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Suve £y €V @WDHHE-D? \where dg(v) is the degree of
vertex v. The authors in [On the reduced Sombor index and its
applications, MATCH Commun. Math. Comput. Chem. 86 (2021)
729-753] conjectured that for each molecular tree T of order

n, e30red(T) < g(n +1)ed + i(n —5)32  where n=
2 (mod 3), eS%ed(T) < ;(Zn +1)e + % (n —13)e3V2 4 3¢V13
where n =1 (mod 3) and eS%ed(T) < gne3 + % (n—9)e32 +

2eV10 where n = 0 (mod 3). Recently, Hamza and Ali [On a
conjecture regarding the exponential reduced Sombor index of
chemical trees. Discrete Math. Lett. 9 (2022) 107-110] proved the
modified version of this conjecture. In this paper, we adopt
another method to prove it.

© 2022 University of Kashan Press. All rights reserved

1. INTRODUCTION

In this paper, we consider finite, simple and connected graphs. The vertex and edge sets of
a graph G are denoted by V(G) and E(G), respectively. Let v € V(G). Then N;(v) and
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d¢ (v) are the open neighbourhood and degree of vertex v in G, respectively. We denote the
set of degrees of vertices G by D (G).

Let M € E(G) be a subset of edges of G. Then graph G — M obtained of G by
removing edges in M. Let w,v € V(G) and uv € E(G). Then graph G + uv obtained of ¢
by adding edge uv.

Graphs were first used in 1947 as a tool for approaching chemical problems. Until
now, several formulas have been proposed as topological indices. For instance, Sombor-
type indices are the vertex-degree-based topological indices introduced by Gutman [11] as
a geometric approach to degree-based topological indices. We refer interested readers to
study references [1-12,14-33] for more details on Sombor-type indices and their
applications. Recently, a new Sombor-type index was defined as eS%red(G) =

Yuve 5(q) €Y @@~V +(@e-1? ‘and named as the exponential reduced Sombor index in

[22]. In this work, the authors posed the following conjecture on exponential reduced
Sombor index.

Conjecture 1.1. Let C7, be the set of molecular trees of order n. For n>5, if T €
C7,, then

2 1
(§ne3 + 3 (n —9)e3V2 + 2¢V10, n = 0(mod3),
1 1

eSOred(T) < { 3 2n+ e + 3 (n — 13)e3V2 + 3¢V13, n = 1(mod3),
2 1
S+ D+ (n— 5)e3V?, n = 2(mod3).

\

In this paper, we show that cases n = 1(mod3) and n = 0(mod3) of this
conjecture are not true. Then we prove the revised form of this conjecture; Infact we prove
thatifn >5and T € CT,,, then

2n—3 n—=6
(e + ( 3 >e3 +eV10 4 (T) 32, n = 0(mod3),
2n—5 n—7
eSOrea (T < | 2e?+ ( 3 )e3 +eVB 4 ( 3 )e3ﬁ, n = 1(mod3),
2n+ 2 n—>5
( 3 )e3 + (T) e3V2 n = 2(mod3).

We also characterize the molecular trees that achieve the equalities of above
relation. It is worthy to mention here that this conjecture was also proved by a different
method in [13].
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2. MAIN RESULTS

Let G be a gaph of order n and for 1< i< j<n-—1 let n,=n(G)=|{vive
V(G)anddg(v) =i}| and m;; =m;;(G) = |[{uv:uv € E(G) and {d(w),ds(v)} =
{i,j}}|. Then by definitions of e°red and m; ; we can write

e50red(G) = Y1<ic jsn-1 My j€ D2 +G-17, €]
Let T € CT;,. Then by Equation (1), one can see that

e30red(G) = my ye + my se2 +my 463 +my,eV2 +m;zeV5 +m, 4eV10
+ ms3 e2V2 4 m3,4e‘/ﬁ + m4,4e3‘/§. (2)

As a consequence of Equations (1) and (2), we have the following proposition.

Proposition 2.1. Let G be a graph without isolated edges of order n and size m.
Then nye + (m —ny)eV? < e507ed(G) < nyed~t + (m — ny)e@ V2, The equality on
the left side holds if and only if D(G) < {1,2} and the equality on the right side occurs if
and only D(G) < {1,A}.

Proof. Since G do not have isolated edges, one can see that Y%, m,; =n, and
Y2<i< jen—1 My; = m —ny. Thus by Equation (1) we conclude that
e30red(G) = YL, my e + Yocic jen—1 mi,jeﬁ = nye + (m —n,)e’?,
and the equality holds if and only if D(G) < {1,2}. And also
eS0red(G) < Ty my €27 + o e jenog My je@DVZ = nyed 1 4 (m —ny)e@ V2,

and the equality occurs if and only if D(G) < {1,A}. ]

Corollary 2.2. Let G be a molecular graph without isolated edges of order n and size
m. Then nye + (m —ny)eV2 < e3%7ed(G) < nye® + (m —ny)e3V2. The equality on the
left side holds if and only if D(G) < {1,2} and the equality on the right side occurs if and
only D(G) < {1,4}.

Let n>2 and T € CT,. Then by this fact that Y, ey de(v) = 2|E(G)|, we

have n; + n, + n; + n, = n and ny + 2n, + 3n; + 4n, = 2n — 2. Thus it is not difficult
to check that

n, =n-—2—2nz; — 3n,. 3)
ny =nz + 2ny + 2. 4)
Let n = 5 be an integer number. Set
n—23 2n
C:I;lo = {T € C:];/l:n4, = N3 = O,nz = 1,n1 = ?},
n—4 2n+1
C:T;ll = {T € C:];/l:n4, = M3 = 1,n2 = O,n1 = 3 },
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" n—2 2n+ 2
Cg;l = {T € Cj;/l:n4 = 3 M3 = O,nz = 0,n1 = 3 },
0_ 0., _N=6 _ _n-3
ECTY =1T € CT:my, = 7 Maa = 1my, =1my, = 3§
- ooo_n=7 _ _m=5
ECT! =T € CTitimy, = 7 M3 = 1myz =2my, = 3
5 5 n—>5 2n+ 2
867;1 =T € C’Tn :m4‘4 = —3 ,m1’4 = 3 }

Since n;, for 1 < i < 4, is an integer number, then SC‘Tnj is non-empty for j € {0,1,2} if
and only if n = j(mod3). Also, using relation (2), we conclude that if T° € ECT;?, T €
ECTl and T? € ECT;Z, then

SOred(TO) —e+ ( )e + e\/__|_ ( ) 3\/_ (5)
SOred(Tl) =22 + ( )e _|_e\/__|_ ( . )e3\/5, (6)
e50red(T2) = (%) e’ + (nT_S) e3V2, (7)

Thus
eS0red(T0) > gne3 + % (n — 9)e3V2 4 2¢V19,
eSOrea(T1) > §(2n + 1Ded + %(n — 13)e3\/§ + 3eV13,

These yield that Conjecture 1.1 for cases n = 0 or 1(mod3) is not valid. In the following
we show that if n > 5and T € CT;,, then

(e+(2n 3)e +e‘/_+(3) 372, n = 0(mod3),
sy 2+ () ()05, nm s
()0 (50 -

with equality in the first case if and only if T € £CT;?, and equality in the second case if
and only if T € ECT;}, and equality in the third case if and only if T € ECT;2.

Lemma 2.3. If T has maximum value of ERSI among all members of C7;,, then m, ,(T) =
0.

Proof. Assume, to the contrary, that u and v are two vertices of T such that d(u) =
dr(v) =2 and uv € E(T). Let Ny(w)\{v} =u, and Ny(v)\{u} =v;. Set T, = (T —
u;u) + uyv. Then T, € CT;, Ty = T. Thus, if Y; = e597ed(T) — e597ed(T,), then by the
sructures of T and T,, we have Y, = eV@r@-D%+1 4 of(@r(u)-17%+1 4 gV2 _
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eV (@r)-1?+4 _ o/(dr(u)-1%+4 _ o2 < 0. Therefore, eSred(T) < eSred(T,), which is
contrary to our assumption. "

Lemma 2.4. If T has maximum value of ERSI among all members of CT,,, then m; ,(T) <
1.

Proof. Suppose, by way of contradiction, that uv and xy are two pendant edges of T such
that dr(u) =dr(x) =2, dr(w)=dr(y) =1, Nr\{v}=u;, Nr(\{y}=x
and dr(xq) = dr(uq). Set T, = (T —uv) +xv. Thus T, € CT,, and T, = T. Also, if
Y, = e50red(T) — e50red(T,), then according to the sructures of T and T,, we reach to

Y, = 26 + eV@r@DD2H1 4 /@G D71 _ 262 _ dr(u)-1 _ of@rG)-D7+4 £
Therefore, eS9red (T < e5%red(T,), which is contrary to the hypothesis. m

Lemma 2.5. If T has maximum value of ERSI among all members of C7;,, then m, 3(T) =
0.

Proof. Assume, to the contrary, that uv is an edge of T such that d;(u) = 2, dy(v) =

3, Npy(w)\{v}=u,; and N;y(v)\{u} = {vy,v,}. Set T3 = (T —uu) + uyv. Thus T; €

CT,, T3 2 T. Also, if Y; = e59red(T) — e50%rea(Ty), then the sructures of T and T lead to

Y; = eV (dr(uy)-1)%+1 4 e\/g + e\/(dT(v1)—1)2+4 + e\/(dT(Vz)—l)2+4 — e\/(dT(ul)—l)2+9 — et —
e\/(dT(”l)—1)2+9 — e\/(dT(vz)—1)2+9 < 0.

Therefore, e59red(T) < e5%red(Ty), a contradiction. m

Lemma 2.6. Let T have maximum value of ERSI among all members of
CT,. Thenm,,(T) < 1.

Proof. By contradiction. Let m, 4(T) = 2. Then using Lemmas 2.3, 2.4 and 2.5 conclude
that there exists set {u,v,w,x,y} € V(T) such that {uw,wvxy} € E(T), dr(u) = d;(v) =
4,dr(x) =3o0r4,dy(w) =2anddr(y) = 1.

Set T, = (T — {uwwv}) + {uv,yw}. Thus T, €CT,, T, = T. Also, if Y, =
eS0red(T) — eS0red(T,), then by the sructures of T and T, we have Y, = 2¢V10 4+
edr(0)=1 _ ¢3V2 _ oJ(@r()-1%+1 _ o < 0. Therefore, eS0red(T) < eS0red(T,), which is
contrary to our assumption. n

Lemma 2.7. If T has maximum value of ERSI among all members of € CT;, then m3 3(T) =
0.
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Proof. Assume, to the contrary, that uv is an edge of T such that dr(u) =dr(v) =
3, Nr(w\{v} = {u,u,} and Ny (v)\{u} = {v,v,}. Set Ts = (T —uyu) + wyv. Thus Ts €
CT, and Ts = T. Also, if Y5 = e50red(T) — e50red(Ty), then clearly
Y, = e2V2 4 e/(@r@)-17+4 4 o/(dr(u)-12+4 4 oV (drwn)-1)7+4
+ eV @r@)-D2+4 _ oV10 _ oJ([@ru)-1%+9 _ o/(@r(uz)-1)%+1
— e3VZ _ oVlar)-1D7+9 <

This yields that e50red(T) < e50red(Ts), a contradiction. m

Lemma 2.8. Let T have maximum value of ERSI among all members of C7;,. Then n,(T) <
1.

Proof. By contradiction. Let n,(T) = 2. Thus we have three below cases for vertices of
degree 2:
(i) There exist two adjacent vertices u and v of degree 2. This case is contrary to
Lemma 2.3.
(i)  There exist two adjacent vertices u and v of degree 2 and 3, respectively. But
this is contrary to Lemma 2.5.
(iii)  Each vertex of degree 2 is adjacent to a vertex of degree 4. This leads to a
contradiction to Lemma 2.6.
Using cases (i)-(iii) we conclude that n,(T) < 1. m

Lemma 2.9. If T has maximum value of ERSI among all members of C7,,, then n3(T) < 1.

Proof. By contradiction. Let n;(T) = 2. Now, we consider three possible cases for vertices
of degree 3 as below:
(i) There exist two adjacent vertices of degree 3. This case is contradiction to
Lemma 2.7.
(i)  There exist two adjacent vertices u and v of degree 2 and 3, respectively. But
this is contrary to Lemma 2.5.
(ili)  There exist two vertices u and v of degree 3 such that d(x) = 1 or 4 for each
x € Nr(uw) U Np(v). Without loss of generality, we may suppose that N (u) =
{u,uyusl, Np(v) ={vy,v5,v3}, uy € Np(u) N Np(v) and set Ty = (T —
wu) +uv. Thus T, €CT, and T, T. Also, if Y, =eS5%ea(T)—
eS0red(Ty), then clearly
Y, = eV/(@r@)-17+4 4 of(@r@)-1D+4 4 of(dr(us)-1?+4
+ eV @rD-1%+4 4 oJ(ar@)-1D2+4 4 o/ (dr(@s)-1)2+4
— eV(@ru)-12+9 _ o/ (dr(uz)-1)2+1 _ o/ (dr(us)-1)2+1

— eV @r)-12+9 _ o/[dr@2)-12+9 _ o/(dr(vs)-1)2+9 ~ (.
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Therefore, eS0red(T) < e5%red(T,), a contradiction. Cases (i—iii) contradict the
choice of T and hence n3(T) < 1. [

Lemma 2.10. Let T have maximum value of ERSI among all members of
CT,. Thenm;,(T) < 1.

Proof. Suppose, by way of contradiction, that ms ,(T") = 2. Using Lemmas 2.5, 2.8 and 2.9
yields that there exits subset {wvwx,yz} of V(T) such that {uw,wv,wzxy}c
E(T), dr(w) =dr(v) =dr(x) =4, dr(w)=3 and dr(y) =1. Without loss of
generality, we may suppose that z # x. Set T, = (T — {uw,wv,wz}) + {uv,yw,yz}. Thus
T, €CT, and T, = T. Also, if Y, = eS0red(T) — eS0reda(T,), Then Y, = V13 4 &3 —
e3V2 — 2 < 0. Hence eSOred(T) < eSOred(T,), which is contrary to our assumption. m

Lemma 2.11. If T has maximum value of ERSI among all members of CT,,, then n,(T) +
ns(T) < 1.

Proof. By contradiction. Let n,(T) 4+ n3(T) = 2. Thus there are three below cases for
vertices of degrees 2 and 3.

(i) n,(T) = 2. This is a contradiction to Lemma 2.8.

(i) n;(T) = 2. This case leads to a contradiction to Lemma 2.9.

(i)  ny(T) =1 and n3(T) = 1. Let u be a vertex of degree 2 and let v be a vertex
of degree 3. By Lemma 2.5, uv & E(T). In this case, without loss of
generality, we may suppose
that Ny (u) = {upuz}, Npr(v) = {v,vp,v3}, dr(uy) = dr(uz) and dr(vy) =
dr(vy) = dp(vs). Then dr(uy) =4, dr(uy) =1 by Lemma 2.6, and also
dr(v)) =4, dr(vy) =dr(v3) =1 by Lemma 2.10. Set Tg = (T —u,u) +
u,v. Thus Tg € CT;, and Tg = T. Also, if Yg = e50red(T) — e50red(Ty), then

obviously Yg=e+eV10 4 eV 4 262 — 463 — 3V2 <
0. Therefore, e5%ed(T) < eS%red(Ty), a contradiction to our assumption.
Using cases (i)-(iii) we conclude that n,(T) + n5(T) = 2 is not true. [

Theorem 2.12. Let n > 5 and let T have maximum value of ERSI among all members of
C7T,,. Then below assertions are valid:

() If n = 0(mod3), then T € ECT; .

(i)  Ifn=1(mod3),thenT € ECT;}.

(iii)  If n = 2(mod3),then T € ECT;2.
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Proof. (i) If T € ¢7;2, then by Lemma 2.6 we reach to the assertion. If n; = n, = 0, then
by relation (3) we have n, = nT_Z which is contradiction because n, is an integer
number. Otherwise, by Lemma 2.11, we have n; = 1 and n, = 0, and consequently by
relation (3), n, = "7_4, which is a contradiction to this fact that n, is an integer
number. Therefore, the first assertion is true. (ii) If T € €7}, then by Lemma 2.10 we have
the assertion. If n; = n, = 0, then by relation (3) we conclude that n, = "T_Z; but this is
contrary to this fact that n, is an integer number. Otherwise, by Lemma 2.11, we lead to
ns = 0 and n, = 1. Thus by relation (3), we have n, = "T_3 which is a contradiction to this

fact that n, is an integer number. (iii) If T € CT;2, then ECT;? = CT;? and so the assertion is
valid. Otherwise, by Lemma 2.11, (n; =1, n, =0) or (n; =0, n, =1). Now, if ny; =1

and n, = 0, then from relation (3) we conclude that n, = nT_‘L, a contradiction. Also, if

ns = 0 and n, = 1, then by relation (3), we reach to n, = "7_3 which is a contradiction. =
The next result is the revised form of Conjecture 1.1.

Corollary 2.13. Ifn > 5and T € CT,,, then

(e+ (?) e3 4+ eV10 4 (%6) e3V2, n = 0(mod3),
eS0red (T < i 2e?+ (2713—_5) e3 +eV13 ¢ (%7) e3V2, n = 1(mod3),
L(anz) e + (nT_S) e3V2, n = 2(mod3).

The equality in the first case holds if and only if T € ECT;?; the equality in the
second case holds if and only if T € ECT;}; the equality in the third case holds if and only if
T € ECT2.

Proof. The assertion follows almost immediately from relations (5—7) and Theorem 2.12. m
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