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For a graph  , the exponential reduced Sombor index 

(ERSI), denoted by       , is 

∑           √                     , where       is the degree of 

vertex  . The authors in [On the reduced Sombor index and its 

applications, MATCH Commun. Math. Comput. Chem. 86 (2021) 

729–753] conjectured that for each molecular tree   of order 

 ,           
 

 
        

 

 
       √  where   

          ,           
 

 
         

 

 
        √    √   

where              and           
 

 
    

 

 
       √  

  √   where            . Recently, Hamza and Ali [On a 

conjecture regarding the exponential reduced Sombor index of 

chemical trees. Discrete Math. Lett. 9 (2022) 107–110] proved the 

modified version of this conjecture. In this paper, we adopt 

another method to prove it.   
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1. INTRODUCTION  

In this paper, we consider finite, simple and connected graphs. The vertex and edge sets of 

a graph   are denoted by      and     , respectively. Let        . Then       and 
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      are the open neighbourhood and degree of vertex   in  , respectively. We denote the 

set of degrees of vertices   by     .  

Let         be a subset of edges of  . Then graph     obtained of   by 

removing edges in  . Let           and         . Then graph      obtained of   

by adding edge   . 

Graphs were first used in 1947 as a tool for approaching chemical problems. Until 

now, several formulas have been proposed as topological indices. For instance, Sombor-

type indices are the vertex-degree-based topological indices introduced by Gutman [11] as 

a geometric approach to degree-based topological indices. We refer interested readers to 

study references [1-12,14-33] for more details on Sombor-type indices and their 

applications. Recently, a new Sombor-type index was defined as            

∑           √                     , and named as the exponential reduced Sombor index in 

[22]. In this work, the authors posed the following conjecture on exponential reduced 

Sombor index.  

 

Conjecture 1.1. Let     be the set of molecular trees of order  . For    , if   

   , then  

          

{
  
 

  
 

 

 
    

 

 
       √    √             
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       √            



 

 

 In this paper, we show that cases           and           of this 

conjecture are not true. Then we prove the revised form of this conjecture; Infact we prove 

that if     and      , then  
 

          

{
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)     √   (

   

 
)   √             

(
    

 
)    (
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 We also characterize the molecular trees that achieve the equalities of above 

relation. It is worthy to mention here that this conjecture was also proved by a different 

method in [13]. 
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2. MAIN RESULTS 

Let   be a gaph of order   and for              let          |{    

                 }| and              |{                {           }  

{   }}|. Then by definitions of        and      we can write  

          ∑                   
√                                                         

Let      . Then by Equation (1), one can see that  

                             
       

       
√       

√       
√   

                          
 √       

√        
 √                                                           

As a consequence of Equations (1) and (2), we have the following proposition. 

 

Proposition 2.1. Let   be a graph without isolated edges of order   and size    

Then            
√                 

           
     √   The equality on 

the left side holds if and only if      {   } and the equality on the right side occurs if 

and only      {   }.  

Proof. Since   do not have isolated edges, one can see that ∑   
           and 

∑                         Thus by Equation (1) we conclude that  

           ∑   
         ∑                   

√             
√ , 

and the equality holds if and only if      {   }. And also 

           ∑   
        

    ∑                   
     √     

           
     √ , 

and the equality occurs if and only if      {   }.                                                             ■ 

 

Corollary 2.2. Let   be a molecular graph without isolated edges of order   and size 

 . Then            
√                 

         
 √   The equality on the 

left side holds if and only if      {   } and the equality on the right side occurs if and 

only      {   }.  

 

Let     and      . Then by this fact that ∑               |    |, we 

have               and                    . Thus it is not difficult 

to check that  

                                                                            

                                                                                    

Let     be an integer number. Set  

                      
  {         

   

 
              

  

 
}   

                      
  {         

   

 
              

    

 
}   
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  {         

   

 
              

    

 
}   

                       
  {     

       
   

 
                    

    

 
}   

                       
  {     

       
   

 
                    

    

 
}   

                       
  {     

       
   

 
      

    

 
}   

Since   , for       , is an integer number, then     
 
 is non-empty for   {     } if 

and only if           . Also, using relation (2), we conclude that if        
 ,    

    
  and        

 , then  

              (
    

 
)     √   (

   

 
)    √                                                          

  

                 (
    

 
)     √   (

   

 
)   √                                                     

  

            (
    

 
)    (

   

 
)    √                                                                                 

Thus  

            
 

 
    

 

 
       √    √    

            
 

 
         

 

 
        √    √    

These yield that Conjecture 1.1 for cases                is not valid. In the following 

we show that if     and      , then  

           

{
 
 

 
   (

    

 
)     √   (

   

 
)    √             

     (
    

 
)     √   (

   

 
)   √             

(
    

 
)    (

   

 
)    √             



 

with equality in the first case if and only if       
 , and equality in the second case if 

and only if       
 , and equality in the third case if and only if       

 . 

 

Lemma 2.3. If   has maximum value of ERSI among all members of    , then         

 .  

Proof. Assume, to the contrary, that   and   are two vertices of   such that       

        and         . Let       { }     and       { }    . Set       

        . Then       ,      . Thus, if                        , then by the 

sructures of   and   , we have     √               √               √  
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 √               √                     Therefore,                     , which is 

contrary to our assumption.  ■ 

 

Lemma 2.4. If   has maximum value of ERSI among all members of    , then         

 .  

Proof. Suppose, by way of contradiction, that    and    are two pendant edges of   such 

that              ,              ,       { }    ,       { }     

and               . Set             . Thus        and      . Also, if 

                       , then according to the sructures of   and   , we reach to  

       √               √                             √                

 Therefore,                     , which is contrary to the hypothesis.    ■ 

Lemma 2.5. If   has maximum value of ERSI among all members of    , then         

 .  

Proof. Assume, to the contrary, that    is an edge of   such that        ,       

 ,       { }     and       { }  {     }. Set               . Thus    

   ,      . Also, if                        , then the sructures of   and    lead to 

    √               √   √               √               √                 

           √               √                 

Therefore,                     , a contradiction.    ■ 

 

Lemma 2.6. Let   have maximum value of ERSI among all members of 

   . Then          .  

Proof. By contradiction. Let          . Then using Lemmas 2.3, 2.4 and 2.5 conclude 

that there exists set {         }        such that {        }       ,             

 ,             ,         and        .  

Set       {     }  {     }. Thus       ,      . Also, if    

                    , then by the sructures of   and    we have      √   

           √   √                . Therefore,                     , which is 

contrary to our assumption.         ■ 

Lemma 2.7. If   has maximum value of ERSI among all members of      then         

 .  
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Proof. Assume, to the contrary, that    is an edge of   such that             

 ,       { }  {     } and       { }  {     }. Set               . Thus    

    and      . Also, if                        , then clearly  

     √   √               √               √              

                  √               √    √               √              

                   √   √                 

This yields that                     , a contradiction.         ■ 

 

Lemma 2.8. Let   have maximum value of ERSI among all members of    . Then       

 .  

Proof. By contradiction. Let        . Thus we have three below cases for vertices of 

degree  :  

(i) There exist two adjacent vertices   and   of degree  . This case is contrary to 

Lemma 2.3.  

(ii) There exist two adjacent vertices   and   of degree   and  , respectively. But 

this is contrary to Lemma 2.5.  

(iii) Each vertex of degree   is adjacent to a vertex of degree  . This leads to a 

contradiction to Lemma 2.6.  

Using cases (i)-(iii) we conclude that        .         ■ 

 

Lemma 2.9. If   has maximum value of ERSI among all members of    , then        .  

Proof. By contradiction. Let        . Now, we consider three possible cases for vertices 

of degree   as below:   

(i) There exist two adjacent vertices of degree  . This case is contradiction to 

Lemma 2.7.  

(ii) There exist two adjacent vertices   and   of degree   and  , respectively. But 

this is contrary to Lemma 2.5.  

(iii) There exist two vertices   and   of degree   such that         or   for each 

               . Without loss of generality, we may suppose that       

{        }          {        }                     and set       

        . Thus        and      . Also, if              

          , then clearly  

    √               √               √              

                         √               √               √              

                          √               √               √              

                                  √               √               √                 
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Therefore,                     , a contradiction. Cases (iiii) contradict the 

choice of   and hence        .     ■ 

 

Lemma 2.10. Let   have maximum value of ERSI among all members of 

   . Then          .  

Proof. Suppose, by way of contradiction, that          . Using Lemmas 2.5, 2.8 and 2.9 

yields that there exits subset {           } of      such that {           }  

     ,                    ,         and        . Without loss of 

generality, we may suppose that     . Set       {        }  {        }. Thus 

       and      . Also, if                        , Then     √      

  √         Hence                     , which is contrary to our assumption.  ■ 

 

Lemma 2.11. If   has maximum value of ERSI among all members of    , then       

       .  

Proof. By contradiction. Let              . Thus there are three below cases for 

vertices of degrees   and  .   

(i)         . This is a contradiction to Lemma 2.8.  

(ii)         . This case leads to a contradiction to Lemma 2.9.  

(iii)          and        . Let   be a vertex of degree 2 and let   be a vertex 

of degree  . By Lemma 2.5,         . In this case, without loss of 

generality, we may suppose 

that       {     },       {        },                and        

               . Then         ,          by Lemma 2.6, and also 

        ,                 by Lemma 2.10. Set            

   . Thus        and      . Also, if                        , then 

obviously       √    √             √  

   Therefore,                     , a contradiction to our assumption.  

Using cases (i)-(iii) we conclude that               is not true.   ■  

 

Theorem 2.12. Let     and let   have maximum value of ERSI among all members of 

   . Then below assertions are valid:   

(i) If          , then       
 .  

(ii) If          , then       
 .  

(iii) If          , then       
 .  
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Proof. (i) If      
 , then by Lemma 2.6 we reach to the assertion. If        , then 

by relation (3) we have    
   

 
, which is contradiction because    is an integer 

number. Otherwise, by Lemma 2.11, we have      and     , and consequently by 

relation (3),    
   

 
, which is a contradiction to this fact that    is an integer 

number. Therefore, the first assertion is true. (ii) If      
 , then by Lemma 2.10 we have 

the assertion. If        , then by relation (3) we conclude that    
   

 
; but this is 

contrary to this fact that    is an integer number. Otherwise, by Lemma 2.11, we lead to 

     and     . Thus by relation (3), we have    
   

 
, which is a contradiction to this 

fact that    is an integer number. (iii) If      
 , then     

     
  and so the assertion is 

valid. Otherwise, by Lemma 2.11, (    ,     ) or (    ,     ). Now, if      

and     , then from relation (3) we conclude that    
   

 
, a contradiction. Also, if 

     and     , then by relation (3), we reach to    
   

 
, which is a contradiction.   ■ 

The next result is the revised form of Conjecture 1.1. 

 

Corollary 2.13. If     and      , then  

           

{
 
 

 
   (

    

 
)     √   (

   

 
)    √             

     (
    

 
)     √   (

   

 
)   √             

(
    

 
)    (

   

 
)    √             



 

 The equality in the first case holds if and only if       
 ; the equality in the 

second case holds if and only if       
 ; the equality in the third case holds if and only if 

      
 .  

 

Proof. The assertion follows almost immediately from relations (57) and Theorem 2.12. ■ 
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