Iranian Journal of Mathematical Chemistry

DOI: 10.22052/IJMC.2022.248392.1666 Vol. 14, No. 1, 2023, pp. 47-54 Research Paper

Edge Metric Dimension of Fullerenes

Parvane Bonyabadi¹, Kazem Khashyarmanesh^{1*}, Mostafa Tavakoli² and Mojgan Afkhami³

¹Department of pure Mathematics, Faculty of Mathematical Sciences, Ferdowsi University of Mashhad, P.O. Box 1159, Mashhad 91775, Iran

²Department of Applied Mathematics, Faculty of Mathematical Sciences, Ferdowsi University of Mashhad, P.O. Box 1159, Mashhad 91775, Iran

³Department of Mathematics, University of Neyshabur, P.O.Box 91136-899, Neyshabur, Iran.

Keywords:	Abstract
(3, 6)-Fullerene,	
(4, 6)-Fullerene,	A $(k, 6)$ -fullerene graph is a planar 3-connected cubic graph
Edge metric dimension	whose faces are k -gons and hexagons. The aim of this paper is
AMS Subject Classification (2020):	to study the edge metric dimension of $(3, 6)$ - and $(4, 6)$ -fullerene graphs.
05C15; 05C69	
Article History:	C 2023 University of Kashan Press. All rights reserved
Received: 3 October 2022	
Accepted: 7 November 2022	

1 Introduction

In a molecular graph G, atoms are represented as vertices and their relationships (bonds) as edges with the property that the number of edges of G incident with each vertex is at most four. The number of bonds incident with a given atom u is called the *degree* of u and denoted by deg(u). The molecular graph G is connected if for any two atoms u and v there exists a path between u and v. The *distance* between two atoms u and v is the number of edges in a shortest sequence of vertices from u to v. As usual, we use notation d(u, v) for the distance between two atoms u and v. This graph is 3-connected, if G has at least three atoms and remains connected whenever fewer than three atoms are removed from G. A molecular graph is said *cubic*, if each atom's degree is equal to 3. A molecular graph is called *planar*, if it can be drawn in the plane in such a way that bonds meet only at atoms corresponding to their common ends. A planar 3-connected cubic graph whose faces are only r-gons and hexagons is called an (r, 6)-fullerene

^{*}Corresponding author

E-mail addresses: p_bonyabadi@yahoo.com (P. Bonyabadi), khashyar@ipm.ir (K. Khashyarmanesh), m_tavakoli@um.ac.ir (M. Tavakoli), mojgan.afkhami@yahoo.com (M. Afkhami)

Academic Editor: Ali Reza Ashrafi

graph. These molecular graphs are topological models of fullerene molecules [1]. In [2], it was proved that 3, 4 and 5 are the only values of k for which a (k, 6)-fullerene exists. By Euler's formula, we also know that a (3, 6)-fullerene graph has exactly four faces of size 3 and $\frac{n}{2} - 2$ hexagons.

If $S = \{v_1, \ldots, v_k\}$ is an ordered subset of V(G), then the *S*-code of an edge $e \in E(G)$ is the vector $r_G(e|S) = (d_G(v_1, e), \ldots, d_G(v_k, e))$. The set *S* distinguishes edges *e* and *e'* if $r_G(e|S) \neq r_G(e'|S)$ and *S* is an edge metric generator for *G* if each pair of edges of *G* is distinguished by *S*. A metric generator of the smallest cardinality is called an edge metric basis for *G* and its cardinality is said to the edge metric dimension of *G* and denoted by edim(*G*).

The source for the edge metric dimension is the paper [3]. The complexity of computing the edge metric dimension was investigated in [3]. One can also see [4] for application of edge metric generators in the intelligent transportation system (ITS). We recommend papers [5-9]for more information about mathematical properties of this invariant. In the present work, we are motivated by [10] to compute the edge metric dimension of (3,6)- and (4,6)-fullerene graphs.

2 Main results

Let $F_1[n]$ be (3,6)-fullerene depicted in Figure 1 of order 8n + 4. In the following, we proceed with labeling shown in this figure.

Figure 1: The graph $F_1[n]$.

Theorem 2.1. The edge metric dimension of fullerene graph $F_1[n]$ is equal to 3. Proof. First of all, we prove that $\operatorname{edim}(F_1[n]) \leq 3$. To achieve this aim, let

$$S = \{u_{2n-1}, v_{2n-1}, w_1\} \subset V(F_1[n]).$$

We claim that S is an edge metric generator of $F_1[n]$. Hence, we investigate the S-code of edges of $E(F_1[n])$. Let $\{w_1, w_2, w_3\}$ and $\{w_4, w_5, w_6\}$ be the vertex sets of outer triangles of $F_1[n]$. The S-code of edges of $F_1[n]$ are as follows:

$r(w_1w_2 S) = (2n - 1, 2n, 0),$	$r(w_2w_3 S) = (2n - 1, 2n - 1, 1),$
$r(w_1w_3 S) = (2n, 2n - 1, 0),$	$r(w_1w_4 S) = (2n, 2n, 0),$
$r(w_3v_1 S) = (2n, 2n - 2, 1),$	$r(v_{4n-1}w_6 S) = (2n-2, 2n, 1),$
$r(w_4w_5 S) = (2n, 2n+1, 1),$	$r(w_5w_6 S) = (2n, 2n, 2),$
$r(w_4w_6 S) = (2n+1, 2n, 1),$	$r(w_2u_1 S) = (2n - 2, 2n - 1, 1),$
$r(u_{4n-1}w_5 S) = (2n-1, 2n+1, 2).$	

Also, for j = i + 1, we have

$$r(u_i u_j | S) = \begin{cases} (2n - 2 - i, 2n - i - 1, i + 1); & \text{if } 1 \le i < 2n - 1, \\ (0, 2, 2n); & \text{if } i = 2n - 1, \\ (1, 2, 2n + 1); & \text{if } i = 2n, \\ (1, 3, 2n + 1); & \text{if } i = 2n + 1, \\ (i - 2n, i - 2n + 1, 4n - i + 1); & \text{if } 2n + 1 < i \le 4n - 1. \end{cases}$$

In addition, in the case that j = 4n - i, we have $r(u_i u_j | S) = (2n - i - 1, 2n - i, i + 1)$, where i = 2k - 1 and k is a natural number. Moreover, the S-codes of the lower half of the fullerene graph $F_1[n]$ for j = i + 1 are as follows:

$$r(v_i v_j | S) = \begin{cases} (2n - 1 - i, 2n - i - 2, i + 1); & \text{if } 1 \le i < 2n - 1, \\ (2, 0, 2n); & \text{if } i = 2n - 1, \\ (2, 1, 2n + 1); & \text{if } i = 2n, \\ (3, 1, 2n + 1); & \text{if } i = 2n + 1, \\ (i - 2n + 1, i - 2n, 4n - i + 1); & \text{if } 2n + 1 < i \le 4n - 1. \end{cases}$$

Furthermore, when j = 4n - i, we have $r(v_i v_j | S) = (2n - i, 2n - i - 1, i + 1)$, where i = 2k - 1and k is a natural number. Besides,

$$r(u_i v_i | S) = \begin{cases} (2n - 1 - i, 2n - 1 - i, i + 1); & \text{if } 1 \le i \le 2n - 1, \\ (1, 1, i + 1); & \text{if } i = 2n, \\ (i - 2n, i - 2n, 4n - i + 2); & \text{if } 2n + 1 \le i < 4n - 1, \end{cases}$$

where i = 2k.

Clearly, the above information about the S-codes of $E(F_1[n])$ shows that all edges of $F_1[n]$ have different S-codes and consequently, S is an edge metric generator of $F_1[n]$. Thus $\operatorname{edim}(F_1[n]) \leq |S| = 3$.

It remains to prove that $\operatorname{edim}(F_1[n]) \geq 3$. To achieve this aim, let $A = \{w_1, w_2, w_3, w_4, w_5, w_6\}$ be the set of vertices of outer triangles of $F_1[n]$. Assume, to the contrary, that $\operatorname{edim}(F_1[n]) = 2$ and S' is an edge metric generator with |S'| = 2. We have the following cases:

Case 1. If both vertices of S' are in the upper half of $F_1[n]$, then the S-codes of pair of edges w_4w_5, w_5w_6 and w_1w_2, w_2w_3 are the same. Thus S' is not an edge metric generator of $F_1[n]$.

Case 2. If both vertices of S' belong to A, then

- subcase 2.1. If $S' = \{w_1w_2\}$, then the S'-codes of pair of edges w_4w_5, w_4w_6 are the same.
- subcase 2.2. If $S' = \{w_1, w_4\}$, then $r(w_4w_5|S') = r(w_4w_6|S')$ and $r(w_1w_2|S') = r(w_1w_3|S')$.
- subcase 2.3. If $S' = \{w_3, w_2\}$, then the S'-codes of pair of edges w_2u_1, w_1w_2 are the same.

subcase 2.4. If $S' = \{w_6, w_2\}$, then $r(w_6w_5|S') = r(v_{4n-1}w_6|S')$.

subcase 2.5. If $S' = \{w_2, w_5\}$, then the S'-code of pair of edges $u_{4n-1}w_5, w_4w_5$ and w_1w_2, w_2w_1 are the same.

Case 3. If one vertex of S' belongs to the upper half of $F_1[n]$ and the other vertex belongs to A, i. e., $(S' = \{u_i, w_j\})$, then we have the following subcases:

subcase 3.1. For $i \leq 2n - 1$ and j = 2, we have $r(w_1 w_2 | S') = r(w_2 w_3 | S')$.

- subcase 3.2. If $i \leq 2n-1$ and j = 5, then the S'-codes of pair of edges w_4w_5, w_5w_6 are the same.
- subcase 3.3. If $i \leq 2n-1$ and j = 3, then the S'-codes of pair of edges w_1w_3 and v_1w_3 are the same.
- subcase 3.4. For $i \leq 2n 1$ and j = 6, we have $r(w_1 w_4 | S') = r(w_4 w_5 | S')$.
- subcase 3.5. For $i \leq 2n 1$ and j = 1, we have $r(w_1w_3|S') = r(w_1w_4|S')$.
- subcase 3.6. If $i \leq 2n-1$ and j = 4, then the S'-codes of pair of edges w_1w_3 and w_5w_6 are the same.
- **Case 4.** If one vertex of S' is from $\{u_1, u_2, \ldots, x_{4n-1}\}$ and other vertex is from $\{v_1, v_2, \ldots, v_{4n-1}\}$, then we have the following subcases:
 - subcase 4.1. For $i < j \leq 2n 1$, we have $r(v_{2n}v_{2n-1}|S') = r(v_{2n-1}v_{2n+1}|S')$.
 - subcase 4.2. If $j < i \leq 2n-1$, then the representation of pair of edges $v_{4n-2}y_{4n-1}$, $v_{4n-1}z_6$ are the same.
 - subcase 4.3. If $j = i \leq 2n 1$, then the S'-codes of pair of edges $w_1w_2, u_{4n-1}w_5$ are the same.

subcase 4.4. For i = j = 1, we have $r(u_{4n-2}u_{4n-1}|S') = r(w_5u_{4n-1}|S')$.

Therefore, in each case, we reach a contradiction and consequently, there does not exit an edge metric generator S' of size 2 for $F_1[n]$. Thus $\operatorname{edim}(F_1[n]) \geq 3$ which completes the proof.

Figure 2: The graph $F_1[2]$.

For more illustration, we implement the proof of Theorem 2.1 on $F_1[2]$. Consider $F_1[2]$ shown in Figure 2. Let $\{z_1, z_2, z_3\}$ and $\{z_4, z_5, z_6\}$ be the vertex sets of outer triangles of $F_1[2]$, and $S = \{x_3, y_3, z_1\} \subset V(F_1[2])$. Now, we prove that S is an edge metric generator of $F_1[n]$. To achieve this, we give the S-codes of $E(F_1[2])$ as follows:

$r(w_1w_2 S) = (1, 2, 0),$	$r(w_2w_3 S) = (1,1,1),$	$r(w_1w_3 S) = (2,1,0),$	$r(w_1w_4 S) = (2,2,0),$
$r(w_4w_5 S) = (2,3,1),$	$r(w_5w_6 S) = (2,2,2),$	$r(w_6w_4 S) = (3, 2, 1),$	$r(w_2u_1 S) = (0, 2, 1),$
$r(w_3v_1 S) = (2, 0, 1),$	$r(u_1u_2 S) = (0, 2, 2),$	$r(u_2u_3 S) = (1, 2, 2),$	$r(u_1u_3 S) = (0,3,2),$
$r(u_2v_2 S) = (1, 1, 3),$	$r(u_3w_5 S) = (1,3,2),$	$r(v_1v_2 S) = (2, 0, 2),$	$r(v_2v_3 S) = (2, 1, 3),$
$r(v_1v_3 S) = (3, 0, 2),$	$r(v_3w_6 S) = (3, 1, 2),$	$r(u_2u_3 S) = (1, 2, 2),$	$r(u_1u_3 S) = (0,3,2).$

Thus, all the edges of this graph have different S-codes which implies that S is an edge metric generator of $F_1[2]$.

Figure 3: The graph $G_1[n]$.

Theorem 2.2. The edge metric dimension of $G_1[n]$, shown in Figure 3, is equal to 3 for $n \ge 2$.

Proof. For $S = \{x_1, y_1, x_{4n}\} \subset V(G_1[n])$, we need to show that S is an edge metric generator of $G_1[n]$. We first prove that $\dim(G_1[n]) \leq 3$. For this aim, we give the representation of the edges $G_1[n]$ with respect to S.

The representation of edges of the fullerene graph $G_1[n]$ is given below:

$$r(x_1 x_{i+1} | S) = \begin{cases} (i-1, i, i); & \text{if } 1 \le i \le 2n, \\ (4n-1, 4n-i+1, 4n-i+1); & \text{if } 2n+1 \le i \le 4n-1. \end{cases}$$

The S-code of edges of lower half of $G_1[n]$ is given below:

$$r(y_i y_{i+1}|S) = \begin{cases} (i, i-1, i+1); & \text{if } 1 \le i \le 2n, \\ (4n-i+1, 4n-i, 4n-i); & \text{if } 2n+1 \le i \le 4n-1. \end{cases}$$

Moreover, the S-codes of edges $x_i y_i$ $(i = 1, 2, 4, 6, \dots, 4n - 2, 4n - 1, 4n)$ are as follows:

$$r(x_i y_i | S) = \begin{cases} (i - 1, i - 1, i); & \text{if } 1 \le i \le 2n, \\ (4n - i + 1, 4n - i + 1, 4n - i); & \text{if } 2n + 1 \le i \le 4n, \end{cases}$$
$$r(x_1 x_{4n - i + 1} | S) = (i - 1, i, i - 1).$$

Thus, all edges of $E(G_1[n])$ can be resolved with respect to S and consequently, S is an edge metric generator of $G_1[n]$.

Now we show that $\operatorname{edim}(G_1[n]) \neq 2$. To achieve this aim, we consider the following cases:

- **Case 1.** If both vertices are in the upper half of $G_1[n]$ and the edge metric generator is $S' = \{u_s, u_t\}$, for $1 \leq s \leq t \leq 4n$, then the S'-code of pair of edges $u_i u_{i-1}$ and $v_{i-2} v_{i-1}$, for $2n + 1 \leq i \leq 4n 1$ are the same. Thus S' is not an edge metric generator of $G_1[n]$. Therefore, the edge metric generator is not a subset of $\{u_1, u_2, \ldots, u_{4n}\}$.
- **Case 2.** If both vertices are in the lower half of $G_1[n]$ and the edge metric generator is $S' = \{v_s, v_t\}$, for $1 \le s \le t \le 4n$, then the S'-codes of pair of edges $v_i v_{i-1}$ and $u_{i-2} u_{i-1}$, for $2n + 1 \le i \le 4n 1$ are the same. Thus, S' is not an edge metric generator of $G_1[n]$. Therefore, the edge metric generator is not a subset of $\{v_1, v_2, \ldots, v_{4n}\}$.
- **Case 3.** Assume that one vertex belongs to the set of vertices $\{u_1, u_2, \ldots, u_{4n}\}$ and the other one is in the set of vertices $\{v_1, v_2, \ldots, v_{4n}\}$. Without loss of generality, we may assume that the edge metric generator is $S' = \{u_s, v_t\}$, where $1 \le s \le 4n$ and $1 \le t \le 4n$. We have the following subcases:
 - **subcase 3.1.** If s = t, then the S'-codes of pair of edges $u_s u_{s+1}, u_{s-1}u_s$ and $v_t v_{t-1}, v_t v_{t+1}$ are the same.
 - subcase 3.2. If s < t, then the S'-codes of pair of $u_{2n}u_{2n+1}$ and $u_{2n+1}u_{2n+2}$ are the same.
 - subcase 3.3. If s > t, then the S'-codes of pair of $v_{2n}v_{2n+1}, v_{2n+1}v_{2n+2}$ are the same.

Thus in every subcases, we get a contradiction.

Based on the above cases, we conclude that there is no edge metric generator S' with |S'| = 2, and so $edim(G_1[n]) \ge 3$.

For more illustration, we implement the proof of Theorem 2.1 on $G_1[3]$, shown in Figure 4. Now, let $S = \{u_1, v_1, u_{12}\}$. We show that S is an edge metric generator of $G_1[3]$. To do this, we determine the S-codes of all edges as follows:

$r(u_1 u_2 S) = (0, 1, 1)$	$r(y_1y_2 S) = (1,0,2)$	$r(u_2u_3 S) = (1,2,2)$
$r(v_2v_3 S) = (2,1,3)$	$r(u_3u_4 S) = (2,3,3)$	$r(v_3v_4 S) = (3, 2, 4)$
$r(u_4u_5 S) = (3,4,4)$	$r(v_4v_5 S) = (4,3,5)$	$r(u_5 u_6 S) = (4, 5, 5)$
$r(v_5v_6 S) = (5,4,6)$	$r(u_6u_7 S) = (5, 6, 5)$	$r(v_6v_7 S) = (6, 5, 6)$
$r(u_7u_8 S) = (5, 6, 4)$	$r(v_7v_8 S) = (6, 5, 5)$	$r(u_8u_9 S) = (4, 5, 3)$
$r(v_8v_9 S) = (5,4,4)$	$r(u_9u_{10} S) = (3,4,2)$	$r(v_9v_{10} S) = (4,3,3)$
$r(u_{10}u_{11} S) = (2,3,1)$	$r(v_{10}v_{11} S) = (3, 2, 2)$	$r(u_{11}u_{12} S) = (1,2,0)$
$r(v_{11}v_{12} S) = (2,1,1)$	$r(u_1 u_{12} S) = (0, 1, 0)$	$r(v_1v_{12} S) = (1,0,1)$
$r(u_3u_{10} S) = (2,3,2)$	$r(v_3v_{10} S) = (3,2,2)$	$r(u_5 u_8 S) = (4, 5, 4)$
$r(v_5v_8 S) = (5, 4, 5)$	$r(u_1v_1 S) = (0,0,1)$	$r(u_2v_2 S) = (1,1,2)$
$r(u_4v_4 S) = (3,3,4)$	$r(u_6v_6 S) = (5,5,6)$	$r(u_7v_7 S) = (6, 6, 5)$
$r(u_9v_9 S) = (4,4,3)$	$r(u_{11}v_{11} S) = (2,2,1)$	$r(u_{12}v_{12} S) = (1,1,0)$

All the edges of this graph have different S-codes. This implies that S is an edge metric generator of $G_1[3]$. Thus $\operatorname{edim}(G_1[3]) \leq 3$. In Theorem 2.2, we showed that $\operatorname{edim}(G_1[n]) \geq 3$. Thus, the edge metric dimension of $G_1[3]$ is equal to 3.

$r(w_1w_2 S) = (3, 4, 0)$	$r(w_2w_3 S) = (3,3,1)$	$r(w_1w_3 S) = (4,3,0)$
$r(w_1w_4) S) = (4,4,0)$	$r(w_4w_5 S) = (4, 5, 1)$	$r(w_5w_6) S) = (4,4,2)$
$r(w_6w_4) S) = (5, 4, 1)$	$r(w_2u_1 S) = (2,3,1)$	$r(w_3v_1) S) = (3,2,1)$
$r(w_1u_2 S) = (1, 2, 2)$	$r(u_2 u_3 S) = (0, 2, 3)$	$r(u_3u_4 S) = (0, 2, 4)$
$r(w_4u_5 S) = (1, 2, 5)$	$r(u_5u_6 S)) = (1,3,5)$	$r(u_6u_7 S) = (2,3,3)$
$r(w_3u_5 S) = (0,3,4)$	$r(u_1u_7 S) = (2,3,2)$	$r(u_2v_2 S) = (1,1,3)$
$r(w_4v_4 S) = (1,1,5)$	$r(u_6v_6 S) = (2, 2, 4)$	$r(u_7w_5 S) = (3,4,3)$
$r(v_1v_2 S) = (2, 1, 2)$	$r(v_2v_3 S) = (2,0,3)$	$r(v_3v_4 S) = (2,0,4)$
$r(v_4v_5 S) = (2, 1, 5)$	$r(v_5v_6 S) = (3, 1, 4)$	$r(v_6v_7 S) = (3,2,3)$
$r(v_7w_6 S) = (4,3,3)$	$r(v_3v_5 S) = (3,0,4)$	$r(v_1v_7 S) = (3,2,2)$

Figure 4: $G_1[3]$

Conflicts of Interest. The authors declare that they have no conflicts of interest regarding the publication of this article.

References

- P. W. Fowler and D. E. Manolopoulos, An Atlas of Fullerenes, Oxford University Press, Oxford, 1995.
- [2] T. Došlić, Cyclical edge-connectivity of fullerene graphs and (k, 6)-cages, cages. J. Math. Chem. 33 (2003) 103–112, https://doi.org/10.1023/A:1023299815308.
- [3] A. Kelenc, N. Tratnik and I. G. Yero, Uniquely identifying the edges of a graph: The edge metric dimension, *Discrete Appl. Math.* 251 (2018) 204–220, https://doi.org/10.1016/j.dam.2018.05.052.
- [4] S. Klavžar and M. Tavakoli, Edge metric dimensions via hierarchical product and integer linear programming, Optim. Lett. 15 (2021) 1993–2003, https://doi.org/10.1007/s11590-020-01669-x.

- M. Afkhami, K. Khashyarmanesh and M. Tavakoli, L-clique metric dimension of graphs, Bull. Malays. Math. Sci. Soc. 45 (2022) 2865–2883, https://doi.org/10.1007/s40840-022-01299-9.
- [6] R. Adawiyah, Dafik, R. Alfarisi, R. M. Prihandini and I. H. Agustin, Edge metric dimension on some families of tree, J. Phys.: Conf. Ser. Series 1180 (2019) p. 012005, https://doi.org/10.1088/1742-6596/1180/1/012005.
- [7] V. Filipović, A. Kartelj and J. Kratica, Edge metric dimension of some generalized petersen graphs, *Results Math.* 74 (2019) p. 182, https://doi.org/10.1007/s00025-019-1105-9.
- [8] B. Yang, M. Rafiullah, H. M. A. Siddiqui and S. Ahmad, On resolvability parameters of some wheel-related graphs, J. Chem. (2019) Article ID 9259032, https://doi.org/10.1155/2019/9259032.
- Y. Zhang and S. Gao, On the edge metric dimension of convex polytopes and its related graphs, J. Comb. Optim. 39 (2020) 334–350, https://doi.org/10.1007/s10878-019-00472-4.
- [10] S. Akhter and R. Farooq, Metric dimension of fullerene graphs, *Electron. J. Graph Theory Appl.* 7 (1) (2019) 91–103, http://dx.doi.org/10.5614/ejgta.2019.7.1.7.