u_{7} \mid S\right) & =(5,6,5) & r\left(v_{6} v_{7} \mid S\right) & =(6,5,6) \\
r\left(u_{7} u_{8} \mid S\right) & =(5,6,4) & r\left(v_{7} v_{8} \mid S\right) & =(6,5,5) & r\left(u_{8} u_{9} \mid S\right) & =(4,5,3) \\
r\left(v_{8} v_{9} \mid S\right) & =(5,4,4) & r\left(u_{9} u_{10} \mid S\right) & =(3,4,2) & r\left(v_{9} v_{10} \mid S\right) & =(4,3,3) \\
r\left(u_{10} u_{11} \mid S\right) & =(2,3,1) & r\left(v_{10} v_{11} \mid S\right) & =(3,2,2) & r\left(u_{11} u_{12} \mid S\right) & =(1,2,0) \\
r\left(v_{11} v_{12} \mid S\right) & =(2,1,1) & r\left(u_{1} u_{12} \mid S\right) & =(0,1,0) & r\left(v_{1} v_{12} \mid S\right) & =(1,0,1) \\
r\left(u_{3} u_{10} \mid S\right) & =(2,3,2) & r\left(v_{3} v_{10} \mid S\right) & =(3,2,2) & r\left(u_{5} u_{8} \mid S\right) & =(4,5,4) \\
r\left(v_{5} v_{8} \mid S\right) & =(5,4,5) & r\left(u_{1} v_{1} \mid S\right) & =(0,0,1) & r\left(u_{2} v_{2} \mid S\right) & =(1,1,2) \\
r\left(u_{4} v_{4} \mid S\right) & =(3,3,4) & r\left(u_{6} v_{6} \mid S\right) & =(5,5,6) & r\left(u_{7} v_{7} \mid S\right) & =(6,6,5) \\
r\left(u_{9} v_{9} \mid S\right) & =(4,4,3) & r\left(u_{11} v_{11} \mid S\right) & =(2,2,1) & r\left(u_{12} v_{12} \mid S\right) & =(1,1,0)
\end{aligned}
$$

All the edges of this graph have different S-codes. This implies that S is an edge metric generator of $G_{1}[3]$. Thus $\operatorname{edim}\left(G_{1}[3]\right) \leq 3$. In Theorem 2.2, we showed that edim $\left(G_{1}[n]\right) \geq 3$. Thus, the edge metric dimension of $G_{1}[3]$ is equal to 3 .

$r\left(w_{1} w_{2} \mid S\right)$	$=(3,4,0)$	$r\left(w_{2} w_{3} \mid S\right)$	$=(3,3,1)$	$r\left(w_{1} w_{3} \mid S\right)$	$=(4,3,0)$
$\left.r\left(w_{1} w_{4}\right) \mid S\right)$	$=(4,4,0)$	$r\left(w_{4} w_{5} \mid S\right)$	$=(4,5,1)$	$\left.r\left(w_{5} w_{6}\right) \mid S\right)$	$=(4,4,2)$
$\left.r\left(w_{6} w_{4}\right) \mid S\right)$	$=(5,4,1)$	$r\left(w_{2} u_{1} \mid S\right)$	$=(2,3,1)$	$\left.r\left(w_{3} v_{1}\right) \mid S\right)$	$=(3,2,1)$
$r\left(w_{1} u_{2} \mid S\right)$	$=(1,2,2)$	$r\left(u_{2} u_{3} \mid S\right)$	$=(0,2,3)$	$r\left(u_{3} u_{4} \mid S\right)$	$=(0,2,4)$
$r\left(w_{4} u_{5} \mid S\right)$	$=(1,2,5)$	$\left.r\left(u_{5} u_{6} \mid S\right)\right)$	$=(1,3,5)$	$r\left(u_{6} u_{7} \mid S\right)$	$=(2,3,3)$
$r\left(w_{3} u_{5} \mid S\right)$	$=(0,3,4$	$r\left(u_{1} u_{7} \mid S\right)$	$=(2,3,2)$	$r\left(u_{2} v_{2} \mid S\right)$	$=(1,1,3)$
$r\left(w_{4} v_{4} \mid S\right)$	$=(1,1,5)$	$r\left(u_{6} v_{6} \mid S\right)$	$=(2,2,4)$	$r\left(u_{7} w_{5} \mid S\right)$	$=(3,4,3)$
$r\left(v_{1} v_{2} \mid S\right)$	$=(2,1,2)$	$r\left(v_{2} v_{3} \mid S\right)$	$=(2,0,3)$	$r\left(v_{3} v_{4} \mid S\right)$	$=(2,0,4)$
$r\left(v_{4} v_{5} \mid S\right)$	$=(2,1,5)$	$r\left(v_{5} v_{6} \mid S\right)$	$=(3,1,4)$	$r\left(v_{6} v_{7} \mid S\right)$	$=(3,2,3)$
$r\left(v_{7} w_{6} \mid S\right)$	$=(4,3,3)$	$r\left(v_{3} v_{5} \mid S\right)$	$=(3,0,4)$	$r\left(v_{1} v_{7} \mid S\right)$	$=(3,2,2)$

Figure 4: $G_{1}[3]$
Conflicts of Interest. The authors declare that they have no conflicts of interest regarding the publication of this article.

References

[1] P. W. Fowler and D. E. Manolopoulos, An Atlas of Fullerenes, Oxford University Press, Oxford, 1995.
[2] T. Došlić, Cyclical edge-connectivity of fullerene graphs and (k,6)-cages, cages. J. Math. Chem. 33 (2003) 103-112, https://doi.org/10.1023/A:1023299815308.
[3] A. Kelenc, N. Tratnik and I. G. Yero, Uniquely identifying the edges of a graph: The edge metric dimension, Discrete Appl. Math. 251 (2018) 204-220, https://doi.org/10.1016/j.dam.2018.05.052.
[4] S. Klavžar and M. Tavakoli, Edge metric dimensions via hierarchical product and integer linear programming, Optim. Lett. 15 (2021) 1993-2003, https://doi.org/10.1007/s11590-020-01669-x.
[5] M. Afkhami, K. Khashyarmanesh and M. Tavakoli, L-clique metric dimension of graphs, Bull. Malays. Math. Sci.Soc. 45 (2022) 2865-2883, https://doi.org/10.1007/s40840-022-01299-9.
[6] R. Adawiyah, Dafik, R. Alfarisi, R. M. Prihandini and I. H. Agustin, Edge metric dimension on some families of tree, J. Phys.: Conf. Ser. Series 1180 (2019) p. 012005, https://doi.org/10.1088/1742-6596/1180/1/012005.
[7] V. Filipović, A. Kartelj and J. Kratica, Edge metric dimension of some generalized petersen graphs, Results Math. 74 (2019) p. 182, https://doi.org/10.1007/s00025-019-1105-9.
[8] B. Yang, M. Rafiullah, H. M. A. Siddiqui and S. Ahmad, On resolvability parameters of some wheel-related graphs, J. Chem. (2019) Article ID 9259032, https://doi.org/10.1155/2019/9259032.
[9] Y. Zhang and S. Gao, On the edge metric dimension of convex polytopes and its related graphs, J. Comb. Optim. 39 (2020) 334-350, https://doi.org/10.1007/s10878-019-00472-4.
[10] S. Akhter and R. Farooq, Metric dimension of fullerene graphs, Electron. J. Graph Theory Appl. 7 (1) (2019) 91-103, http://dx.doi.org/10.5614/ejgta.2019.7.1.7.

[^0]: *Corresponding author
 E-mail addresses: p_bonyabadi@yahoo.com (P. Bonyabadi), khashyar@ipm.ir (K. Khashyarmanesh), m_tavakoli@um.ac.ir ($\overline{\mathrm{M}}$. Tavakoli), mojgan.afkhami@yahoo.com (M. Afkhami)
 Academic Editor: Ali Reza Ashrafi

