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Abstract

A (k, 6)-fullerene graph is a planar 3-connected cubic graph
whose faces are k-gons and hexagons. The aim of this paper is
to study the edge metric dimension of (3, 6)- and (4, 6)-fullerene
graphs.
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1 Introduction

In a molecular graph G, atoms are represented as vertices and their relationships (bonds) as
edges with the property that the number of edges of G incident with each vertex is at most
four. The number of bonds incident with a given atom u is called the degree of u and denoted
by deg(u). The molecular graph G is connected if for any two atoms u and v there exists a path
between u and v. The distance between two atoms u and v is the number of edges in a shortest
sequence of vertices from u to v. As usual, we use notation d(u, v) for the distance between two
atoms u and v. This graph is 3-connected, if G has at least three atoms and remains connected
whenever fewer than three atoms are removed from G. A molecular graph is said cubic, if each
atom’s degree is equal to 3. A molecular graph is called planar, if it can be drawn in the plane
in such a way that bonds meet only at atoms corresponding to their common ends. A planar
3-connected cubic graph whose faces are only r-gons and hexagons is called an (r, 6)-fullerene
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graph. These molecular graphs are topological models of fullerene molecules [1]. In [2], it was
proved that 3, 4 and 5 are the only values of k for which a (k, 6)-fullerene exists. By Euler’s
formula, we also know that a (3, 6)-fullerene graph has exactly four faces of size 3 and n

2 − 2
hexagons.

If S = {v1, . . . , vk} is an ordered subset of V (G), then the S-code of an edge e ∈ E(G)
is the vector rG(e|S) = (dG(v1, e), . . . , dG(vk, e)). The set S distinguishes edges e and e′ if
rG(e|S) 6= rG(e

′|S) and S is an edge metric generator for G if each pair of edges of G is
distinguished by S. A metric generator of the smallest cardinality is called an edge metric basis
for G and its cardinality is said to the edge metric dimension of G and denoted by edim(G).

The source for the edge metric dimension is the paper [3]. The complexity of computing
the edge metric dimension was investigated in [3]. One can also see [4] for application of edge
metric generators in the intelligent transportation system (ITS). We recommend papers [5–9]
for more information about mathematical properties of this invariant. In the present work,
we are motivated by [10] to compute the edge metric dimension of (3, 6)- and (4, 6)-fullerene
graphs.

2 Main results
Let F1[n] be (3, 6)-fullerene depicted in Figure 1 of order 8n+ 4. In the following, we proceed
with labeling shown in this figure.
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Figure 1: The graph F1[n].

Theorem 2.1. The edge metric dimension of fullerene graph F1[n] is equal to 3.

Proof. First of all, we prove that edim(F1[n]) ≤ 3. To achieve this aim, let

S = {u2n−1, v2n−1, w1} ⊂ V (F1[n]).

We claim that S is an edge metric generator of F1[n]. Hence, we investigate the S-code of
edges of E(F1[n]). Let {w1, w2, w3} and {w4, w5, w6} be the vertex sets of outer triangles of
F1[n]. The S-code of edges of F1[n] are as follows:

r(w1w2|S) = (2n− 1, 2n, 0), r(w2w3|S) = (2n− 1, 2n− 1, 1),

r(w1w3|S) = (2n, 2n− 1, 0), r(w1w4|S) = (2n, 2n, 0),

r(w3v1|S) = (2n, 2n− 2, 1), r(v4n−1w6|S) = (2n− 2, 2n, 1),

r(w4w5|S) = (2n, 2n+ 1, 1), r(w5w6|S) = (2n, 2n, 2),

r(w4w6|S) = (2n+ 1, 2n, 1), r(w2u1|S) = (2n− 2, 2n− 1, 1),

r(u4n−1w5|S) = (2n− 1, 2n+ 1, 2).
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Also, for j = i+ 1, we have

r(uiuj |S) =



(2n− 2− i, 2n− i− 1, i+ 1); if 1 ≤ i < 2n− 1,

(0, 2, 2n); if i = 2n− 1,

(1, 2, 2n+ 1); if i = 2n,

(1, 3, 2n+ 1); if i = 2n+ 1,

(i− 2n, i− 2n+ 1, 4n− i+ 1); if 2n+ 1 < i 6 4n− 1.

In addition, in the case that j = 4n− i, we have r(uiuj |S) = (2n− i− 1, 2n− i, i+ 1), where
i = 2k − 1 and k is a natural number. Moreover, the S-codes of the lower half of the fullerene
graph F1[n] for j = i+ 1 are as follows:

r(vivj |S) =



(2n− 1− i, 2n− i− 2, i+ 1); if 1 ≤ i < 2n− 1,

(2, 0, 2n); if i = 2n− 1,

(2, 1, 2n+ 1); if i = 2n,

(3, 1, 2n+ 1); if i = 2n+ 1,

(i− 2n+ 1, i− 2n, 4n− i+ 1); if 2n+ 1 < i 6 4n− 1.

Furthermore, when j = 4n− i, we have r(vivj |S) = (2n− i, 2n− i− 1, i+ 1), where i = 2k − 1
and k is a natural number. Besides,

r(uivi|S) =


(2n− 1− i, 2n− 1− i, i+ 1); if 1 ≤ i ≤ 2n− 1,

(1, 1, i+ 1); if i = 2n,

(i− 2n, i− 2n, 4n− i+ 2); if 2n+ 1 ≤ i < 4n− 1,

where i = 2k.
Clearly, the above information about the S-codes of E(F1[n]) shows that all edges of

F1[n] have different S-codes and consequently, S is an edge metric generator of F1[n]. Thus
edim(F1[n]) ≤ |S| = 3.

It remains to prove that edim(F1[n]) ≥ 3. To achieve this aim, letA = {w1, w2, w3, w4, w5, w6}
be the set of vertices of outer triangles of F1[n]. Assume, to the contrary, that edim(F1[n]) = 2
and S′ is an edge metric generator with |S′| = 2. We have the following cases:

Case 1. If both vertices of S′ are in the upper half of F1[n], then the S-codes of pair of edges
w4w5, w5w6 and w1w2, w2w3 are the same. Thus S′ is not an edge metric generator of
F1[n].

Case 2. If both vertices of S′ belong to A, then

subcase 2.1. If S′ = {w1w2}, then the S′-codes of pair of edges w4w5, w4w6 are the
same.

subcase 2.2. If S′ = {w1, w4}, then r(w4w5|S′) = r(w4w6|S′) and r(w1w2|S′) = r(w1w3|S′).
subcase 2.3. If S′ = {w3, w2}, then the S′-codes of pair of edges w2u1, w1w2 are the

same.

subcase 2.4. If S′ = {w6, w2}, then r(w6w5|S′) = r(v4n−1w6|S′).
subcase 2.5. If S′ = {w2, w5}, then the S′-code of pair of edges u4n−1w5, w4w5 and

w1w2, w2w1 are the same.
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Case 3. If one vertex of S′ belongs to the upper half of F1[n] and the other vertex belongs to
A, i. e., (S′ = {ui, wj}), then we have the following subcases:

subcase 3.1. For i ≤ 2n− 1 and j = 2, we have r(w1w2|S′) = r(w2w3|S′).

subcase 3.2. If i ≤ 2n− 1 and j = 5, then the S′-codes of pair of edges w4w5, w5w6 are
the same.

subcase 3.3. If i ≤ 2n− 1 and j = 3, then the S′-codes of pair of edges w1w3 and v1w3

are the same.

subcase 3.4. For i ≤ 2n− 1 and j = 6, we have r(w1w4|S′) = r(w4w5|S′).

subcase 3.5. For i ≤ 2n− 1 and j = 1, we have r(w1w3|S′) = r(w1w4|S′).

subcase 3.6. If i ≤ 2n− 1 and j = 4, then the S′-codes of pair of edges w1w3 and w5w6

are the same.

Case 4. If one vertex of S′ is from {u1, u2, . . . , x4n−1} and other vertex is from {v1, v2, . . . , v4n−1},
then we have the following subcases:

subcase 4.1. For i < j 6 2n− 1, we have r(v2nv2n−1|S′) = r(v2n−1v2n+1|S′).

subcase 4.2. If j < i 6 2n−1, then the representation of pair of edges v4n−2y4n−1, v4n−1z6
are the same.

subcase 4.3. If j = i 6 2n− 1, then the S′-codes of pair of edges w1w2, u4n−1w5 are the
same.

subcase 4.4. For i = j = 1, we have r(u4n−2u4n−1|S′) = r(w5u4n−1|S′).

Therefore, in each case, we reach a contradiction and consequently, there does not exit
an edge metric generator S′ of size 2 for F1[n]. Thus edim(F1[n]) ≥ 3 which completes the
proof. �
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Figure 2: The graph F1[2].

For more illustration, we implement the proof of Theorem 2.1 on F1[2]. Consider F1[2]
shown in Figure 2. Let {z1, z2, z3} and {z4, z5, z6} be the vertex sets of outer triangles of F1[2],
and S = {x3, y3, z1} ⊂ V (F1[2]). Now, we prove that S is an edge metric generator of F1[n].
To achieve this, we give the S-codes of E(F1[2]) as follows:
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r(w1w2|S) = (1, 2, 0), r(w2w3|S) = (1, 1, 1), r(w1w3|S) = (2, 1, 0), r(w1w4|S) = (2, 2, 0),

r(w4w5|S) = (2, 3, 1), r(w5w6|S) = (2, 2, 2), r(w6w4|S) = (3, 2, 1), r(w2u1|S) = (0, 2, 1),

r(w3v1|S) = (2, 0, 1), r(u1u2|S) = (0, 2, 2), r(u2u3|S) = (1, 2, 2), r(u1u3|S) = (0, 3, 2),

r(u2v2|S) = (1, 1, 3), r(u3w5|S) = (1, 3, 2), r(v1v2|S) = (2, 0, 2), r(v2v3|S) = (2, 1, 3),

r(v1v3|S) = (3, 0, 2), r(v3w6|S) = (3, 1, 2), r(u2u3|S) = (1, 2, 2), r(u1u3|S) = (0, 3, 2).

Thus, all the edges of this graph have different S-codes which implies that S is an edge
metric generator of F1[2].
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Figure 3: The graph G1[n].

Theorem 2.2. The edge metric dimension of G1[n], shown in Figure 3, is equal to 3 for n ≥ 2.

Proof. For S = {x1, y1, x4n} ⊂ V (G1[n]), we need to show that S is an edge metric generator
of G1[n]. We first prove that dim(G1[n]) ≤ 3. For this aim, we give the representation of the
edges G1[n] with respect to S.
The representation of edges of the fullerene graph G1[n] is given below:

r(x1xi+1|S) =

{
(i− 1, i, i); if 1 ≤ i ≤ 2n,

(4n− 1, 4n− i+ 1, 4n− i+ 1); if 2n+ 1 ≤ i ≤ 4n− 1.

The S-code of edges of lower half of G1[n] is given below:

r(yiyi+1|S) =

{
(i, i− 1, i+ 1); if 1 ≤ i ≤ 2n,

(4n− i+ 1, 4n− i, 4n− i); if 2n+ 1 ≤ i ≤ 4n− 1.

Moreover, the S-codes of edges xiyi (i = 1, 2, 4, 6, . . . , 4n− 2, 4n− 1, 4n) are as follows:

r(xiyi|S) =

{
(i− 1, i− 1, i); if 1 ≤ i ≤ 2n,

(4n− i+ 1, 4n− i+ 1, 4n− i); if 2n+ 1 ≤ i ≤ 4n,

r(x1x4n−i+1|S) = (i− 1, i, i− 1).

Thus, all edges of E(G1[n]) can be resolved with respect to S and consequently, S is an edge
metric generator of G1[n].

Now we show that edim(G1[n]) 6= 2. To achieve this aim, we consider the following cases:
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Case 1. If both vertices are in the upper half of G1[n] and the edge metric generator is S′ =
{us, ut}, for 1 ≤ s ≤ t ≤ 4n, then the S′-code of pair of edges uiui−1 and vi−2vi−1, for
2n + 1 ≤ i ≤ 4n − 1 are the same. Thus S′ is not an edge metric generator of G1[n].
Therefore, the edge metric generator is not a subset of {u1, u2, . . . , u4n}.

Case 2. If both vertices are in the lower half of G1[n] and the edge metric generator is S′ =
{vs, vt}, for 1 ≤ s ≤ t ≤ 4n, then the S′-codes of pair of edges vivi−1 and ui−2ui−1, for
2n + 1 ≤ i ≤ 4n − 1 are the same. Thus, S′ is not an edge metric generator of G1[n].
Therefore, the edge metric generator is not a subset of {v1, v2, . . . , v4n}.

Case 3. Assume that one vertex belongs to the set of vertices {u1, u2, . . . , u4n} and the other
one is in the set of vertices {v1, v2, . . . , v4n}. Without loss of generality, we may assume
that the edge metric generator is S′ = {us, vt}, where 1 ≤ s ≤ 4n and 1 ≤ t ≤ 4n. We
have the following subcases:

subcase 3.1. If s = t, then the S′-codes of pair of edges usus+1, us−1us and vtvt−1, vtvt+1

are the same.

subcase 3.2. If s < t, then the S′-codes of pair of u2nu2n+1 and u2n+1u2n+2 are the
same.

subcase 3.3. If s > t, then the S′-codes of pair of v2nv2n+1, v2n+1v2n+2 are the same.

Thus in every subcases, we get a contradiction.

Based on the above cases, we conclude that there is no edge metric generator S′ with |S′| = 2,
and so edim(G1[n]) ≥ 3. �

For more illustration, we implement the proof of Theorem 2.1 on G1[3], shown in Figure 4.
Now, let S = {u1, v1, u12}. We show that S is an edge metric generator of G1[3]. To do this,
we determine the S-codes of all edges as follows:

r(u1u2|S) = (0, 1, 1) r(y1y2|S) = (1, 0, 2) r(u2u3|S) = (1, 2, 2)

r(v2v3|S) = (2, 1, 3) r(u3u4|S) = (2, 3, 3) r(v3v4|S) = (3, 2, 4)

r(u4u5|S) = (3, 4, 4) r(v4v5|S) = (4, 3, 5) r(u5u6|S) = (4, 5, 5)

r(v5v6|S) = (5, 4, 6) r(u6u7|S) = (5, 6, 5) r(v6v7|S) = (6, 5, 6)

r(u7u8|S) = (5, 6, 4) r(v7v8|S) = (6, 5, 5) r(u8u9|S) = (4, 5, 3)

r(v8v9|S) = (5, 4, 4) r(u9u10|S) = (3, 4, 2) r(v9v10|S) = (4, 3, 3)

r(u10u11|S) = (2, 3, 1) r(v10v11|S) = (3, 2, 2) r(u11u12|S) = (1, 2, 0)

r(v11v12|S) = (2, 1, 1) r(u1u12|S) = (0, 1, 0) r(v1v12|S) = (1, 0, 1)

r(u3u10|S) = (2, 3, 2) r(v3v10|S) = (3, 2, 2) r(u5u8|S) = (4, 5, 4)

r(v5v8|S) = (5, 4, 5) r(u1v1|S) = (0, 0, 1) r(u2v2|S) = (1, 1, 2)

r(u4v4|S) = (3, 3, 4) r(u6v6|S) = (5, 5, 6) r(u7v7|S) = (6, 6, 5)

r(u9v9|S) = (4, 4, 3) r(u11v11|S) = (2, 2, 1) r(u12v12|S) = (1, 1, 0)

All the edges of this graph have different S-codes. This implies that S is an edge metric
generator of G1[3]. Thus edim(G1[3]) ≤ 3. In Theorem 2.2, we showed that edim(G1[n]) ≥ 3.
Thus, the edge metric dimension of G1[3] is equal to 3.
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r(w1w2|S) = (3, 4, 0) r(w2w3|S) = (3, 3, 1) r(w1w3|S) = (4, 3, 0)

r(w1w4)|S) = (4, 4, 0) r(w4w5|S) = (4, 5, 1) r(w5w6)|S) = (4, 4, 2)

r(w6w4)|S) = (5, 4, 1) r(w2u1|S) = (2, 3, 1) r(w3v1)|S) = (3, 2, 1)

r(w1u2|S) = (1, 2, 2) r(u2u3|S) = (0, 2, 3) r(u3u4|S) = (0, 2, 4)

r(w4u5|S) = (1, 2, 5) r(u5u6|S)) = (1, 3, 5) r(u6u7|S) = (2, 3, 3)

r(w3u5|S) = (0, 3, 4) r(u1u7|S) = (2, 3, 2) r(u2v2|S) = (1, 1, 3)

r(w4v4|S) = (1, 1, 5) r(u6v6|S) = (2, 2, 4) r(u7w5|S) = (3, 4, 3)

r(v1v2|S) = (2, 1, 2) r(v2v3|S) = (2, 0, 3) r(v3v4|S) = (2, 0, 4)

r(v4v5|S) = (2, 1, 5) r(v5v6|S) = (3, 1, 4) r(v6v7|S) = (3, 2, 3)

r(v7w6|S) = (4, 3, 3) r(v3v5|S) = (3, 0, 4) r(v1v7|S) = (3, 2, 2)
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Figure 4: G1[3]
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