

Original Scientific Paper

Another Approach to a Conjecture about the Exponential Reduced Sombor Index of Molecular Trees

ALI GHALAVAND[•] AND MOSTAFA TAVAKOLI

Department of Applied Mathematics, Faculty of Mathematical Sciences Ferdowsi University of Mashhad P.O. Box 1159, Mashhad 91775, Iran

ARTICLE INFO	ABSTRACT
Article History: Received: 12 June 2022 Accepted: 28 June 2022 Published online: 30 June 2022 Academic Editor: Akbar Ali	ABSTRACT For a graph <i>G</i> , the exponential reduced Sombor index (ERSI), denoted by $e^{SO_{red}}$, is $\sum_{uv \in E(G)} e^{\sqrt{(d_G(v)-1)^2 + (d_G(u)-1)^2}}$, where $d_G(v)$ is the degree of vertex <i>v</i> . The authors in [On the reduced Sombor index and its applications, <i>MATCH Commun. Math. Comput. Chem.</i> 86 (2021)
Keywords: Sombor index Exponential reduced Sombor index Degree Tree	729–753] conjectured that for each molecular tree <i>T</i> of order <i>n</i> , $e^{SO_{red}}(T) \leq \frac{2}{3}(n+1)e^3 + \frac{1}{3}(n-5)e^{3\sqrt{2}}$ where $n \equiv 2 \pmod{3}$, $e^{SO_{red}}(T) \leq \frac{1}{3}(2n+1)e^3 + \frac{1}{3}(n-13)e^{3\sqrt{2}} + 3e^{\sqrt{13}}$ where $n \equiv 1 \pmod{3}$ and $e^{SO_{red}}(T) \leq \frac{2}{3}ne^3 + \frac{1}{3}(n-9)e^{3\sqrt{2}} + 2e^{\sqrt{10}}$ where $n \equiv 0 \pmod{3}$. Recently, Hamza and Ali [On a conjecture regarding the exponential reduced Sombor index of chemical trees. <i>Discrete Math. Lett.</i> 9 (2022) 107–110] proved the modified version of this conjecture. In this paper, we adopt another method to prove it. © 2022 University of Kashan Press. All rights reserved

1. INTRODUCTION

In this paper, we consider finite, simple and connected graphs. The vertex and edge sets of a graph G are denoted by V(G) and E(G), respectively. Let $v \in V(G)$. Then $N_G(v)$ and

[•]Corresponding author (Email: alighalavand@grad.kashanu.ac.ir). DOI: 10.22052/IJMC.2022.246488.1632

 $d_G(v)$ are the open neighbourhood and degree of vertex v in G, respectively. We denote the set of degrees of vertices G by D(G).

Let $M \subseteq E(G)$ be a subset of edges of G. Then graph G - M obtained of G by removing edges in M. Let $u, v \in V(G)$ and $uv \notin E(G)$. Then graph G + uv obtained of G by adding edge uv.

Graphs were first used in 1947 as a tool for approaching chemical problems. Until now, several formulas have been proposed as topological indices. For instance, Sombortype indices are the vertex-degree-based topological indices introduced by Gutman [11] as a geometric approach to degree-based topological indices. We refer interested readers to study references [1-12,14-33] for more details on Sombor-type indices and their applications. Recently, a new Sombor-type index was defined as $e^{SO_{red}}(G) =$ $\sum_{uv \in E(G)} e^{\sqrt{(d_G(v)-1)^2+(d_G(u)-1)^2}}$, and named as the exponential reduced Sombor index in [22]. In this work, the authors posed the following conjecture on exponential reduced Sombor index.

Conjecture 1.1. Let CT_n be the set of molecular trees of order n. For $n \ge 5$, if $T \in CT_n$, then

$$\left(\frac{2}{3}ne^3 + \frac{1}{3}(n-9)e^{3\sqrt{2}} + 2e^{\sqrt{10}}, \qquad n \equiv 0 \pmod{3},\right)$$

$$e^{SO_{red}}(T) \le \begin{cases} \frac{1}{3}(2n+1)e^3 + \frac{1}{3}(n-13)e^{3\sqrt{2}} + 3e^{\sqrt{13}}, & n \equiv 1 \pmod{3}, \\ \frac{1}{3}(2n+1)e^3 + \frac{1}{3}(n-13)e^{3\sqrt{2}} + 3e^{\sqrt{13}}, & n \equiv 1 \pmod{3}, \end{cases}$$

$$\left(\frac{2}{3}(n+1)e^3 + \frac{1}{3}(n-5)e^{3\sqrt{2}}, \qquad n \equiv 2 \pmod{3}\right).$$

In this paper, we show that cases $n \equiv 1 \pmod{3}$ and $n \equiv 0 \pmod{3}$ of this conjecture are not true. Then we prove the revised form of this conjecture; Infact we prove that if $n \ge 5$ and $T \in CT_n$, then

$$e^{SO_{red}}(T) \leq \begin{cases} e + \left(\frac{2n-3}{3}\right)e^3 + e^{\sqrt{10}} + \left(\frac{n-6}{3}\right)e^{3\sqrt{2}}, & n \equiv 0 \pmod{3}, \\ 2 e^2 + \left(\frac{2n-5}{3}\right)e^3 + e^{\sqrt{13}} + \left(\frac{n-7}{3}\right)e^{3\sqrt{2}}, & n \equiv 1 \pmod{3}, \\ \left(\frac{2n+2}{3}\right)e^3 + \left(\frac{n-5}{3}\right)e^{3\sqrt{2}}, & n \equiv 2 \pmod{3}. \end{cases}$$

We also characterize the molecular trees that achieve the equalities of above relation. It is worthy to mention here that this conjecture was also proved by a different method in [13].

2. MAIN RESULTS

Let *G* be a gaph of order *n* and for $1 \le i \le j \le n-1$ let $n_i = n_i(G) = |\{v: v \in V(G) \text{ and } d_G(v) = i\}|$ and $m_{i,j} = m_{i,j}(G) = |\{uv: uv \in E(G) \text{ and } \{d_G(u), d_G(v)\} = \{i,j\}\}|$. Then by definitions of $e^{SO_{red}}$ and $m_{i,j}$ we can write

$$e^{SO_{red}}(G) = \sum_{1 \le i \le j \le n-1} m_{i,j} e^{\sqrt{(i-1)^2 + (j-1)^2}}.$$
 (1)

Let $T \in CT_n$. Then by Equation (1), one can see that

$$e^{SO_{red}}(G) = m_{1,2}e + m_{1,3}e^{2} + m_{1,4}e^{3} + m_{2,2}e^{\sqrt{2}} + m_{2,3}e^{\sqrt{5}} + m_{2,4}e^{\sqrt{10}} + m_{3,3}e^{2\sqrt{2}} + m_{3,4}e^{\sqrt{13}} + m_{4,4}e^{3\sqrt{2}}.$$
(2)

As a consequence of Equations (1) and (2), we have the following proposition.

Proposition 2.1. Let G be a graph without isolated edges of order n and size m. Then $n_1 e + (m - n_1)e^{\sqrt{2}} \le e^{SO_{red}}(G) \le n_1 e^{\Delta - 1} + (m - n_1)e^{(\Delta - 1)\sqrt{2}}$. The equality on the left side holds if and only if $D(G) \subseteq \{1,2\}$ and the equality on the right side occurs if and only $D(G) \subseteq \{1,\Delta\}$.

Proof. Since G do not have isolated edges, one can see that $\sum_{i=2}^{\Delta} m_{1,i} = n_1$ and $\sum_{2 \le i \le j \le n-1} m_{i,j} = m - n_1$. Thus by Equation (1) we conclude that

$$e^{SO_{red}}(G) \ge \sum_{i=2}^{n} m_{1,i}e + \sum_{2 \le i \le j \le n-1} m_{i,j}e^{\sqrt{2}} = n_1e + (m - n_1)e^{\sqrt{2}},$$

and the equality holds if and only if $D(G) \subseteq \{1,2\}$. And also

 $e^{SO_{red}}(G) \le \sum_{i=2}^{n} m_{1,i} e^{\Delta - 1} + \sum_{2 \le i \le j \le n-1} m_{i,j} e^{(\Delta - 1)\sqrt{2}} = n_1 e^{\Delta - 1} + (m - n_1) e^{(\Delta - 1)\sqrt{2}},$ and the equality occurs if and only if $D(G) \subseteq \{1, \Delta\}.$

Corollary 2.2. Let G be a molecular graph without isolated edges of order n and size m. Then $n_1e + (m - n_1)e^{\sqrt{2}} \le e^{SO_{red}}(G) \le n_1e^3 + (m - n_1)e^{3\sqrt{2}}$. The equality on the left side holds if and only if $D(G) \subseteq \{1,2\}$ and the equality on the right side occurs if and only $D(G) \subseteq \{1,4\}$.

Let $n \ge 2$ and $T \in CT_n$. Then by this fact that $\sum_{v \in V(G)} d_G(v) = 2|E(G)|$, we have $n_1 + n_2 + n_3 + n_4 = n$ and $n_1 + 2n_2 + 3n_3 + 4n_4 = 2n - 2$. Thus it is not difficult to check that

$$n_2 = n - 2 - 2n_3 - 3n_4. \tag{3}$$

$$n_1 = n_3 + 2n_4 + 2. \tag{4}$$

Let $n \ge 5$ be an integer number. Set

$$C\mathcal{T}_n^0 = \left\{ T \in C\mathcal{T}_n : n_4 = \frac{n-3}{3}, n_3 = 0, n_2 = 1, n_1 = \frac{2n}{3} \right\},\$$
$$C\mathcal{T}_n^1 = \left\{ T \in C\mathcal{T}_n : n_4 = \frac{n-4}{3}, n_3 = 1, n_2 = 0, n_1 = \frac{2n+1}{3} \right\},\$$

$$\begin{split} \mathcal{C}\mathcal{T}_n^2 &= \left\{ T \in \mathcal{C}\mathcal{T}_n : n_4 = \frac{n-2}{3}, n_3 = 0, n_2 = 0, n_1 = \frac{2n+2}{3} \right\}, \\ \mathcal{E}\mathcal{C}\mathcal{T}_n^0 &= \left\{ T \in \mathcal{C}\mathcal{T}_n^0 : m_{4,4} = \frac{n-6}{3}, m_{2,4} = 1, m_{1,2} = 1, m_{1,4} = \frac{2n-3}{3} \right\}, \\ \mathcal{E}\mathcal{C}\mathcal{T}_n^1 &= \left\{ T \in \mathcal{C}\mathcal{T}_n^1 : m_{4,4} = \frac{n-7}{3}, m_{3,4} = 1, m_{1,3} = 2, m_{1,4} = \frac{2n-5}{3} \right\}, \\ \mathcal{E}\mathcal{C}\mathcal{T}_n^2 &= \left\{ T \in \mathcal{C}\mathcal{T}_n^2 : m_{4,4} = \frac{n-5}{3}, m_{1,4} = \frac{2n+2}{3} \right\}. \end{split}$$

Since n_i , for $1 \le i \le 4$, is an integer number, then \mathcal{ECT}_n^j is non-empty for $j \in \{0,1,2\}$ if and only if $n \equiv j \pmod{3}$. Also, using relation (2), we conclude that if $T^0 \in \mathcal{ECT}_n^0$, $T^1 \in \mathcal{ECT}_n^1$ and $T^2 \in \mathcal{ECT}_n^2$, then

$$e^{SO_{red}}(T^0) = e + \left(\frac{2n-3}{3}\right)e^3 + e^{\sqrt{10}} + \left(\frac{n-6}{3}\right)e^{3\sqrt{2}},$$
(5)

$$e^{SO_{red}}(T^1) = 2 e^2 + \left(\frac{2n-5}{3}\right) e^3 + e^{\sqrt{13}} + \left(\frac{n-7}{3}\right) e^{3\sqrt{2}},\tag{6}$$

$$e^{SO_{red}}(T^2) = \left(\frac{2n+2}{3}\right)e^3 + \left(\frac{n-5}{3}\right)e^{3\sqrt{2}}.$$
(7)

Thus

$$e^{SO_{red}}(T^0) > \frac{2}{3}ne^3 + \frac{1}{3}(n-9)e^{3\sqrt{2}} + 2e^{\sqrt{10}},$$

$$e^{SO_{red}}(T^1) > \frac{1}{3}(2n+1)e^3 + \frac{1}{3}(n-13)e^{3\sqrt{2}} + 3e^{\sqrt{13}}.$$

These yield that Conjecture 1.1 for cases $n \equiv 0$ or $1 \pmod{3}$ is not valid. In the following we show that if $n \geq 5$ and $T \in CT_n$, then

$$e^{SO_{red}}(T) \leq \begin{cases} e + \left(\frac{2n-3}{3}\right)e^3 + e^{\sqrt{10}} + \left(\frac{n-6}{3}\right)e^{3\sqrt{2}}, & n \equiv 0 \pmod{3}, \\ 2 e^2 + \left(\frac{2n-5}{3}\right)e^3 + e^{\sqrt{13}} + \left(\frac{n-7}{3}\right)e^{3\sqrt{2}}, & n \equiv 1 \pmod{3}, \\ \left(\frac{2n+2}{3}\right)e^3 + \left(\frac{n-5}{3}\right)e^{3\sqrt{2}}, & n \equiv 2 \pmod{3}, \end{cases}$$

with equality in the first case if and only if $T \in \mathcal{ECT}_n^0$, and equality in the second case if and only if $T \in \mathcal{ECT}_n^1$, and equality in the third case if and only if $T \in \mathcal{ECT}_n^2$.

Lemma 2.3. If T has maximum value of ERSI among all members of CT_n , then $m_{2,2}(T) = 0$.

Proof. Assume, to the contrary, that u and v are two vertices of T such that $d_T(u) = d_T(v) = 2$ and $uv \in E(T)$. Let $N_T(u) \setminus \{v\} = u_1$ and $N_T(v) \setminus \{u\} = v_1$. Set $T_1 = (T - u_1u) + u_1v$. Then $T_1 \in CT_n$, $T_1 \cong T$. Thus, if $Y_1 = e^{SO_{red}}(T) - e^{SO_{red}}(T_1)$, then by the succurs of T and T_1 , we have $Y_1 = e^{\sqrt{(d_T(v_1) - 1)^2 + 1}} + e^{\sqrt{(d_T(u_1) - 1)^2 + 1}} + e^{\sqrt{2}}$

Lemma 2.4. If T has maximum value of ERSI among all members of CT_n , then $m_{1,2}(T) \leq 1$.

Proof. Suppose, by way of contradiction, that uv and xy are two pendant edges of T such that $d_T(u) = d_T(x) = 2$, $d_T(v) = d_T(y) = 1$, $N_T(u) \setminus \{v\} = u_1$, $N_T(x) \setminus \{y\} = x_1$ and $d_T(x_1) \ge d_T(u_1)$. Set $T_2 = (T - uv) + xv$. Thus $T_2 \in CT_n$ and $T_2 \not\cong T$. Also, if $Y_2 = e^{SO_{red}}(T) - e^{SO_{red}}(T_2)$, then according to the structures of T and T_2 , we reach to

$$\begin{split} \Upsilon_2 &= 2\mathrm{e} + \mathrm{e}^{\sqrt{(d_T(u_1) - 1)^2 + 1}} + \mathrm{e}^{\sqrt{(d_T(x_1) - 1)^2 + 1}} - 2\mathrm{e}^2 - \mathrm{e}^{d_T(u_1) - 1} - \mathrm{e}^{\sqrt{(d_T(x_1) - 1)^2 + 4}} < 0. \\ & \text{Therefore, } \mathrm{e}^{\mathrm{SO}_{red}}(T) < \mathrm{e}^{\mathrm{SO}_{red}}(T_1), \text{ which is contrary to the hypothesis.} \end{split}$$

Lemma 2.5. If T has maximum value of ERSI among all members of CT_n , then $m_{2,3}(T) = 0$.

Proof. Assume, to the contrary, that uv is an edge of T such that $d_T(u) = 2$, $d_T(v) = 3$, $N_T(u) \setminus \{v\} = u_1$ and $N_T(v) \setminus \{u\} = \{v_1, v_2\}$. Set $T_3 = (T - u_1u) + u_1v$. Thus $T_3 \in CT_n, T_3 \ncong T$. Also, if $Y_3 = e^{SO_{red}}(T) - e^{SO_{red}}(T_3)$, then the succures of T and T_3 lead to $Y_3 = e^{\sqrt{(d_T(u_1) - 1)^2 + 1}} + e^{\sqrt{5}} + e^{\sqrt{(d_T(v_1) - 1)^2 + 4}} + e^{\sqrt{(d_T(v_2) - 1)^2 + 4}} - e^{\sqrt{(d_T(u_1) - 1)^2 + 9}} - e^4 - e^{\sqrt{(d_T(v_1) - 1)^2 + 9}} - e^{\sqrt{(d_T(v_2) - 1)^2 + 9}} < 0.$

Therefore, $e^{SO_{red}}(T) < e^{SO_{red}}(T_3)$, a contradiction.

Lemma 2.6. Let T have maximum value of ERSI among all members of CT_n . Then $m_{2,4}(T) \leq 1$.

Proof. By contradiction. Let $m_{2,4}(T) \ge 2$. Then using Lemmas 2.3, 2.4 and 2.5 conclude that there exists set $\{u,v,w,x,y\} \subseteq V(T)$ such that $\{uw,wv,xy\} \subseteq E(T), d_T(u) = d_T(v) = 4, d_T(x) = 3 \text{ or } 4, d_T(w) = 2 \text{ and } d_T(y) = 1.$

Set $T_4 = (T - \{uw, wv\}) + \{uv, yw\}$. Thus $T_4 \in CT_n$, $T_4 \not\cong T$. Also, if $Y_4 = e^{SO_{red}}(T) - e^{SO_{red}}(T_4)$, then by the suctures of T and T_4 we have $Y_4 = 2e^{\sqrt{10}} + e^{d_T(x)-1} - e^{3\sqrt{2}} - e^{\sqrt{(d_T(x)-1)^2+1}} - e < 0$. Therefore, $e^{SO_{red}}(T) < e^{SO_{red}}(T_4)$, which is contrary to our assumption.

Lemma 2.7. If T has maximum value of ERSI among all members of $\in CT_n$ then $m_{3,3}(T) = 0$.

Proof. Assume, to the contrary, that uv is an edge of T such that $d_T(u) = d_T(v) = 3$, $N_T(u) \setminus \{v\} = \{u_1, u_2\}$ and $N_T(v) \setminus \{u\} = \{v_1, v_2\}$. Set $T_5 = (T - u_1u) + u_1v$. Thus $T_5 \in CT_n$ and $T_5 \not\cong T$. Also, if $\Upsilon_5 = e^{SO_{red}}(T) - e^{SO_{red}}(T_5)$, then clearly

$$\begin{split} \Upsilon_5 &= \mathrm{e}^{2\sqrt{2}} + \mathrm{e}^{\sqrt{(d_T(u_1) - 1)^2 + 4}} + \mathrm{e}^{\sqrt{(d_T(u_2) - 1)^2 + 4}} + \mathrm{e}^{\sqrt{(d_T(v_1) - 1)^2 + 4}} \\ &+ \mathrm{e}^{\sqrt{(d_T(v_2) - 1)^2 + 4}} - \mathrm{e}^{\sqrt{10}} - \mathrm{e}^{\sqrt{(d_T(u_1) - 1)^2 + 9}} - \mathrm{e}^{\sqrt{(d_T(u_2) - 1)^2 + 1}} \\ &- \mathrm{e}^{3\sqrt{2}} - \mathrm{e}^{\sqrt{(d_T(v_2) - 1)^2 + 9}} < 0. \end{split}$$

This yields that $e^{SO_{red}}(T) < e^{SO_{red}}(T_5)$, a contradiction.

Lemma 2.8. Let T have maximum value of ERSI among all members of CT_n . Then $n_2(T) \leq 1$.

Proof. By contradiction. Let $n_2(T) \ge 2$. Thus we have three below cases for vertices of degree 2:

- (i) There exist two adjacent vertices u and v of degree 2. This case is contrary to Lemma 2.3.
- (ii) There exist two adjacent vertices u and v of degree 2 and 3, respectively. But this is contrary to Lemma 2.5.
- (iii) Each vertex of degree 2 is adjacent to a vertex of degree 4. This leads to a contradiction to Lemma 2.6.

Using cases (i)-(iii) we conclude that $n_2(T) \le 1$.

Lemma 2.9. If T has maximum value of ERSI among all members of CT_n , then $n_3(T) \leq 1$.

Proof. By contradiction. Let $n_3(T) \ge 2$. Now, we consider three possible cases for vertices of degree 3 as below:

- (i) There exist two adjacent vertices of degree 3. This case is contradiction to Lemma 2.7.
- (ii) There exist two adjacent vertices u and v of degree 2 and 3, respectively. But this is contrary to Lemma 2.5.
- (iii) There exist two vertices u and v of degree 3 such that $d_T(x) = 1$ or 4 for each $x \in N_T(u) \cup N_T(v)$. Without loss of generality, we may suppose that $N_T(u) = \{u_1, u_2, u_3\}, N_T(v) = \{v_1, v_2, v_3\}, u_1 \not\in N_T(u) \cap N_T(v)$ and set $T_6 = (T u_1u) + u_1v$. Thus $T_6 \in CT_n$ and $T_6 \not\cong T$. Also, if $Y_6 = e^{SO_{red}}(T) e^{SO_{red}}(T_6)$, then clearly

$$\begin{split} \Upsilon_6 &= \mathrm{e}^{\sqrt{(d_T(u_1)-1)^2+4}} + \mathrm{e}^{\sqrt{(d_T(u_2)-1)^2+4}} + \mathrm{e}^{\sqrt{(d_T(u_3)-1)^2+4}} \\ &+ \mathrm{e}^{\sqrt{(d_T(v_1)-1)^2+4}} + \mathrm{e}^{\sqrt{(d_T(v_2)-1)^2+4}} + \mathrm{e}^{\sqrt{(d_T(v_3)-1)^2+4}} \\ &- \mathrm{e}^{\sqrt{(d_T(u_1)-1)^2+9}} - \mathrm{e}^{\sqrt{(d_T(u_2)-1)^2+1}} - \mathrm{e}^{\sqrt{(d_T(u_3)-1)^2+1}} \\ &- \mathrm{e}^{\sqrt{(d_T(v_1)-1)^2+9}} - \mathrm{e}^{\sqrt{(d_T(v_2)-1)^2+9}} - \mathrm{e}^{\sqrt{(d_T(v_3)-1)^2+9}} < 0. \end{split}$$

-

Therefore, $e^{SO_{red}}(T) < e^{SO_{red}}(T_6)$, a contradiction. Cases (i–iii) contradict the choice of T and hence $n_3(T) \leq 1$.

Lemma 2.10. Let T have maximum value of ERSI among all members of \mathcal{CT}_n . Then $m_{3,4}(T) \leq 1$.

Proof. Suppose, by way of contradiction, that $m_{3,4}(T) \ge 2$. Using Lemmas 2.5, 2.8 and 2.9 yields that there exits subset $\{u, v, w, x, y, z\}$ of V(T) such that $\{uw, wv, wz, xy\} \subseteq$ $E(T), d_T(u) = d_T(v) = d_T(x) = 4, d_T(w) = 3$ and $d_T(v) = 1$. Without loss of generality, we may suppose that $z \neq x$. Set $T_7 = (T - \{uw, wv, wz\}) + \{uv, yw, yz\}$. Thus $T_7 \in \mathcal{CT}_n$ and $T_7 \ncong T$. Also, if $\Upsilon_7 = e^{SO_{red}}(T) - e^{SO_{red}}(T_7)$, Then $\Upsilon_7 = e^{\sqrt{13}} + e^3 - e^{\sqrt{13}} + e^{3} - e^{\sqrt{13}} + e^{\sqrt{13}}$ $e^{3\sqrt{2}} - e^2 < 0$. Hence $e^{SO_{red}}(T) < e^{SO_{red}}(T_7)$, which is contrary to our assumption.

Lemma 2.11. If T has maximum value of ERSI among all members of CT_n , then $n_2(T)$ + $n_3(T) \leq 1.$

Proof. By contradiction. Let $n_2(T) + n_3(T) \ge 2$. Thus there are three below cases for vertices of degrees 2 and 3.

- (i) $n_2(T) \ge 2$. This is a contradiction to Lemma 2.8.
- $n_3(T) \ge 2$. This case leads to a contradiction to Lemma 2.9. (ii)
- $n_2(T) = 1$ and $n_3(T) = 1$. Let u be a vertex of degree 2 and let v be a vertex (iii) of degree 3. By Lemma 2.5, $uv \not\in E(T)$. In this case, without loss of generality, we mav suppose that $N_T(u) = \{u_1, u_2\}, N_T(v) = \{v_1, v_2, v_3\}, d_T(u_1) \ge d_T(u_2)$ and $d_T(v_1) \ge d_T(v_2)$ $d_T(v_2) \ge d_T(v_3)$. Then $d_T(u_1) = 4$, $d_T(u_2) = 1$ by Lemma 2.6, and also $d_T(v_1) = 4$, $d_T(v_2) = d_T(v_3) = 1$ by Lemma 2.10. Set $T_8 = (T - u_2 u) + 1$ $u_2 v$. Thus $T_8 \in \mathcal{CT}_n$ and $T_8 \not\cong T$. Also, if $\Upsilon_8 = e^{SO_{red}}(T) - e^{SO_{red}}(T_8)$, then $\Upsilon_8 = e + e^{\sqrt{10}} + e^{\sqrt{13}} + 2e^2 - 4e^3 - e^{3\sqrt{2}} < 0$ obviously 0. Therefore, $e^{SO_{red}}(T) < e^{SO_{red}}(T_8)$, a contradiction to our assumption.

Using cases (i)-(iii) we conclude that $n_2(T) + n_3(T) \ge 2$ is not true.

Theorem 2.12. Let $n \ge 5$ and let T have maximum value of ERSI among all members of CT_n . Then below assertions are valid:

- If $n \equiv 0 \pmod{3}$, then $T \in \mathcal{ECT}_n^0$. (i)
- If $n \equiv 1 \pmod{3}$, then $T \in \mathcal{ECT}_n^1$. (ii)
- (iii) If $n \equiv 2 \pmod{3}$, then $T \in \mathcal{ECT}_n^2$.

Proof. (i) If $T \in CT_n^0$, then by Lemma 2.6 we reach to the assertion. If $n_3 = n_2 = 0$, then by relation (3) we have $n_4 = \frac{n-2}{3}$, which is contradiction because n_4 is an integer number. Otherwise, by Lemma 2.11, we have $n_3 = 1$ and $n_2 = 0$, and consequently by relation (3), $n_4 = \frac{n-4}{3}$, which is a contradiction to this fact that n_4 is an integer number. Therefore, the first assertion is true. (ii) If $T \in CT_n^1$, then by Lemma 2.10 we have the assertion. If $n_3 = n_2 = 0$, then by relation (3) we conclude that $n_4 = \frac{n-2}{3}$; but this is contrary to this fact that n_4 is an integer number. Otherwise, by Lemma 2.11, we lead to $n_3 = 0$ and $n_2 = 1$. Thus by relation (3), we have $n_4 = \frac{n-3}{3}$, which is a contradiction to this fact that n_4 is an integer number. (iii) If $T \in CT_n^2$, then $\mathcal{E}CT_n^2 = CT_n^2$ and so the assertion is valid. Otherwise, by Lemma 2.11, $(n_3 = 1, n_2 = 0)$ or $(n_3 = 0, n_2 = 1)$. Now, if $n_3 = 1$ and $n_2 = 0$, then from relation (3), we reach to $n_4 = \frac{n-4}{3}$, which is a contradiction. Also, if $n_3 = 0$ and $n_2 = 1$, then by relation (3), we reach to $n_4 = \frac{n-4}{3}$, which is a contradiction.

The next result is the revised form of Conjecture 1.1.

Corollary 2.13. If $n \ge 5$ and $T \in CT_n$, then

$$e^{SO_{red}}(T) \le \begin{cases} e + \left(\frac{2n-3}{3}\right)e^3 + e^{\sqrt{10}} + \left(\frac{n-6}{3}\right)e^{3\sqrt{2}}, & n \equiv 0 \pmod{3}, \\ 2 e^2 + \left(\frac{2n-5}{3}\right)e^3 + e^{\sqrt{13}} + \left(\frac{n-7}{3}\right)e^{3\sqrt{2}}, & n \equiv 1 \pmod{3}, \\ \left(\frac{2n+2}{3}\right)e^3 + \left(\frac{n-5}{3}\right)e^{3\sqrt{2}}, & n \equiv 2 \pmod{3}. \end{cases}$$

The equality in the first case holds if and only if $T \in \mathcal{ECT}_n^0$; the equality in the second case holds if and only if $T \in \mathcal{ECT}_n^1$; the equality in the third case holds if and only if $T \in \mathcal{ECT}_n^2$.

Proof. The assertion follows almost immediately from relations (5–7) and Theorem 2.12. ■

ACKNOWLEDGEMENTS. The authors are grateful to the referees for helpful suggestions.

REFERENCES

- A. Aashtab, S. Akbari, S. Madadinia, M. Noei and F. Salehi, On the graphs with minimum Sombor index, *MATCH Commun. Math. Comput. Chem.* 88 (3) (2022) 553–559.
- A. Alidadi, A. Parsian and H. Arianpoor, The minimum Sombor index for unicyclic graphs with fixed diameter, *MATCH Commun. Math. Comput. Chem.* 88 (3) (2022) 561–572.

- 3. S. Alikhani and N. Ghanbari, Sombor index of polymers, *MATCH Commun. Math. Comput. Chem.* **86** (3) (2021) 715–728.
- 4. H. Chen, W. Li and J. Wang, Extremal values on the Sombor index of trees, *MATCH Commun. Math. Comput. Chem.* 87 (1) (2022) 23–49.
- 5. R. Cruz, I. Gutman and J. Rada, Sombor index of chemical graphs, *Appl. Math. Comput.* **399** (2021) 126018.
- 6. R. Cruz and J. Rada, Extremal values of the Sombor index in unicyclic and bicyclic graphs, *J. Math. Chem.* **59** (2021) 1098–1116.
- 7. K. C. Das, A. Ghalavand and A. R. Ashrafi, On a conjecture about the Sombor index of graphs, *Symmetry* **13** (2021) 1830.
- 8. K. C. Das and I. Gutman, On Sombor index of trees, *Appl. Math. Comput.* **412** (2022) 126575.
- 9. H. Deng, Z. Tang and R. Wu, Molecular trees with extremal values of Sombor indices, *Int. J. Quantum Chem.* **121** (2021) e26622.
- 10. X. Fang, L. You and H. Liu, The expected values of Sombor indices in random hexagonal chains, phenylene chains and Sombor indices of some chemical graphs, *Int. J. Quantum Chem.* **121** (2021) e26740.
- 11. I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, *MATCH Commun. Math. Comput. Chem.* **86** (1) (2021) 11–16.
- I. Gutman, Some basic properties of Sombor indices, Open J. Discr. Appl. Math. 4 (2021) 1–3.
- 13. A. E. Hamza and A. Ali, On a conjecture regarding the exponential reduced Sombor index of chemical trees, *Discrete Math. Lett.* 9 (2022) 107–110.
- 14. B. Horoldagva and C. Xu, On Sombor index of graphs, *MATCH Commun. Math. Comput. Chem.* **86** (3) (2021) 703–713.
- 15. S. Li, Z. Wang and M. Zhang, On the extremal Sombor index of trees with a given diameter, *Appl. Math. Comput.* **416** (2022) 126731.
- 16. Z. Lin, On the spectral radius and energy of the Sombor matrix of graphs, arXiv:2102.03960v.
- 17. H. Liu, Extremal cacti with respect to Sombor index, *Iranian J. Math. Chem.* **12** (4) (2021) 197–208.
- 18. H. Liu, H. Chen, Q. Xiao, X. Fang and Z. Tang, More on Sombor indices of chemical graphs and their applications to the boiling point of benzenoid hydrocarbons, *Int. J. Quantum Chem.* **121** (2021) e26689.
- 19. H. Liu, L. You and Y. Huang, Ordering chemical graphs by Sombor indices and its applications, *MATCH Commun. Math. Comput. Chem.* **87** (1) (2022) 5–22.
- 20. H. Liu, L. You and Y. Huang, Extremal Sombor indices of tetracyclic (chemical) graphs, *MATCH Commun. Math. Comput. Chem.* **88** (3) (2022) 573–581.
- 21. H. Liu, L. You, Y. Huang and X. Fang, Spectral properties of p-Sombor matrices and beyond, *MATCH Commun. Math. Comput. Chem.* 87 (1) (2022) 59–87.

- 22. H. Liu, L. You, Z. Tang and J. B. Liu, On the reduced Sombor index and its applications, *MATCH Commun. Math. Comput. Chem.* **86** (2021) 729–753.
- 23. H. Liu, M. Zeng, H. Deng and Z. Tang, Some indices in the random spiro chains, *Iranian J. Math. Chem.* **11** (2020) 249–264.
- 24. I. Milovanović, E. Milovanović and M. Matejć, On some mathematical properties of Sombor indices, *Bull. Int. Math. Virtual Inst.* **11** (2021) 341–353.
- 25. J. Rada, J. M. Rodriguez and J. M. Sigarreta, General properties on Sombor indices, *Discr. Appl. Math.* **299** (2021) 87–97.
- 26. B. A. Rather and M. Imran, Sharp bounds on the Sombor energy of graphs, *MATCH Commun. Math. Comput. Chem.* **88** (2022) 605–624.
- 27. I. Redžepović, Chemical applicability of Sombor indices, J. Serb. Chem. Soc. 86 (2021) 445–457.
- 28. I. Redžepović and I. Gutman, Comparing energy and Sombor energy-an empirical study, *MATCH Commun. Math. Comput. Chem.* **88** (2022) 133–140.
- 29. T. Réti, T. Došlić and A. Ali, On the Sombor index of graphs, *Contrib. Math.* **3** (2021) 11–18.
- A. Ülker, A. Gürsoy and N. K. Gürsoy, The energy and Sombor index of graphs, MATCH Commun. Math. Comput. Chem. 87 (2022) 51–58.
- 31. Z. Wang, Y. Mao, Y. Li and B. Furtula, On relations between Sombor and other degree-based indices, *J. Appl. Math. Comput.* **68** (2022) 1–17.
- 32. F. Wang and B. Wu, The proof of a conjecture on the reduced Sombor index, *MATCH Commun. Math. Comput. Chem.* **88** (2022) 583–591.
- 33. W. Zhang, L. You, H. Liu and Y. Huang, The expected values and variances for Sombor indices in a general random chain, *Appl. Math. Comput.* **411** (2021) 126521.