# On General Degree-Eccentricity Index for Trees with Fixed Diameter and Number of Pendant Vertices 

Mesfin Masre ${ }^{1 \star}$<br>${ }^{1}$ Department of Mathematics, Addis Ababa University, Addis Ababa, Ethiopia

## Keywords:

General degree-eccentricity index,
General eccentric connectivity index,
Tree,
Diameter,
Pendant vertex

AMS Subject Classification (2020):

05C05; 92E10; 05C12

## Article History:

Received: 17 November 2022
Accepted: 2 March 2023


#### Abstract

The general degree-eccentricity index of a graph $G$ is defined by, $D E I_{a, b}(G)=\sum_{v \in V(G)} d_{G}^{a}(v) e c c_{G}^{b}(v)$ for $a, b \in \mathbb{R}$, where $V(G)$ is the vertex set of $G, e c c_{G}(v)$ is the eccentricity of a vertex $v$ and $d_{G}(v)$ is the degree of $v$ in $G$. In this paper, we generalize results on the general eccentric connectivity index for trees. We present upper and lower bounds on the general degree-eccentricity index for trees of given order and diameter and trees of given order and number of pendant vertices. The upper bounds hold for $a>1$ and $b \in \mathbb{R} \backslash\{0\}$ and the lower bounds hold for $0<a<1$ and $b \in \mathbb{R} \backslash\{0\}$. We include the case $a=1$ and $b \in\{-1,1\}$ in those theorems for which the proof of that case is not complicated. We present all the extremal graphs, which means that our bounds are best possible.


[^0]
## 1 Introduction

A topological index is a numerical value that associates a chemical structure with various physical properties, chemical reactivity, or biological activity of molecules.

Let $G$ be a simple connected graph with vertex set $V(G)$ and edge set $E(G)$. Order of $G$ is defined as the number of vertices in $G$. Degree of a vertex $v \in V(G)$, denoted by $d_{G}(v)$ is the number of vertices adjacent to the vertex $v$. A Pendant vertex is a vertex of degree one, and a pendant edge is an edge incident with a pendant vertex. A branching vertex is a vertex of degree at least three. A pendant path is a path in which one of the end vertices is a pendant vertex and the other is branching, and all the internal vertices (if exist) have degree two. For $U \subset V(G)$ and $F \subset E(G)$, the graph obtained from $G$ by deleting all the vertices in $U$ (resp. edges in $F$ is denoted by $G-U$ (res. $G-F)$. On the other hand, for a pair of non-adjacent vertices $u$ and $v$, in $G$, the graph obtained from $G$ by adding an edge $u v$ is denoted by $G+u v$.

For $u, v \in V(G)$, the distance between $u$ and $v$, denoted by $d_{G}(u, v)$ is the length of a shortest $(u, v)$-path in $G$. The eccentricity of a vertex $v$ in $G$, denoted by $e c_{G}(v)$ is the maximum

[^1]distance from $v$ to any other vertex. The diameter of a graph $G$ is the length of the shortest path between the most distanced vertices. It measures the extent of a graph and the topological length between two vertices. A tree is a connected and acyclic graph. We denote, the path and star graphs of order $n$ by $P_{n}$ and $S_{n}$, respectively. For a connected graph $G$ and $a, b \in \mathbb{R}$, the general degree-eccentricity index of $G$ is defined as
$$
D E I_{a, b}(G)=\sum_{v \in V(G)} d_{G}^{a}(v) e c_{G}^{b}(v) .
$$

Several well-studied eccentricity-based topological indices are special cases of this general index. For instance, $D E I_{a, 1}(G)$ is the general eccentric connectivity index, $D E I_{1,1}(G)$ is the classical eccentric connectivity index, $D E I_{1,-1}(G)$ is the connective eccentricity index, $D E I_{0,1}(G)$ is the total eccentricity index and $D E I_{0,2}(G)$ is the first Zagreb eccentricity index of $G$.

The mathematical properties of eccentricity-based topological indices have been extensively studied due to their wide range of applications. In [1-3], the authors studied the eccentric connectivity index for trees with a given order, order and diameter, and order and number of pendant vertices. In $[4,5]$, the authors studied the connective eccentricity index for graphs of given order and clique number, and order and matching number respectively.

Zagreb eccentricity indices have been investigated extensively. In [6-8], the authors studied Zagreb eccentricity indices for trees and general graphs, with prescribed domination number or bipartition. In [9], sharp upper and lower bounds on the general eccentric connectivity index of trees with prescribed order and diameter/number of pendant vertices were given. In [10], the authors introduced the general degree-eccentricity index of a graph, they also determined the general degree-eccentricity index for connected graphs of a given order in combination with given vertex connectivity, edge connectivity, number of pendant vertices, number of bridges or matching number. In [11], the same authors studied the general degree-eccentricity index for trees of a given order, and trees of a given order in combination with a given matching number, independence number, domination number or bipartition.

In this paper, motivated by the works in [10, 11], we continue to study the general degreeeccentricity index. We generalize results on the general eccentric connectivity index for trees which were presented in [9].

The main contribution of this paper is the characterization of trees with a given order and diameter, as well as trees with a given order and number of pendant vertices, that have the maximum and minimum general degree-eccentricity index. We study the upper bounds for $a>1$ and $b \in \mathbb{R} \backslash\{0\}$ and the lower bounds for $0<a<1$ and $b \in \mathbb{R} \backslash\{0\}$. In some of the results, we include the case $a=1$ and $b \in\{-1,1\}$. We also show that all our bounds are sharp by presenting extremal graphs. Lemma 1.1 was proved in [9], and it plays an important role in the proof of our main results.

Lemma 1.1. Let $1 \leq x<y$ and $c>0$. For $a>1$ or $a<0$, we have

$$
(x+c)^{a}-x^{a}<(y+c)^{a}-y^{a} .
$$

If $0<a<1$, then

$$
(x+c)^{a}-x^{a}>(y+c)^{a}-y^{a} .
$$

## 2 Trees of given order and diameter

In this section, we characterize trees of prescribed order $n$ and diameter $d$ having the maximum and the minimum $D E I_{a, b}$ index.

Let $\mathfrak{T}_{n, d}$ be the set of all $n$-vertex trees with diameter $d$. Clearly, $\mathfrak{T}_{n, 2}=\left\{S_{n}\right\}$ and $\mathfrak{T}_{n, n-1}=$ $\left\{P_{n}\right\}$. So in what follows, we consider $\mathfrak{T}_{n, d}$ for $3 \leq d \leq n-2$.

For a positive integer $d$, let $V_{n, d}$ be a tree obtained from a path $P_{d+1}: x_{0} x_{1} \ldots x_{d}$ by attaching $n-d-1$ pendant vertices to vertex $x_{\left\lfloor\frac{d}{2}\right\rfloor}$. We prove that $V_{n, d}$ is the unique tree having the maximum $D E I_{a, b}$ index for $a \geq 1$ and $b<0$, and the minimum $D E I_{a, b}$ index for $0<a \leq 1$ and $b>0$, in the class $\mathfrak{T}_{n, d}$.

Theorem 2.1. Let $T \in \mathfrak{T}_{n, d}$. Then for $a \geq 1$ and $b<0$, we have

$$
D E I_{a, b}(T) \leq 2^{a+1} \sum_{r=\frac{d+2}{2}}^{d-1} r^{b}+(n-d+1)^{a}\left(\frac{d}{2}\right)^{b}+(n-d-1)\left(\frac{d+2}{2}\right)^{b}+2 d^{b}
$$

if $d$ is even,

$$
D E I_{a, b}(T) \leq 2^{a+1} \sum_{r=\frac{d+3}{2}}^{d-1} r^{b}+\left((n-d+1)^{a}+2^{a}\right)\left(\frac{d+1}{2}\right)^{b}+(n-d-1)\left(\frac{d+3}{2}\right)^{b}+2 d^{b}
$$

if $d$ is odd, with equalities if and only if $T$ is $V_{n, d}$.
Proof. Let $T_{\max }$ be a tree with maximum $D E I_{a, b}$ index in the class $\mathfrak{T}_{n, d}$. We show that $T_{\max }$ is $V_{n, d}$.

Assume, to the contrary, that there exists a tree $G_{n, d}^{\prime}$ of order $n$ and diameter $d$ with $D E I_{a, b}\left(G_{n, d}^{\prime}\right)>D E I_{a, b}\left(V_{n, d}\right)$ for some $n$ and $d$. Let $G_{n^{*}, d}^{\prime}$ be a tree having the minimum possible number of vertices $n^{*}$ satisfying $D E I_{a, b}\left(G_{n^{*}, d}^{\prime}\right)>D E I_{a, b}\left(V_{n^{*}, d}\right)$.

Let $P: x_{0} x_{1} x_{2} \ldots x_{d}$ be a diametral path in $G_{n^{*}, d}^{\prime}$. Since $G_{n^{*}, d}^{\prime}$ is not a path graph, it has a pendant vertex, say $v$ other than $x_{0}$ and $x_{d}$. Let $u$ be the neighbor of $v$. Let $V\left(G_{n^{*}-1, d}^{\prime}\right)=$ $V\left(G_{n^{*}, d}^{\prime}\right) \backslash\{v\}$ and $E\left(G_{n^{*}-1, d}^{\prime}\right)=E\left(G_{n^{*}, d}^{\prime}\right) \backslash\{u v\}$. Then $G_{n^{*}-1, d}^{\prime} \in \mathfrak{T}_{n-1, d}$.

Let $d_{G_{n^{*}, d}^{\prime}}(u)=r$. Then we have $2 \leq r \leq n^{*}-d+1, d_{G_{n^{*}-1, d}^{\prime}}^{\prime}(u)=r-1, d_{G_{n^{*}, d}^{\prime}}(v)=1$ and $d_{G_{n^{*}-1, d}^{\prime}}(y) \stackrel{=}{=} d_{G_{n^{*}, d}^{\prime}}(y)$ for all $y \in V\left(G_{n^{*}, d}^{\prime}\right) \backslash\{u, v\}$. Moreover, we have $e c_{G_{n^{*}, d}^{\prime}}(v) \geq\left\lceil\frac{d}{2}\right\rceil+1$, $e c_{G_{n^{*}-1, d}^{\prime}}(u)=e c_{G_{n^{*}, d}^{\prime}}(u) \geq\left\lceil\frac{d}{2}\right\rceil$ and $e c_{G_{n^{*}-1, d}^{\prime}}(y)=e c_{G_{n^{*}, d}^{\prime}}(y)$ for $y \in V\left(G_{n^{*}, d}^{\prime}\right) \backslash\{u, v\}$. This implies that $e c_{G_{n^{*}, d}^{\prime}}^{b}(v) \leq\left(\left\lceil\frac{d}{2}\right\rceil+1\right)^{b}, e c_{G_{n^{*}-1, d}^{\prime}}^{b}(u)=e c_{G_{n^{*}, d}^{\prime}}^{b}(u) \leq\left\lceil\frac{d}{2}\right\rceil^{b}$ for $b<0$. Thus

$$
\begin{aligned}
D E I_{a, b}\left(G_{n^{*}, d}^{\prime}\right)-D E I_{a, b}\left(G_{n^{*}-1, d}^{\prime}\right)= & d_{G_{n^{*}, d}^{\prime}}^{a}(v) e c_{G_{n^{*}, d}^{\prime}}^{b}(v) \\
& +d_{G_{n^{*}, d}^{\prime}}^{a}(u) e c_{G_{n^{*}, d}^{\prime}}^{\prime}(u)-d_{G_{n^{*}-1, d}^{\prime}}^{a}(u) e c_{G_{n^{*}-1, d}^{\prime}}^{b}(u) \\
= & e c_{G_{n^{*}, d}^{\prime}}^{b}(v)+r^{a} e c_{G_{n^{*}, d}^{\prime}}^{b}(u)-(r-1)^{a} e c_{G_{n^{*}, d}^{\prime}}^{b}(u) \\
\leq & \left(\left\lceil\frac{d}{2}\right\rceil+1\right)^{b}+\left\lceil\frac{d}{2}\right\rceil^{b}\left(r^{a}-(r-1)^{a}\right) .
\end{aligned}
$$

Since $G_{n^{*}, d}^{\prime}$ is a tree having the minimum possible number of vertices $n^{*}$ such that $D E I_{a, b}\left(G_{n^{*}, d}^{\prime}\right)>D E I_{a, b}\left(V_{n^{*}, d}\right)$, we obtain $D E I_{a, b}\left(G_{n^{*}-1, d}^{\prime}\right) \leq D E I_{a, b}\left(V_{n^{*}-1, d}\right)$ which implies that

$$
\begin{aligned}
D E I_{a, b}\left(G_{n^{*}, d}^{\prime}\right)-D E I_{a, b}\left(G_{n^{*}-1, d}^{\prime}\right) & >D E I_{a, b}\left(V_{n^{*}, d}\right)-D E I_{a, b}\left(V_{n^{*}-1, d}\right) \\
& =\left(\left\lceil\frac{d}{2}\right\rceil+1\right)^{b}+\left\lceil\frac{d}{2}\right\rceil^{b}\left(\left(n^{*}-d+1\right)^{a}-\left(n^{*}-d\right)^{a}\right) .
\end{aligned}
$$

This implies that,

$$
\left(\left\lceil\frac{d}{2}\right\rceil+1\right)^{b}+\left\lceil\frac{d}{2}\right\rceil^{b}\left(r^{a}-(r-1)^{a}\right)>\left(\left\lceil\frac{d}{2}\right\rceil+1\right)^{b}+\left\lceil\frac{d}{2}\right\rceil^{b}\left(\left(n^{*}-d+1\right)^{a}-\left(n^{*}-d\right)^{a}\right)
$$

and hence

$$
r^{a}-(r-1)^{a}>\left(n^{*}-d+1\right)^{a}-\left(n^{*}-d\right)^{a}
$$

which is a contradiction, since $2 \leq r \leq n^{*}-d+1$ and $a \geq 1$ (see Lemma 1.1). Thus $T_{\max }$ is $V_{n, d}$. By simple calculation, we have

$$
D E I_{a, b}\left(V_{n, d}\right)=2^{a+1} \sum_{r=\frac{d+2}{2}}^{d-1} r^{b}+(n-d+1)^{a}\left(\frac{d}{2}\right)^{b}+(n-d-1)\left(\frac{d+2}{2}\right)^{b}+2 d^{b},
$$

for even $d$, and

$$
D E I_{a, b}\left(V_{n, d}\right)=2^{a+1} \sum_{r=\frac{d+3}{2}}^{d-1} r^{b}+\left((n-d+1)^{a}+2^{a}\right)\left(\frac{d+1}{2}\right)^{b}+(n-d-1)\left(\frac{d+3}{2}\right)^{b}+2 d^{b}
$$

for odd $d$.
Theorem 2.2. Let $T \in \mathfrak{T}_{n, d}$. Then for $0<a \leq 1$ and $b>0$, we have

$$
D E I_{a, b}(T) \geq 2^{a+1} \sum_{r=\frac{d+2}{2}}^{d-1} r^{b}+(n-d+1)^{a}\left(\frac{d}{2}\right)^{b}+(n-d-1)\left(\frac{d+2}{2}\right)^{b}+2 d^{b}
$$

if $d$ is even,

$$
D E I_{a, b}(T) \geq 2^{a+1} \sum_{r=\frac{d+3}{2}}^{d-1} r^{b}+\left((n-d+1)^{a}+2^{a}\right)\left(\frac{d+1}{2}\right)^{b}+(n-d-1)\left(\frac{d+3}{2}\right)^{b}+2 d^{b}
$$

if $d$ is odd, with equalities if and only if $T$ is $V_{n, d}$.
Proof. We present those parts of the proof of Theorem 2.2 which are different from the proof of Theorem 2.1. Let $T_{\min }$ be a tree with minimum $D E I_{a, b}$ index in the class $\mathfrak{T}_{n, d}$. We show that $T_{\min }$ is $V_{n, d}$. Assume to the contrary that there exists a tree $G_{n, d}^{\prime}$ of order $n$ and diameter $d$ with $D E I_{a, b}\left(G_{n, d}^{\prime}\right)>D E I_{a, b}\left(V_{n, d}\right)$ for some $n$ and $d$. Let $G_{n^{*}, d}^{\prime}$ be a tree having the minimum possible number of vertices $n^{*}$ satisfying $D E I_{a, b}\left(G_{n^{*}, d}^{\prime}\right)<D E I_{a, b}\left(V_{n^{*}, d}\right)$. Since $e c_{G_{n^{*}, d}^{\prime}}(v) \geq\left\lceil\frac{d}{2}\right\rceil+1$ and $e c_{G_{n^{*}-1, d}^{\prime}}(u)=e c_{G_{n^{*}, d}^{\prime}}(u) \geq\left\lceil\frac{d}{2}\right\rceil$, we have $e c_{G_{n^{*}, d}^{\prime}}^{b}(v) \geq\left(\left\lceil\frac{d}{2}\right\rceil+1\right)^{b}$, $e c_{G_{n^{*}-1, d}^{\prime}}^{b}(u)=e c_{G_{n^{*}, d}^{\prime}}^{b}(u) \geq\left\lceil\frac{d}{2}\right\rceil^{b}$ for $b>0$. Thus

$$
\begin{aligned}
D E I_{a, b}\left(G_{n^{*}, d}^{\prime}\right)-D E I_{a, b}\left(G_{n^{*}-1, d}^{\prime}\right)= & d_{G_{n^{*}, d}}^{a}(v) e c_{G_{n^{*}, d}}^{b}(v)+d_{G_{n^{*}, d}}^{a}(u) e c_{G_{n^{*}, d}}^{b}(u) \\
& -d_{G_{n^{*}-1, d}}^{\prime}(u) e c_{G_{n^{*}-1, d}}^{b}(u) \\
= & e c_{G_{n^{*}, d}^{\prime}}^{b}(v)+r^{a} e c_{G_{n^{*}, d}^{\prime}}^{b}(u)-(r-1)^{a} e c_{G_{n^{*}, d}^{\prime}}^{b}(u) \\
\geq & \left(\left\lceil\frac{d}{2}\right\rceil+1\right)^{b}+\left\lceil\frac{d}{2}\right\rceil^{b}\left(r^{a}-(r-1)^{a}\right) .
\end{aligned}
$$

Since $G_{n^{*}, d}^{\prime}$ is a tree with the smallest possible order $n^{*}$ such that $D E I_{a, b}\left(G_{n^{*}, d}^{\prime}\right)<D E I_{a, b}\left(V_{n^{*}, d}\right)$, we obtain $D E I_{a, b}\left(G_{n^{*}-1, d}^{\prime}\right) \geq D E I_{a, b}\left(V_{n^{*}-1, d}\right)$ which implies that

$$
\begin{aligned}
D E I_{a, b}\left(G_{n^{*}, d}^{\prime}\right)-D E I_{a, b}\left(G_{n^{*}-1, d}^{\prime}\right) & <D E I_{a, b}\left(V_{n^{*}, d}\right)-D E I_{a, b}\left(V_{n^{*}-1, d}\right) \\
& =\left(\left\lceil\frac{d}{2}\right\rceil+1\right)^{b}+\left\lceil\frac{d}{2}\right\rceil^{b}\left(\left(n^{*}-d+1\right)^{a}-\left(n^{*}-d\right)^{a}\right)
\end{aligned}
$$

This implies that,

$$
\left(\left\lceil\frac{d}{2}\right\rceil+1\right)^{b}+\left\lceil\frac{d}{2}\right\rceil^{b}\left(r^{a}-(r-1)^{a}\right)<\left(\left\lceil\frac{d}{2}\right\rceil+1\right)^{b}+\left\lceil\frac{d}{2}\right\rceil^{b}\left(\left(n^{*}-d+1\right)^{a}-\left(n^{*}-d\right)^{a}\right)
$$

and hence

$$
r^{a}-(r-1)^{a}<\left(n^{*}-d+1\right)^{a}-\left(n^{*}-d\right)^{a}
$$

which is a contradiction, since $2 \leq r \leq n^{*}-d+1$ and $0<a \leq 1$ (see Lemma 1.1). Thus $T_{\text {min }}$ is $V_{n, d}$.

For a positive integer $d$, the tree obtained by attaching $n-d-1$ vertices to vertex $x_{1}$ from a path $P_{d+1}: x_{0} x_{1} x_{2} \ldots x_{d}$ is denoted by $B_{n, d}$. We prove that $B_{n, d}$ is the unique tree having the maximum and the minimum $D E I_{a, b}$ index in the class $\mathfrak{T}_{n, d}$ for $a>1, b>0$, and $0<a<1$, $b<0$ respectively.

Theorem 2.3. Let $T \in \mathfrak{T}_{n, d}$. Then for $a>1$ and $b>0$, we have

$$
D E I_{a, b}(T) \leq 2^{a+1} \sum_{r=\frac{d+2}{2}}^{d-2} r^{b}+\left((n-d+1)^{a}+2^{a}\right)(d-1)^{b}+(n-d+1) d^{b}+2^{a}\left(\frac{d}{2}\right)^{b}
$$

if $d$ is even,

$$
D E I_{a, b}(T) \leq 2^{a+1} \sum_{r=\frac{d+1}{2}}^{d-2} r^{b}+\left((n-d+1)^{a}+2^{a}\right)(d-1)^{b}+(n-d+1) d^{b}
$$

if $d$ is odd, with equalities if and only if $T$ is $B_{n, d}$.
Proof. Let $T_{\max }$ be a tree with maximum $D E I_{a, b}$ index in the class $\mathfrak{T}_{n, d}$. We show by contradiction that $T_{\max }$ is $B_{n, d}$.

Suppose that $T_{\max }$ is not $B_{n, d}$. Let $P: x_{0} x_{1} x_{2} \ldots x_{d}$ be a path whose length is the diameter of $T_{\text {max }}$. Without any loss of generality, we assume that $d_{T_{\max }}\left(x_{1}\right) \geq d_{T_{\max }}\left(x_{d-1}\right)$.

Since $T_{\max }$ is not a path graph, there is a non-pendant vertex $v \notin P$ whose all neighbors except for one are pendant vertices or a non pendant vertex $v \in P \backslash\left\{x_{1}\right\}$ whose all $r \geq 1$ neighbors which are not in $P$ are pendant vertices. We denote those pendant vertices by $v_{1}, v_{2}, \ldots, v_{r}$, where $r \geq 1$. It follows that $d_{T_{\max }}(v)=r+\epsilon$ where $\epsilon=1$ or 2 .

Let $T^{\prime}$ be a tree defined by, $T^{\prime}=T_{\max }-\left\{v v_{1}, v v_{2}, \ldots, v v_{r}\right\}+\left\{x_{1} v_{1}, x_{1} v_{2}, \ldots, x_{1} v_{r}\right\}$. Then $T^{\prime} \in \mathfrak{T}_{n, d}$. We have $d_{T_{\max }}\left(x_{1}\right)=s \geq 2$. Then $d_{T^{\prime}}\left(x_{1}\right)=s+r$ and $d_{T^{\prime}}(v)=\epsilon$. We obtain $e c_{T_{\max }}\left(x_{1}\right)=e c_{T^{\prime}}\left(x_{1}\right)=d-1, e c_{T_{\max }}(v)=e c_{T^{\prime}}(v) \leq d-1, e c_{T_{\max }}\left(v_{i}\right) \leq d$ and $e c_{T^{\prime}}\left(v_{i}\right)=d$, for $i=1,2, \ldots, r$. This implies that, $e c_{T_{\max }}^{b}(v)=e c_{T^{\prime}}^{b}(v) \leq(d-1)^{b}, e c_{T_{\max }}^{b}\left(v_{i}\right) \leq e c_{T^{\prime}}^{b}\left(v_{i}\right)=d^{b}$ for $b>0$ and for $i=1,2, \ldots, r$.

For all $y \in V\left(T_{\max }\right) \backslash\left\{x_{1}, v\right\}, d_{T_{\max }}(y)=d_{T^{\prime}}(y)$ and for $y \in V\left(T_{\max }\right) \backslash\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$, $e c_{T_{\max }}(y)=e c_{T^{\prime}}(y)$ and hence $e c_{T_{\max }}^{b}(y)=e c_{T^{\prime}}^{b}(y)$. Thus

$$
\begin{align*}
D E I_{a, b}\left(T_{\max }\right)-D E I_{a, b}\left(T^{\prime}\right)= & \sum_{i=1}^{r} d_{T^{\prime}}^{a}\left(v_{i}\right)\left(e c_{T_{\max }}^{b}\left(v_{i}\right)-e c_{T^{\prime}}^{b}\left(v_{i}\right)\right) \\
& +d_{T_{\max }}^{a}\left(x_{1}\right) e c_{T_{\max }}^{b}\left(x_{1}\right)+d_{T^{\prime}}^{a}\left(x_{1}\right) e c_{T^{\prime}}^{b}\left(x_{1}\right) \\
& +d_{T_{\max }}^{a}(v) e c_{T_{\max }}^{b}(v)-d_{T^{\prime}}^{a}(v) e c_{T^{\prime}}^{b}(v) \\
= & r\left[e c_{T_{\max }}^{b}\left(v_{1}\right)-d^{b}\right]+(d-1)^{b}\left[s^{a}-(s+r)^{a}\right] \\
& +e c_{T^{\prime}}^{b}(v)\left[(r+\epsilon)^{a}-\epsilon^{a}\right] \\
\leq & r\left[e c_{T_{\max }}^{b}\left(v_{1}\right)-d^{b}\right]+(d-1)^{b}\left[s^{a}-(s+r)^{a}\right] \\
& +(d-1)^{b}\left[(r+\epsilon)^{a}-\epsilon^{a}\right] \\
\leq & (d-1)^{b}\left[s^{a}-(s+r)^{a}+(r+\epsilon)^{a}-\epsilon^{a}\right] . \tag{1}
\end{align*}
$$

If $s>2$ and $a>1$, then by Lemma 1.1,

$$
s^{a}-(s+r)^{a}+(r+\epsilon)^{a}-\epsilon^{a}<0
$$

which implies that $D E I_{a, b}\left(T_{\max }\right)<D E I_{a, b}\left(T^{\prime}\right)$.
If $s=2$ and $a>1$, then by Lemma 1.1,

$$
s^{a}-(s+r)^{a}+(r+\epsilon)^{a}-\epsilon^{a} \leq 0
$$

with equality if and only if $\epsilon=2$, which means that $v \in P$. Then the equality in (1) hold only if $e c_{T^{\prime}}(v)=d-1$, that is $v=x_{d-1}$. But by our assumption $d_{T_{\max }}\left(x_{d-1}\right)=2$, that is there is no pendant vertex outside the path adjacent to $x_{d-1}$. Therefore, we get $D E I_{a, b}\left(T_{\text {max }}\right)<$ $D E I_{a, b}\left(T^{\prime}\right)$, which is a contradiction. Thus $T_{\max }$ is $B_{n, d}$. We have

$$
D E I_{a, b}\left(B_{n, d}\right)=2^{a+1} \sum_{r=\frac{d+2}{2}}^{d-2} r^{b}+\left((n-d+1)^{a}+2^{a}\right)(d-1)^{b}+(n-d+1) d^{b}+2^{a}\left(\frac{d}{2}\right)^{b},
$$

for even $d$, and

$$
D E I_{a, b}\left(B_{n, d}\right)=2^{a+1} \sum_{r=\frac{d+1}{2}}^{d-2} r^{b}+\left((n-d+1)^{a}+2^{a}\right)(d-1)^{b}+(n-d+1) d^{b}
$$

for odd $d$.
Theorem 2.4. Let $T \in \mathfrak{T}_{n, d}$. Then for $0<a<1$ and $b<0$, we have

$$
D E I_{a, b}(T) \geq 2^{a+1} \sum_{r=\frac{d+2}{2}}^{d-2} r^{b}+\left((n-d+1)^{a}+2^{a}\right)(d-1)^{b}+(n-d+1) d^{b}+2^{a}\left(\frac{d}{2}\right)^{b}
$$

if $d$ is even,

$$
D E I_{a, b}(T) \geq 2^{a+1} \sum_{r=\frac{d+1}{2}}^{d-2} r^{b}+\left((n-d+1)^{a}+2^{a}\right)(d-1)^{b}+(n-d+1) d^{b}
$$

if $d$ is odd, with equalities if and only if $T$ is $B_{n, d}$.

Proof. We present those parts of the proof of Theorem 2.4 which are different from the proof of Theorem 2.3.

Let $T_{\text {min }}$ be a tree with minimum $D E I_{a, b}$ index in the class $\mathfrak{T}_{n, d}$. We show that $T_{\min }$ is $B_{n, d}$. Assume to the contrary that $T_{\min }$ is not $B_{n, d}$.

Since $e c_{T_{\text {min }}}(v)=e c_{T^{\prime}}(v) \leq d-1$, and $e c_{T_{\text {min }}}\left(v_{i}\right) \leq e c_{T^{\prime}}\left(v_{i}\right)=d$, we obtain $e c_{T_{\text {min }}}^{b}(v)=$ $e c_{T^{\prime}}^{b}(v) \geq(d-1)^{b}$, and $e c_{T_{\text {min }}}^{b}\left(v_{i}\right) \geq e c_{T^{\prime}}^{b}\left(v_{i}\right)=d^{b}$ for $b<0$ and for $i=1,2, \ldots, r$. Hence

$$
\begin{align*}
\operatorname{DEI}_{a, b}\left(T_{\min }\right)-D E I_{a, b}\left(T^{\prime}\right) \geq & r\left[e c_{T_{\min }}^{b}\left(v_{1}\right)-d^{b}\right] \\
& +(d-1)^{b}\left[s^{a}-(s+r)^{a}\right]+(d-1)^{b}\left[(r+\epsilon)^{a}-\epsilon^{a}\right] \\
\geq & (d-1)^{b}\left[s^{a}-(s+r)^{a}+(r+\epsilon)^{a}-\epsilon^{a}\right] . \tag{2}
\end{align*}
$$

If $s>2$ and $0<a<1$, then by Lemma 1.1,

$$
s^{a}-(s+r)^{a}+(r+\epsilon)^{a}-\epsilon^{a}>0
$$

which implies that $D E I_{a, b}\left(T_{\text {min }}\right)>D E I_{a, b}\left(T^{\prime}\right)$, which is a contradiction.
If $s=2$ and $0<a<1$, then by Lemma 1.1,

$$
\left(s^{a}-(s+r)^{a}+(r+\epsilon)^{a}-\epsilon^{a} \geq 0\right.
$$

with equality if and only if $\epsilon=2$, which means that $v \in P$. Then the equality in (2) hold only if $e c_{T^{\prime}}(v)=d-1$, that is $v=x_{d-1}$. But by our assumption $d_{T_{\text {min }}}\left(x_{d-1}\right)=2$, that is there is no pendant vertex outside the path adjacent to $x_{d-1}$. Therefore we get $D E I_{a, b}\left(T_{\text {min }}\right)>$ $D E I_{a, b}\left(T^{\prime}\right)$, which is a contradiction. So $T_{\min }$ is $B_{n, d}$.

## 3 Trees of given order and number of pendant vertices

In this section, we characterize trees of prescribed order $n$ and number of pendant vertices $p$ having the maximum and the minimum $D E I_{a, b}$ index.

Let $\mathbb{T}_{n, p}$ be the set of all $n$-vertex trees with $p$ pendant vertices. Clearly, $\mathbb{T}_{n, 2}=\left\{P_{n}\right\}$ and $\mathbb{T}_{n, n-1}=\left\{S_{n}\right\}$. So in what follows, we consider $\mathbb{T}_{n, p}$ for $3 \leq p \leq n-2$.

Let $X_{n, p}$ be a tree that consists of $p$ paths attached to one vertex, such that the lengths of any two paths differ by at most one. We prove that $X_{n, p}$ is the only tree in the class $\mathbb{T}_{n, p}$ that has the maximum $D E I_{a, b}$ index for $a>1$ and $b<0$, and the minimum $D E I_{a, b}$ index for $0<a<1$ and $b>0$.

Theorem 3.1. Let $T \in \mathbb{T}_{n, p}$ and $k=\left\lfloor\frac{n-1}{p}\right\rfloor$. Then for $a>1$ and $b<0$, we have

$$
D E I_{a, b}(T) \leq p 2^{a} \sum_{r=k+1}^{2 k-1} r^{b}+k^{b} p^{a}+p(2 k)^{b},
$$

if $n \equiv 1(\bmod p)$,

$$
D E I_{a, b}(T) \leq p 2^{a} \sum_{r=k+2}^{2 k} r^{b}+\left(p^{a}+2^{a}\right)(k+1)^{b}+p(2 k+1)^{b}
$$

if $n \equiv 2(\bmod p)$, and
$D E I_{a, b}(T) \leq p 2^{a} \sum_{r=k+2}^{2 k} r^{b}+\left((2 k+2)^{b}+2^{a}(2 k+1)^{b}\right)(n-k p-1)+(k+1)^{b} p^{a}+(k p-n+p+1)$,
otherwise, with equalities if and only if $T$ is $X_{n, p}$.
Proof. Let $T_{\max }$ be a tree with maximum $D E I_{a, b}$ index in the class $\mathbb{T}_{n, p}$. We show by contradiction that $T_{\max }$ is $X_{n, p}$.

Let $P: x_{0} x_{1} x_{2} \ldots x_{d}$ be a diametral path in $T_{\max }$ and $v$ be a central vertex of $T_{\max }$ with a maximum degree. Clearly, $v=x_{\left\lfloor\frac{d}{2}\right\rfloor}$ or $x_{\left\lceil\frac{d}{2}\right\rceil}$ and hence $e c_{T_{\max }}(v)=\left\lceil\frac{d}{2}\right\rceil$. Let $d_{T_{\max }}(v)=s \geq 2$.

Claim 3.2. $d_{T_{\max }}(u) \leq 2$, for all $u \in V\left(T_{\max }\right) \backslash\{v\}$.
Suppose to the contrary that there exists a vertex $u \in V\left(T_{\max }\right) \backslash\{v\}$ such that $d_{T_{\max }}(u)=$ $r \geq 3$. Let $u_{1}, u_{2}, \ldots, u_{r-2}$ be the neighbors of $u$ not in $P$ and not on the $(u, v)$-path.
Let $T^{\prime}=T_{\max }-\left\{u u_{1}, u u_{2}, \ldots, u u_{r-2}\right\}+\left\{v u_{1}, v u_{2}, \ldots, v u_{r-2}\right\}$. So, $T^{\prime} \in \mathbb{T}_{n, p}$. We have $d_{T^{\prime}}(v)=s+r-2, d_{T^{\prime}}(u)=2$ and $d_{T_{\max }}(y)=d_{T^{\prime}}(y)$ for all $y \in V\left(T^{\prime}\right) \backslash\{v, u\}$.
For each $i=1,2, \ldots, r-2$, there is no path in $T_{\max }$ with the first vertex $u$ and the second vertex $u_{i}$ which is longer than $\left\lceil\frac{d}{2}\right\rceil$. Since $e c_{T_{\max }}(y)=d_{T_{\max }}\left(y, x_{0}\right)$ or $e c_{T_{\max }}(y)=d_{T_{\max }}\left(y, x_{d}\right)$ for all $y \in V\left(T_{\max }\right)$, we have $e c_{T^{\prime}}(y) \leq e c_{T_{\max }}(y)$ and hence $e c_{T^{\prime}}^{b}(y) \geq e c_{T_{\max }}^{b}(y)$ for $b<0$. Then

$$
\begin{aligned}
D E I_{a, b}\left(T_{\text {max }}\right)-D E I_{a, b}\left(T^{\prime}\right) \leq & d_{T_{\text {max }}}^{a}(v) e c_{T_{\max }}^{b}(v)-d_{T^{\prime}}^{a}(v) e c_{T^{\prime}}^{b}(v) \\
& +d_{T_{\text {max }}}^{a}(u) e c_{T_{\text {max }}}^{b}(u)-d_{T^{\prime}}^{a}(u) e c_{T^{\prime}}^{b}(u) \\
\leq & e c_{T_{\text {max }}}^{b}(v)\left[d_{T_{\text {max }}}^{a}(v)-d_{T^{\prime}}^{a}(v)\right]+e c_{T_{\text {max }}}^{b}(u)\left[d_{T_{\text {max }}}^{a}(u)-d_{T^{\prime}}^{a}(u)\right] \\
= & e c_{T_{\text {max }}}^{b}(v)\left[s^{a}-(s+r-2)^{a}\right]+e c_{T_{\text {max }}}^{b}(u)\left[r^{a}-2^{a}\right] \\
\leq & e c_{T_{\text {max }}}^{b}(v)\left[s^{a}-(s+r-2)^{a}\right]+e c_{T_{\text {max }}}^{b}(v)\left[r^{a}-2^{a}\right] \\
= & e c_{T_{\text {max }}}^{b}(v)\left[s^{a}-(s+r-2)^{a}+r^{a}-2^{a}\right] .
\end{aligned}
$$

If $s \geq 3$ and $a>1$, then by Lemma 1.1,

$$
s^{a}-(s+r-2)^{a}+r^{a}-2^{a}<0,
$$

which gives $D E I_{a, b}\left(T_{\max }\right)<D E I_{a, b}\left(T^{\prime}\right)$, which is a contradiction.
Let $s=2$. In this case, $u$ is not a central vertex as $v$ is a central vertex with maximum degree and $d_{T_{\max }}(v)=2$, so $e c_{T_{\max }}(u)>e c_{T_{\max }}(v)$. This implies that $e c_{T_{\max }}^{b}(u)<e c_{T_{\max }}^{b}(v)$ for $b<0$. Hence

$$
\begin{aligned}
D E I_{a, b}\left(T_{\max }\right)-D E I_{a, b}\left(T^{\prime}\right) & \leq e c_{T_{\max }}^{b}(v)\left[s^{a}-(s+r-2)^{a}\right]+e c_{T_{\max }}^{b}(u)\left[r^{a}-2^{a}\right] \\
& <e c_{T_{\max }}^{b}(v)\left[s^{a}-(s+r-2)^{a}\right]+e c_{T_{\max }}^{b}(v)\left[r^{a}-2^{a}\right] \\
& =e c_{T_{\max }}^{b}(v)\left[s^{a}-(s+r-2)^{a}+r^{a}-2^{a}\right] \\
& =e c_{T_{\max }}^{b}(v)\left[2^{a}-r^{a}+r^{a}-2^{a}\right] \\
& =0,
\end{aligned}
$$

which gives $D E I_{a, b}\left(T_{\max }\right)<D E I_{a, b}\left(T^{\prime}\right)$, which is a contradiction.
Therefore, $T_{\max }$ has only one vertex of degree at least three, which is $v$. This implies that $T_{\max }$ consists of $p$ pendant paths attached to $v$. Since $v$ is a central vertex of $T_{\max }$, there are two longest pendant paths attached to $v$ whose lengths differ by at most 1 . Let those two paths be $Q: v v_{1} v_{2} \ldots v_{t}$ and $Q^{\prime}: v v_{1}^{\prime} v_{2}^{\prime} \ldots v_{t-\epsilon}^{\prime}$, where $\epsilon=0$ or 1 .

Claim 3.3. Any two pendant paths attached to $v$ have lengths that differ by at most one.

We prove the claim by contradiction. Suppose that there are two pendant paths, whose lengths differ by at least 2. It means that there is a path $v v_{1}^{\prime \prime} v_{2}^{\prime \prime} \ldots v_{q}^{\prime \prime}$ in $T_{\text {max }}$, such that $1 \leq q \leq t-2$ and $d_{T_{\max }}\left(v_{q}^{\prime \prime}\right)=1$.

Let $T^{\prime}=T_{\max }-\left\{v_{q-1}^{\prime \prime} v_{q}^{\prime \prime}, v_{t-2} v_{t-1}, v_{t-1} v_{t}\right\}+\left\{v_{t-1} v_{q-1}^{\prime \prime}, v_{t-1} v_{q}^{\prime \prime}, v_{t-2} v_{t}\right\}$. Then $T_{\max } \in \mathbb{T}_{n, p}$. Note that if $q=1$, then $v_{q-1}^{\prime \prime}=v$. We have $d_{T_{\max }}\left(v_{q}^{\prime \prime}\right)=d_{T^{\prime}}\left(v_{q}^{\prime \prime}\right)=d_{T_{\max }}\left(v_{t}\right)=d_{T^{\prime}}\left(v_{t}\right)=1$ and $d_{T_{\max }}\left(v_{t-1}\right)=d_{T^{\prime}}\left(v_{t-1}\right)=2$. Moreover, $d_{T_{\max }}(y)=d_{T^{\prime}}(y)$ for all $y \in V\left(T_{\max }\right)$. We also know that $e c_{T_{\max }}\left(v_{q}^{\prime \prime}\right)=q+t, e c_{T^{\prime}}\left(v_{q}^{\prime \prime}\right)=(q+1)+t-\epsilon, e c_{T_{\max }}\left(v_{t}\right)=2 t-\epsilon, e c_{T^{\prime}}\left(v_{t}\right)=e c_{T_{\max }}\left(v_{t-1}\right)=$ $2 t-\epsilon-1$, and $e c_{T^{\prime}}\left(v_{t-1}\right)=q+(t-\epsilon)$. Since $e c_{T^{\prime}}(y) \leq e c_{T_{\text {max }}}(y)$, we have $e c_{T^{\prime}}^{b}(y) \geq e c_{T_{\max }}^{b}(y)$ for $b<0$ and for all $y \in V\left(T_{\max }\right) \backslash\left\{v_{q}^{\prime \prime}\right\}$. Then

$$
\begin{aligned}
D E I_{a, b}\left(T_{\max }\right)-D E I_{a, b}\left(T^{\prime}\right) \leq & d_{T_{\max }}^{a}\left(v_{q}^{\prime \prime}\right) e c_{T_{\max }}^{b}\left(v_{q}^{\prime \prime}\right)-d_{T^{\prime}}^{a}\left(v_{q}^{\prime \prime}\right) e c_{T^{\prime}}^{b}\left(v_{q}^{\prime \prime}\right) \\
& +d_{T_{\max }}^{a}\left(v_{t}\right) e c_{T_{\max }}^{b}\left(v_{t}\right)-d_{T^{\prime}}^{a}\left(v_{t}\right) e c_{T^{\prime}}^{b}\left(v_{t}\right) \\
& +d_{T_{\max }}^{a}\left(v_{t-1}\right) e c_{T_{\max }}^{b}\left(v_{t-1}\right)-d_{T^{\prime}}^{a}\left(v_{t-1}\right) e c_{T^{\prime}}^{b}\left(v_{t-1}\right) \\
= & (q+t)^{b}-(q+t-\epsilon+1)^{b}+(2 t-\epsilon)^{b}-(2 t-\epsilon-1)^{b} \\
& +\left[(2 t-\epsilon-1)^{b}-(q+t-\epsilon)^{b}\right] 2^{a} .
\end{aligned}
$$

If $\epsilon=0$, then

$$
\begin{aligned}
D E I_{a, b}\left(T_{\text {max }}\right)-D E I_{a, b}\left(T^{\prime}\right) \leq & (q+t)^{b}-(q+t+1)^{b}+(2 t)^{b}-(2 t-1)^{b} \\
& +\left[(2 t-1)^{b}-(q+t)^{b}\right] 2^{a} \\
= & {\left[(q+t)^{b}-(2 t-1)^{b}\right]\left[1-2^{a}\right]+(2 t)^{b}-(q+t+1)^{b} } \\
< & {\left[(q+t)^{b}-(2 t-1)^{b}\right]\left[1-2^{a}\right] } \\
< & 0 .
\end{aligned}
$$

This implies that, $D E I_{a, b}\left(T_{\max }\right)<D E I_{a, b}\left(T^{\prime}\right)$, which is a contradiction.
If $\epsilon=1$, then

$$
\begin{aligned}
D E I_{a, b}\left(T_{\max }\right)-D E I_{a, b}\left(T^{\prime}\right) & \leq(2 t-1)^{b}-(2 t-2)^{b}+\left[(2 t-2)^{b}-(q+t-1)^{b}\right] 2^{a} \\
& <0 .
\end{aligned}
$$

This implies that, $D E I_{a, b}\left(T_{\max }\right)<D E I_{a, b}\left(T^{\prime}\right)$, which contradicts our assumption. Thus $T_{\max }$ is $X_{n, p}$. By simple calculation, we have

$$
D E I_{a, b}\left(X_{n, p}\right)=p 2^{a} \sum_{r=k+1}^{2 k-1} r^{b}+k^{b} p^{a}+p(2 k)^{b}
$$

if $n \equiv 1(\bmod p)$,

$$
D E I_{a, b}\left(X_{n, p}\right)=p 2^{a} \sum_{r=k+2}^{2 k} r^{b}+\left(p^{a}+2^{a}\right)(k+1)^{b}+p(2 k+1)^{b},
$$

if $n \equiv 2(\bmod p)$, and

$$
D E I_{a, b}\left(X_{n, p}\right)=p 2^{a} \sum_{r=k+2}^{2 k} r^{b}+\left((2 k+2)^{b}+2^{a}(2 k+1)^{b}\right)(n-k p-1)+(k+1)^{b} p^{a}+(k p-n+p+1),
$$

otherwise.

Theorem 3.4. Let $T \in \mathbb{T}_{n, p}$ and $k=\left\lfloor\frac{n-1}{p}\right\rfloor$. Then for $0<a<1$ and $b>0$ we have

$$
D E I_{a, b}(T) \geq p 2^{a} \sum_{r=k+1}^{2 k-1} r^{b}+k^{b} p^{a}+p(2 k)^{b}
$$

if $n \equiv 1(\bmod p)$,

$$
D E I_{a, b}(T) \geq p 2^{a} \sum_{r=k+2}^{2 k} r^{b}+\left(p^{a}+2^{a}\right)(k+1)^{b}+p(2 k+1)^{b},
$$

if $n \equiv 2(\bmod p)$,
$D E I_{a, b}(T) \leq p 2^{a} \sum_{r=k+2}^{2 k} r^{b}+\left((2 k+2)^{b}+2^{a}(2 k+1)^{b}\right)(n-k p-1)+(k+1)^{b} p^{a}+(k p-n+p+1)$, otherwise, with equalities if and only if $T$ is $X_{n, p}$.
Proof. We present those parts of the proof of Theorem 3.4 which are different from the proof of Theorem 3.1. Let $T_{\text {min }}$ be a tree with minimum $D E I_{a, b}$ index in the class $\mathbb{T}_{n, p}$. We show by contradiction that $T_{\min }$ is $X_{n, p}$.
Claim 3.5. $d_{T_{\text {min }}}(u) \leq 2$, for all $u \in V\left(T_{\min }\right) \backslash\{v\}$.
Since $e c_{T^{\prime}}(y) \leq e c_{T_{m i n}}(y)$, we obtain $e c_{T^{\prime}}^{b}(y) \leq e c_{T_{m i n}}^{b}(y)$ for $b>0$ and for all $y \in V\left(T_{\text {min }}\right)$. It follows that

$$
\begin{aligned}
D E I_{a, b}\left(T_{\text {min }}\right)-D E I_{a, b}\left(T^{\prime}\right) \geq & d_{T_{\text {min }}}^{a}(v) e c_{T_{\text {min }}}^{b}(v)-d_{T^{\prime}}^{a}(v) e c_{T^{\prime}}^{b}(v) \\
& +d_{T_{\text {min }}}^{a}(u) e c_{T_{\text {min }}}^{b}(u) d_{T^{\prime}}^{a}(u) e c_{T^{\prime}}^{b}(u) \\
\geq & e c_{T_{\text {min }}}^{b}(v)\left[d_{T_{\text {min }}}^{a}(v)-d_{T^{\prime}}^{a}(v)\right]+e c_{T_{\text {min }}}^{b}(u)\left[d_{T_{\text {min }}}^{a}(u)-d_{T^{\prime}}^{a}(u)\right] \\
= & e c_{T_{\text {min }}}^{b}(v)\left[s^{a}-(s+r-2)^{a}\right]+e c_{T_{\text {min }}}^{b}(u)\left[r^{a}-2^{a}\right] \\
\geq & e c_{T_{\text {min }}}^{b}(v)\left[s^{a}-(s+r-2)^{a}\right]+e c_{T_{\text {min }}}^{b}(v)\left[r^{a}-2^{a}\right] \\
= & e c_{T_{\text {min }}}^{b}(v)\left[s^{a}-(s+r-2)^{a}+r^{a}-2^{a}\right] .
\end{aligned}
$$

If $s \geq 3$ and $0<a<1$, then by Lemma 1.1,

$$
s^{a}-(s+r-2)^{a}+r^{a}-2^{a}>0
$$

which gives $D E I_{a, b}\left(T_{\min }\right)>D E I_{a, b}\left(T^{\prime}\right)$, which is a contradiction.
Let $s=2$. In this case, $u$ is not a central vertex as $v$ is a central vertex with maximum degree and $d_{T_{\text {min }}}(v)=2$, so $e c_{T_{\text {min }}}(u)>e c_{T_{\text {min }}}(v)$. This implies that, $e c_{T_{\text {min }}}^{b}(u)>e c_{T_{m i n}}^{b}(v)$ for $b>0$. Hence

$$
\begin{aligned}
D E I_{a, b}\left(T_{\text {min }}\right)-D E I_{a, b}\left(T^{\prime}\right) & \geq e c_{T_{\text {min }}}^{b}(v)\left[s^{a}-(s+r-2)^{a}\right]+e c_{T_{\text {min }}}^{b}(u)\left[r^{a}-2^{a}\right] \\
& >e c_{T_{\text {min }}}^{b}(v)\left[s^{a}-(s+r-2)^{a}\right]+e c_{T_{\text {min }}}^{b}(v)\left[r^{a}-2^{a}\right] \\
& =e c_{T_{\text {min }}}^{b}(v)\left[s^{a}-(s+r-2)^{a}+r^{a}-2^{a}\right] \\
& =e c_{T_{\text {min }}}^{b}(v)\left[2^{a}-r^{a}+r^{a}-2^{a}\right] \\
& =0,
\end{aligned}
$$

which gives $D E I_{a, b}\left(T_{\min }\right)>D E I_{a, b}\left(T^{\prime}\right)$, which is a contradiction. Therefore $T_{\min }$ has only one vertex of degree at least three, which is $v$. This implies that $T_{\text {min }}$ consists of $p$ pendant paths attached to $v$.

Claim 3.6. Any two pendant paths attached to $v$ have lengths that differ by at most one.
Since $e c_{T^{\prime}}(y) \leq e c_{T_{\text {min }}}(y)$, we obtain $e c_{T^{\prime}}^{b}(y) \leq e c_{T_{\text {min }}}^{b}(y)$ for $b>0$ and for all $y \in V\left(T_{\min }\right) \backslash$ $\left\{v_{q}^{\prime \prime}\right\}$. Then

$$
\begin{aligned}
\operatorname{DEI}_{a, b}\left(T_{\min }\right)-D E I_{a, b}\left(T^{\prime}\right) \geq & d_{T_{\text {min }}}^{a}\left(v_{q}^{\prime \prime}\right) e c_{T_{\min }}^{b}\left(v_{q}^{\prime \prime}\right)-d_{T^{\prime}}^{a}\left(v_{q}^{\prime \prime}\right) e c_{T^{\prime}}^{b}\left(v_{q}^{\prime \prime}\right) \\
& +d_{T_{\text {min }}}^{a}\left(v_{t}\right) e c_{T_{\min }}^{b}\left(v_{t}\right)-d_{T^{\prime}}^{a}\left(v_{t}\right) e c_{T^{\prime}}^{b}\left(v_{t}\right) \\
& +d_{T_{\text {min }}}^{a}\left(v_{t-1}\right) e c_{T_{\text {min }}}^{b}\left(v_{t-1}\right)-d_{T^{\prime}}^{a}\left(v_{t-1}\right) e c_{T^{\prime}}^{b}\left(v_{t-1}\right) \\
= & (q+t)^{b}-(q+t-\epsilon+1)^{b}+(2 t-\epsilon)^{b}-(2 t-\epsilon-1)^{b} \\
& +\left[(2 t-\epsilon-1)^{b}-(q+t-\epsilon)^{b}\right] 2^{a} .
\end{aligned}
$$

If $\epsilon=0$, then

$$
\begin{aligned}
D E I_{a, b}\left(T_{\text {min }}\right)-D E I_{a, b}\left(T^{\prime}\right) \geq & (q+t)^{b}-(q+t+1)^{b}+(2 t)^{b}-(2 t-1)^{b} \\
& +\left[(2 t-1)^{b}-(q+t)^{b}\right] 2^{a} \\
= & {\left[(q+t)^{b}-(2 t-1)^{b}\right]\left[1-2^{a}\right]+(2 t)^{b}-(q+t+1)^{b} } \\
> & {\left[(q+t)^{b}-(2 t-1)^{b}\right]\left[1-2^{a}\right] } \\
> & 0 .
\end{aligned}
$$

This implies that, $D E I_{a, b}\left(T_{\min }\right)>D E I_{a, b}\left(T^{\prime}\right)$, which contradicts our assumption. If $\epsilon=1$, then

$$
\begin{aligned}
D E I_{a, b}\left(T_{\min }\right)-D E I_{a, b}\left(T^{\prime}\right) & \geq(2 t-1)^{b}-(2 t-2)^{b}+\left[(2 t-2)^{b}-(q+t-1)^{b}\right] 2^{a} \\
& >0 .
\end{aligned}
$$

This implies that, $D E I_{a, b}\left(T_{\min }\right)>D E I_{a, b}\left(T^{\prime}\right)$, which is in contradiction with our assumption. Thus $T_{\text {min }}$ is $X_{n, p}$.

For each $3 \leq p \leq n-2$, let $Y_{n, p}$ be a tree obtained from a path $Q_{n-p+2}: x_{0} x_{1} x_{2} \ldots x_{n-p+1}$ by attaching $p-2$ pendant vertices to vertex $x_{1}$.

We show that $D E I_{a, b}(T) \leq D E I_{a, b}\left(Y_{n, p}\right)$ for $a>1$ and $b>0$, and $D E I_{a, b}(T) \geq D E I_{a, b}\left(Y_{n, p}\right)$ for $0<a<1$ and $b<0$ for every tree in the class $\mathbb{T}_{n, p}$.
Theorem 3.7. Let $T \in \mathbb{T}_{n, p}$. Then for $a>1$ and $b>0$, we have

$$
D E I_{a, b}(T) \leq 2^{a+1} \sum_{r=\frac{n-p+2}{2}}^{n-p-1} r^{b}+\left(p^{a}+2^{a}\right)(n-p)^{b}+p(n-p+1)^{b},
$$

if $n-p$ is even,

$$
D E I_{a, b}(T) \leq 2^{a+1} \sum_{r=\frac{n-p+3}{2}}^{n-p-1} r^{b}+2^{a}\left(\frac{n-p+1}{2}\right)^{b}+\left(p^{a}+2^{a}\right)(n-p)^{b}+p(n-p+1)^{b},
$$

if $n-p$ is odd, with equalities if and only if $T$ is $Y_{n, p}$.
Proof. Let $T_{\max }$ be a tree with maximum $D E I_{a, b}$ index in the class $\mathbb{T}_{n, p}$. We show that $T_{\max }$ is $Y_{n, p}$.

Assume to the contrary that $T_{\max }$ is not $Y_{n, p}$. Let $P: x_{0} x_{1} x_{2} \ldots x_{d}$ be a longest path in $T_{\text {max }}$. Without any loss of generality, we assume that $d_{T_{\max }}\left(x_{1}\right) \geq d_{T_{\max }}\left(x_{d-1}\right)$. Since $T_{\max }$ is
not $Y_{n, p}$, we have $d_{T_{\max }}(v)=r \geq 3$ for some $v \in\left\{x_{2}, x_{3}, \ldots, x_{d-1}\right\}$. Let $v_{1}, v_{2}, \ldots, v_{r-2}$ be the neighbors of $v$ outside $P$.

Let $T^{\prime}=T_{\max }-\left\{v v_{1}, v v_{2}, \ldots, v v_{r-2}\right\}+\left\{x_{1} v_{1}, x_{1} v_{2}, \ldots, x_{1} v_{r-2}\right\}$. We have $d_{T_{\max }}\left(x_{1}\right)=s \geq$ 2. Then $d_{T^{\prime}}\left(x_{1}\right)=s+r-2, d_{T^{\prime}}(v)=2$ and $d_{T_{\max }}(y)=d_{T^{\prime}}(y)$ for all $y \in V\left(T_{\max }\right) \backslash\left\{x_{1}, v\right\}$. We have $e c_{T_{\max }}(y) \leq e c_{T^{\prime}}(y)$ for all $y \in V\left(T_{\max }\right)$. This implies that, $e c_{T_{\max }}^{b}(y) \leq e c_{T^{\prime}}^{b}(y)$ for $b>0$ and for all $y \in V\left(T_{\text {max }}\right)$. Thus

$$
\begin{aligned}
D E I_{a, b}\left(T_{\max }\right)-D E I_{a, b}\left(T^{\prime}\right) \leq & e c_{T_{\max }}^{b}\left(x_{1}\right) d_{T_{\text {max }}}^{a}\left(x_{1}\right)-e c_{T^{\prime}}^{b}\left(x_{1}\right) d_{T^{\prime}}^{a}\left(x_{1}\right) \\
& +e c_{T_{\max }}^{b}(v) d_{T_{\text {max }}}^{a}(v)-e c_{T^{\prime}}^{b}(v) d_{T^{\prime}}^{a}(v) \\
\leq & e c_{T_{\max }}^{b}\left(x_{1}\right)\left[d_{T_{\text {max }}}^{a}\left(x_{1}\right)-d_{T^{\prime}}^{a}\left(x_{1}\right)\right]+e c_{T_{\max }}^{b}(v)\left[d_{T_{\text {max }}}^{a}(v)-d_{T^{\prime}}^{a}(v)\right] \\
= & e c_{T_{\max }}^{b}\left(x_{1}\right)\left[s^{a}-(s+r-2)^{a}\right]+e c_{T_{\text {max }}}^{b}(v)\left[r^{a}-2^{a}\right] \\
\leq & e c_{T_{\text {max }}}^{b}\left(x_{1}\right)\left[s^{a}-(s+r-2)^{a}\right]+e c_{T_{\text {max }}}^{b}\left(x_{1}\right)\left[r^{a}-2^{a}\right] \\
= & e c_{T_{\text {max }}}^{b}\left(x_{1}\right)\left[s^{a}-(s+r-2)^{a}+r^{a}-2^{a}\right] .
\end{aligned}
$$

If $s \geq 3$ and $a>1$, then by Lemma 1.1,

$$
s^{a}-(s+r-2)^{a}+r^{a}-2^{a}<0,
$$

which gives $D E I_{a, b}\left(T_{\max }\right)<D E I_{a, b}\left(T^{\prime}\right)$, it contradicts our assumption.
Suppose $s=2$. Since $e c_{T_{\text {max }}}(v) \leq d-2<e c_{T_{\max }}\left(x_{1}\right)$, we have $e c_{T_{\max }}^{b}(v) \leq(d-2)^{b}<$ $e c_{T_{\text {max }}}^{b}\left(x_{1}\right)$ for $b>0$. In this case,

$$
\begin{aligned}
D E I_{a, b}\left(T_{\max }\right)-D E I_{a, b}\left(T^{\prime}\right) & \leq e c_{T_{\max }}^{b}\left(x_{1}\right)\left[s^{a}-(s+r-2)^{a}\right]+e c_{T_{\max }}^{b}(v)\left[r^{a}-2^{a}\right] \\
& =e c_{T_{\max }}^{b}\left(x_{1}\right)\left[2^{a}-r^{a}\right]+e c_{T_{\max }}^{b}(v)\left[r^{a}-2^{a}\right] \\
& =\left[e c_{T_{\max }}^{b}(v)-e c_{T_{\max }}^{b}\left(x_{1}\right)\right]\left[r^{a}-2^{a}\right] \\
& <0 .
\end{aligned}
$$

Hence, $D E I_{a, b}\left(T_{\max }\right)<D E I_{a, b}\left(T^{\prime}\right)$, it contradicts our assumption. Thus $T_{\max }$ is $Y_{n, p}$. We have

$$
D E I_{a, b}\left(Y_{n, p}\right)=2^{a+1} \sum_{r=\frac{n-p+2}{2}}^{n-p-1} r^{b}+\left(p^{a}+2^{a}\right)(n-p)^{b}+p(n-p+1)^{b}
$$

for even $n-p$, and

$$
D E I_{a, b}\left(Y_{n, p}\right)=2^{a+1} \sum_{r=\frac{n-p+3}{2}}^{n-p-1} r^{b}+2^{a}\left(\frac{n-p+1}{2}\right)^{b}+\left(p^{a}+2^{a}\right)(n-p)^{b}+p(n-p+1)^{b}
$$

for odd $n-p$.
Theorem 3.8. Let $T \in \mathbb{T}_{n, p}$. Then for $0<a<1$ and $b<0$, we have

$$
D E I_{a, b}(T) \geq 2^{a+1} \sum_{r=\frac{n-p+2}{2}}^{n-p-1} r^{b}+\left(p^{a}+2^{a}\right)(n-p)^{b}+p(n-p+1)^{b}
$$

if $n-p$ is even,

$$
D E I_{a, b}(T) \geq 2^{a+1} \sum_{r=\frac{n-p+3}{2}}^{n-p-1} r^{b}+2^{a}\left(\frac{n-p+1}{2}\right)^{b}+\left(p^{a}+2^{a}\right)(n-p)^{b}+p(n-p+1)^{b}
$$

if $n-p$ is odd, with equalities if and only if $T$ is $Y_{n, p}$.
Proof. We present those parts of the proof of Theorem 3.8 which are different from the proof of Theorem 3.7.

Let $T_{\text {min }}$ be a tree with minimum $D E I_{a, b}$ index in the class $\mathbb{T}_{n, p}$. We prove by contradiction that $T_{\text {min }}$ is $Y_{n, p}$.

Assume that $T_{\text {min }}$ is not $Y_{n, p}$. Since $e c_{T_{\text {min }}}(y) \leq e c_{T^{\prime}}(y)$, we have $e c_{T_{\text {min }}}^{b}(y) \geq e c_{T^{\prime}}^{b}(y)$ for $b<0$ and for all $y \in V\left(T_{\min }\right)$.

$$
\begin{aligned}
D E I_{a, b}\left(T_{\text {min }}\right)-D E I_{a, b}\left(T^{\prime}\right) \geq & e c_{T_{\text {min }}}^{b}\left(x_{1}\right) d_{T_{\text {min }}}^{a}\left(x_{1}\right)-e c_{T^{\prime}}^{b}\left(x_{1}\right) d_{T^{\prime}}^{a}\left(x_{1}\right) \\
& +e c_{T_{\text {min }}}^{b}(v) d_{T_{T_{\text {min }}}}^{a}(v)-e c_{T^{\prime}}^{b}(v) d_{T^{\prime}}^{a}(v) \\
\geq & e c_{T_{\text {min }}}^{b}\left(x_{1}\right)\left[d_{T_{T_{\text {min }}}}^{a}\left(x_{1}\right)-d_{T^{\prime}}^{a}\left(x_{1}\right)\right] \\
& +e c_{T_{\text {min }}}^{b}(v)\left[d_{T_{\text {min }}}^{a}(v)-d_{T^{\prime}}^{a}(v)\right] \\
= & e c_{T_{\text {min }}}^{b}\left(x_{1}\right)\left[s^{a}-(s+r-2)^{a}\right]+e c_{T_{\text {min }}}^{b}(v)\left[r^{a}-2^{a}\right] \\
\geq & e c_{T_{\text {min }}}^{b}\left(x_{1}\right)\left[s^{a}-(s+r-2)^{a}\right]+e c_{T_{\text {min }}}^{b}\left(x_{1}\right)\left[r^{a}-2^{a}\right] \\
= & e c_{T_{\text {min }}}^{b}\left(x_{1}\right)\left[s^{a}-(s+r-2)^{a}+r^{a}-2^{a}\right] .
\end{aligned}
$$

If $s \geq 3$ and $0<a<1$, then by Lemma 1.1,

$$
s^{a}-(s+r-2)^{a}+r^{a}-2^{a}>0,
$$

which gives $D E I_{a, b}\left(T_{\min }\right)>D E I_{a, b}\left(T^{\prime}\right)$.
Since $e c_{T_{\text {min }}}(v) \leq d-2<e c_{T_{\text {min }}}\left(x_{1}\right)$, we have $e c_{T_{\text {min }}}^{b}(v) \geq(d-2)^{b}>e c_{T_{\text {min }}}^{b}\left(x_{1}\right)$ for $b<0$. In this case,

$$
\begin{aligned}
D E I_{a, b}\left(T_{\min }\right)-D E I_{a, b}\left(T^{\prime}\right) & \geq e c_{T_{\text {min }}}^{b}\left(x_{1}\right)\left[s^{a}-(s+r-2)^{a}\right]+e c_{T_{\text {min }}}^{b}(v)\left[r^{a}-2^{a}\right] \\
& =e c_{T_{\text {min }}}^{b}\left(x_{1}\right)\left[2^{a}-r^{a}\right]+e c_{T_{\text {min }}}^{b}(v)\left[r^{a}-2^{a}\right] \\
& =\left[e c_{T_{\text {min }}}^{b}(v)-e c_{T_{\text {min }}}^{b}\left(x_{1}\right)\right]\left[r^{a}-2^{a}\right] \\
& >0 .
\end{aligned}
$$

Hence, $D E I_{a, b}\left(T_{\min }\right)>D E I_{a, b}\left(T^{\prime}\right)$, which is a contradiction. Thus $T_{\min }$ is $Y_{n, p}$.

## 4 Conclusion and open problems

In this paper, we studied the $D E I_{a, b}$ index for trees of fixed order and diameter, and trees of fixed order and the number of pendant vertices. In Section 2, we obtained upper bounds on $D E I_{a, b}(T)$ for $a>1, b \in \mathbb{R} \backslash\{0\}$ and lower bounds on $D E I_{a, b}(T)$ for $0<a<1, b \in \mathbb{R} \backslash\{0\}$, for trees $T$ of fixed order and diameter. In Section 3, we obtained upper bounds on $D E I_{a, b}(T)$ for $a>1, b \in \mathbb{R} \backslash\{0\}$ and lower bounds on $\operatorname{DEI}_{a, b}(T)$ for $0<a<1, b \in \mathbb{R} \backslash\{0\}$, for trees $T$ of fixed order and the number of pendent vertices. In some of the results, we included the case $a=1$ and $b \in\{-1,1\}$. We also showed that all our bounds are sharp by presenting the corresponding extremal graphs. We state open problems on the $D E I_{a, b}$ index of trees for future research.

Problem 4.1. Find trees having the maximum and minimum $D E I_{a, b}$ index among trees of $a$ fixed order, where $a<0$ or $a \geq 1$ and $b \geq 0$, and $a \leq 1$ or $b<0$.

Problem 4.2. Find a tree $T$ having the minimum $D E I_{a, b}$ index among trees of fixed order and diameter/trees of fixed order and number of pendant vertices, where $a<0$ or $a \geq 1$ and $b \in \mathbb{R}$.

Problem 4.3. Find a tree $T$ having the maximum $D E I_{a, b}$ index among trees of fixed order and diameter/trees of fixed order and number of pendant vertices, where $a \leq 1$ and $b \in \mathbb{R}$.

Conflicts of Interest. The author declare that he has no conflicts of interest regarding the publication of this article.
Acknowledgments. The author expresses his sincere thanks to the referees for their constructive comments and suggestions.

## References

[1] A. Ilić, Eccentric connectivity index, arXiv:1103.2515 [math.CO].
[2] M. J. Morgan, S. Mukwembi and H. C. Swart, On the eccentric connectivity index of a graph, Discrete Math. 311 (13) (2011) 1229-1234, https://doi.org/10.1016/j.disc.2009.12.013.
[3] B. Zhou and Z. Du, On eccentric connectivity index, MATCH Commun. Math. Comput. Chem. 63 (2010) 181-198.
[4] X. Wang, L. Tang, X. Chen, M. Li and Y. La, On the connective eccentricity index of graphs with fixed clique number, Ars Combin. 138 (2018) 105-117.
[5] K. Xu, K. C. Das and H. Liu, Some extremal results on the connective eccentricity index of graphs, J. Math. Anal. Appl. 433 (2) (2016) 803-817, https://doi.org/10.1016/j.jmaa.2015.08.027.
[6] K. C. Das, D. W. Lee and A. Graovac, Some properties of the Zagreb eccentricity indices, Ars Math. Contemp. 6 (1) (2013) 117-125, https://doi.org/10.26493/1855-3974.237.48a.
[7] X. Qi and Z. Du, On Zagreb eccentricity indices of trees, MATCH Commun. Math. Comput. Chem. 78 (1) (2017) 241-256.
[8] R. Xing, B. Zhou and N. Trinajstić, On Zagreb eccentricity indices, Croat. Chem. Acta. 84 (4) (2011) 493-497, https://doi.org/10.5562/cca1801.
[9] T. Vetrík and M. Masre, General eccentric connectivity index of trees and unicyclic graphs, Discrete. Appl. Math. 284 (2020) 301-315, https://doi.org/10.1016/j.dam.2020.03.051.
[10] M. Masre and T. Vetrík, On the general degree-eccentricity index of a graph, Afr. Mat. 32 (2021) 495-506, https://doi.org/10.1007/s13370-020-00839-5.
[11] M. Masre and T. Vetrík, General Degree-Eccentricity Index of Trees, Bull. Malays. Math. Sci. Soc. 44 (2021) 2753-2772, https://doi.org/10.1007/s40840-021-01086-y.


[^0]:    (C) 2023 University of Kashan Press. All rights reserved

[^1]:    *Corresponding author
    E-mail address: mesfin.masre@aau.edu.et (M. Masre)
    Academic Editor: Petra Žigert Pleteršek

