

Original Scientific Paper

Topological Indices of a Kind of Altans

SHIMA SALIMI¹AND ALI IRANMANESH^{2,•}

¹Department of Mathematics, Payame Noor University (PNU), P.O. Box: 19395-4697, Tehran, Iran ²Department of Mathematics, Tarbiat Modares University, P.O. Box 14115-137, Tehran, Iran

ARTICLE INFO

Article History:

Received: 3 August 2021 Accepted: 12 September 2021 Published online: 30 September 2021 Academic Editor: Mohammad Reza Darafsheh

Keywords:

Topological index Altan, Wiener index First and second Zagreb indices *ABC* index

ABSTRACT

Altans are a class of molecular graphs introduced recently. These graphs are attractive to many chemists and mathematicians. A topological index is a numerical invariant calculated for a description of molecular graphs. In this paper, we compute a few topological indices of Altans such as Wiener index, second Zagreb index, atom-bond connectivity (*ABC*) index, ABC_4 index, etc.

© 2021 University of Kashan Press. All rights reserved

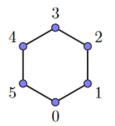
1. INTRODUCTION

In First-time Altans, having been obtained from benzenoids by adding a ring to all outer vertices of valence two [1], were introduced as planner systems. Later, Ivan Gutman generalized altans to arbitrary graphs [3]. In this paper, we follow Gutman's model for altans. Suppose Γ is an arbitrary connected graph of order n, S is a subset of Γ of cardinality k and $V(\Gamma) = \{0, 1, ..., n - 1\}$. Consider $S_0 = \{n, n + 1, ..., n + k - 1\}$ and $S_1 = \{n + k, n + k + 1, ..., n + 2k - 1\}$. We map the pair (Γ, S) to the pair (Γ_1, S_1) by adding the cycle C of cardinality 2k with operation A(G, S), where C is the circle $C = \{n, n + k, n + 1, n + k + 1, ..., n + k - 1, n + 2k - 1, n\}$. Finally, we attach C to Γ by edges between S and S₀ of the form (s_i, s_{n+i}) where $0 \le i \le k$ and S_i is the *i*-th vertex of

[•]Corresponding author (Email: iranmanesh@modares.ac.ir).

DOI: 10.22052/IJMC.2021.242983.1577

S. The vertices of degree 2 of C are the new peripheral root of the altan; suppose $A(G, S) = (\Gamma_1, S_1)$. By continue of this method, iterated altans by $A^n(G, S)$, called the *n*-th altan of (G, S), can be obtained. For example, by considering $\Gamma = C_6$ and $S = \{0, 1, 2, 3, 4, 5\}$, the graph in Figure 1 is extended to the one depicted in Figure 2.



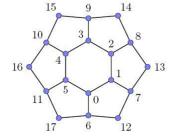


Figure 1. Benzene molecule (C_6) .

Figure 2. Altan of benzene by considering $S = \{0, 1, 2, 3, 4, 5\}.$

By continuing to use this method, we can obtain the altan of Figure 3 and finally the altan with n circles.

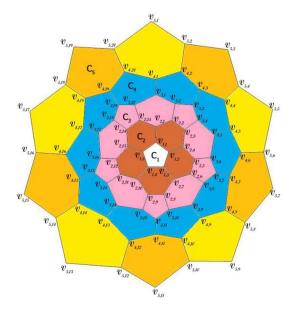


Figure 3. Altan with *n* circles.

First, we denote the circles of this altan by C_i , $1 \le i \le n$. Also, we mark the vertices of C_1 by $v_{i,1}$, $1 \le i \le 5$, the vertices of C_2 by $v_{i,2}$, where $1 \le i \le 15$ and finally the vertices of other cycles by $v_{i,i}$, where $1 \le i \le 20$ and $1 \le j \le n$.

Up to now, many papers published about computation of some topological indices. For example see the references [6,7,8,9,10,11,12,13]. In this paper, we compute some topological indices for this kind of altans.

2. Some Topological Indices of Altan

The Wiener index of a connected graph is the sum of all distances between its distinct vertices. In fact, the Wiener index of a connected graph Γ , defined in [5] as:

$$W(\Gamma) = \frac{1}{2} \sum_{u,v \in V} d(u,v),$$

where V is the set of vertices of Γ , and d(u, v) is the distance between vertices u and v.

Lemma 1. The sum of all distances between vertices of C_1 and all other vertices of the altan with *n* circles such that n > 10 is denoted by $D(C_1)$ and is equal to $D(C_1) = 100n^2 - 650n + 5545$. For $n \le 10$, the sum of all distances between vertices of C_1 and all other vertices of the altan with *n* circles can be taken from the Table 1.

Table 1. The sum of all distances between vertices of C_1 and all other vertices of the altan with *n* circles, $n \le 10$.

Number of Cycles	1	2	3	4	5	6	7	8	9	10
$D(C_1)$	30	245	705	1345	2165	3165	4350	5725	7290	9045

Proof. By using simple computation, it is effortless to obtain the table above. Suppose n > 10. Since C_1 is a symmetric pentagon, it would suffice to compute the sum of all distances between $v_{1,1}$ and other vertices of the altan, and deduce it for other vertices of C_1 . By using straightforward computation, we can infer that the sum of all distances between $v_{1,1}$ and vertices of C_1 and C_2 are 6 and 43 respectively. In Table 1, the sum of all distances between $v_{1,1}$ and vertices of C_{i} , $3 \le i \le 10$, are specified. Obviously, we can conclude that there is a regular case for distances between $v_{1,1}$ and vertices of C_{i+1} and vertices of C_i , $i \ge 11$. Therefore, distances between $v_{1,1}$ and vertices of C_i .

If *i* is even, then the distances between $v_{1,1}$ and vertices of C_{i} , $3 \le i \le n$, are as follows:

$$d(v_{1,1}, v_{i,k}) = \begin{cases} d(v_{1,1}, v_{i,k-1}) + 1 & \text{If } k \text{ is } odd, \\ \min\{d(v_{1,1}, v_{i,k-1}), d(v_{1,1}, v_{i,k+1})\} & \text{If } k \text{ is } even. \end{cases}$$

If *i* is odd, then the distances between $v_{1,1}$ and vertices of C_{i} , $3 \le i \le n$, are as follows:

$$d(v_{1,1}, v_{i,k}) = \begin{cases} \min\{d(v_{1,1}, v_{i,k-1}), d(v_{1,1}, v_{i,k+1})\} & \text{If } k \text{ is odd}, \\ d(v_{1,1}, v_{i,k-1}) + 1 & \text{If } k \text{ is even.} \end{cases}$$

Using by the above relations, the sum of distances between $v_{1,1}$ and other vertices of altan is computed in follow:

$$\begin{split} D(v_{1,1}) &= 6 + 43 + 92 + \sum_{i=3}^{5} (i(4 + 2(i-3)) + 4(5 + 2(i-3))) \\ &+ (6-i)(6 + 2(i-3)) + 10) + \sum_{i=4}^{6} (i(4 + 2(i-3)) + 4(5 + 2(i-3))) \\ &+ (6-i)(6 + 2(i-3))) + \sum_{i=6}^{9} (i(4 + 2(i-3)) + (10-i)(5 + 2(i-3)) + 10)) \\ &+ \sum_{i=6}^{9} (i(4 + 2(i-3)) + (10-i)(5 + 2(i-3))) \\ &+ \sum_{i=10}^{n-1} (i(4 + 2(i-3)) + 10) + \sum_{i=11}^{n} (i(4 + 2(i-3))) \\ &= 20n^2 - 130n + 1109. \end{split}$$

Since C_1 is symmetric, the relations above show that the sum of distances between all vertices of C_1 and those of altan with *n* circles such that n > 10 is $D(C_1) = 5(20n^2 - 130n + 1109) = 100n^2 - 650n + 5545$.

Lemma 2. The sum of all distances between vertices of C_2 and all other vertices which belong to circles C_i , $i \ge 2$, of the altan with n circles such that n > 11 is $D(C_2) = 350n^2 - 460n - 1920$. For $n \le 11$, the sum of all distances between vertices of C_2 and all other vertices of the altan with $n \ge 2$ circles can be derived from the Table 2.

Table 2. The sum of all distances between vertices of C_2 and all other vertices of the altan with $2 \le n \le 11$ circles.

Number of Cycles	2	3	4	5	6	7	8	9	10	11
$D(C_2)$	770	2200	3980	6290	9050	12285	16020	20275	25070	30430

Proof. We divide the vertices of C_2 in two parts:

The vertices located on interface of hexagons, and those not located on interface of hexagons. Thus, we consider the vertices $v_{2,1}$ and $v_{2,2}$. The sum of all distances between $v_{2,1}$ and vertices of C_2 is equal to 48. By using a method similar to Lemma 1, we can show that the sum of all distances between $v_{2,1}$ and vertices of C_i , $3 \le i \le 14$, is as follows:

$$D(v_{2,1}) = 48 + 94 + \sum_{i=4}^{6} (16i - 6) + \sum_{i=3}^{5} (16i + 4) + \sum_{i=4}^{6} (17i - 12) + \sum_{i=6}^{7} (17i - 2) + \sum_{i=8}^{9} (19i - 20) + \sum_{i=7}^{8} (17i + 6) + \sum_{i=10}^{n} (20i + 24) + \sum_{i=10}^{n-1} (20i + 34) + 350 = 30n^2 + 48n - 440.$$

The sum of all distances between $v_{2,2}$ and vertices of C_2 is equal to 53. Similarly, the sum of all distances between $v_{2,2}$ and vertices of $C_{i,3} \le i \le 14$, is as follows:

$$D(v_{2,2}) = 2008 + \sum_{i=12}^{n} 10(2+2(i-3)) + \sum_{i=11}^{n-1} (10(2+2(i-3)) + 10)$$

= 2008 + $\sum_{i=12}^{n} (20i - 40) + \sum_{i=11}^{n-1} (20i - 30) = 20n^2 - 70n + 28.$

Therefore, the sum of all distances between vertices of C_2 and all other vertices of the altan with *n* circles is $D(C_2) = 5(30n^2 + 48n - 440) + 10(20n^2 - 70n + 28) = 350n^2 - 460n - 1920.$

Lemma 3. The sum of all distances between vertices of C_3 and all other vertices of C_{i_1} , $3 \le i \le n$, such that n > 12 is $D(C_3) = 400n^2 - 200n + 10080$. For $n \le 12$, the sum of all distances between vertices of C_3 and all other vertices of the altan with $n \ge 3$ circles can be extracted from Table 3.

Table 3. The sum of all distances between vertices of C_3 and all other vertices of the altan with $3 \le n \le 12$ circles.

Number of Cycles	3	4	5	6	7	8	9	10	11	12
$D(C_3)$	1980	4400	7280	10660	14580	19080	24200	29980	36460	43680

Proof. We divide the vertices of C_3 of the form $v_{3,i}$ into two parts where *i* is either odd or even. Thus, we consider two vertices $v_{3,1}$ and $v_{3,2}$. By employing a method remarkably similar to Lemma 1 and preparing a table such as Table 1, the following results can be achieved:

$$D(v_{31}) = 2140 + \sum_{i=13}^{n} 10(2(i-3)) + \sum_{i=12}^{n-1} (10(2(i-3)) + 10)$$

= 2140 + $\sum_{i=13}^{n} (20i - 60) + \sum_{i=12}^{n-1} (20i - 50)$
= 20n² - 110n + 580.

$$D(v_{32}) = 1858 + \sum_{i=12}^{n} 10(1 + 2(i - 3)) + \sum_{i=12}^{n-1} (10(1 + 2(i - 3)) + 10)$$

= 1858 + $\sum_{i=12}^{n} (20i - 50) + \sum_{i=11}^{n-1} (20i - 40)$
= 20n² - 90n + 428.

Thus the sum of all distances between vertices of C_3 and all other vertices of C_i , $3 \le i \le n$, is $D(C_3) = 10(20n^2 - 110n + 580) + 10(20n^2 - 90n + 428) = 400n^2 - 2000n + 10080.$

Lemma 4. The sum of all distances between vertices of C_4 and all other vertices of $C_{i_1} 4 \le i \le n$, such that n > 13 is $D(C_4) = 400n^2 - 2800n + 12480$. For $n \le 13$, the sum of all distances between vertices of C_4 and all other vertices of the altan with $n \ge 4$ circles can be drawn out from Ttable 4.

Table 4. The sum of all distances between vertices of C_4 and all other vertices of the altan with $4 \le n \le 12$ circles.

Number of Cycles	4	5	6	7	8	9	10	11	12	13
$D(C_4)$	2000	4420	7300	10680	14600	19100	24220	30000	36480	43770

Proof. Similar to Lemma 3, we divide the vertices of C_4 of the form $v_{4,i}$ into two parts where *i* is either odd or even. Therefore, we consider two vertices $v_{4,1}$ and $v_{4,2}$. Similar to the previous lemma, the following results can be shown:

$$D(v_{4,1}) = 1858 + \sum_{i=13}^{n} 10(1 + 2(i - 4)) + \sum_{i=12}^{n-1} (10(1 + 2(i - 4)) + 10)$$

= 1858 + $\sum_{i=12}^{n} (20i - 70) + \sum_{i=11}^{n-1} (20i - 60) = 20n^2 - 130n + 538.$

$$D(v_{4,2}) = 2140 + \sum_{i=14}^{n} 10(2(i-4)) + \sum_{i=13}^{n-1} (10(2(i-4)) + 10)$$

= 2140 + $\sum_{i=14}^{n} (20i - 80) + \sum_{i=12}^{n-1} (20i - 70)$
= 20n² - 150n + 710.

Thus the sum of all distances between vertices of C_4 and all other vertices of $C_{i}, 4 \le i \le n$, is $D(C_4) = 10(20n^2 - 130n + 538) + 10(20n^2 - 150n + 710) = 400n^2 - 2800n + 12480.$

Lemma 5. The sum of all distances between vertices of C_k , $k \ge 5$, and all other vertices of C_i , $5 \le i \le n$, such that n > k + 9 is $D(C_i) = 400n^2 - 2800n + 12480$. For $n \le k + 9$, the sum of all distances between vertices of C_k and all other vertices of the altan with $n \ge k$ circles can be obtained from Table 5.

Table 5. The sum of all distances between vertices of C_k and all other vertices of the altan with $k \le n \le k + 9$ circles and $k \ge 5$.

Number of Cycle	k	<i>k</i> + 1	<i>k</i> + 2	<i>k</i> + 3	<i>k</i> + 4	<i>k</i> + 5	<i>k</i> + 6	<i>k</i> + 7	<i>k</i> + 8	<i>k</i> + 9
$D(C_k)$	2000	4420	7300	10680	14600	19100	24220	30000	36480	43770

Proof. By having considered the figure of the altan and computed all distances between vertices of C_{k} , $k \ge 5$, and all other vertices of C_i , $5 \le i \le n$, the following results are yielded:

If k is odd, then we have $D(v_{k,i}) = D(v_{4,i+1})$ and if k is even, then $D(v_{k,i}) = D(v_{4,i})$. Since the number of vertices v_{ki} where *i* is even is equal to vertices v_{ki} where *i* is odd, the result is confirmed.

By using the above lemmas for each case, we can compute the Wiener index. The second Zagreb index of Γ is defined as $M_2(\Gamma) = \sum_{uv \in E(\Gamma)} d(u)d(v)$, where d(u) is the degree of vertex u.

Proposition 6. Let Γ be the altan in Figure 3. The second Zagreb index of Γ is $M_2(\Gamma) = 270n - 375$.

Proof. The number of vertices of Γ is $|V| = 5 + 15 + \sum_{i=3}^{n} 20 = 20n - 20$. The sum of all degrees of vertices of Γ where n > 1 is $\sum_{v \in V(\Gamma)} d(v) = 5 \times 3 + 15 \times 3 +$

 $\sum_{i=3}^{n-1} (20 \times 3) + 10 \times 3 + 10 \times 2 = 60n - 70.$ Thus, the cardinality of edges of Γ is $|E| = \frac{1}{2} \sum_{v \in V(\Gamma)} d(v) = 30n - 35.$ Therefore, the second Zagreb index of Γ is $M_2(\Gamma) = 9(30n - 55) + 20 \times 6 = 270n - 375.$

The first and the second product Zagreb index of Γ is denoted by $PM_1(\Gamma)$ and $PM_2(\Gamma)$ respectively and defined as $PM_1(\Gamma) = \prod_{uv \in E(\Gamma)} (d(u) + d(v))$ and $PM_2(\Gamma) = \prod_{uv \in E(\Gamma)} d(u)d(v)$ [2,4].

Proposition 7. The first and the second product Zagreb index of Γ are $PM_1(\Gamma) = 6^{(30n-55)} \times 5^{20}$, $PM_2(\Gamma) = 3^{(90n-145)} \times 2^{20}$.

Proof. Γ has 30n - 55 edges with vertices of degree 3 and 20 edges in circle C_n such that one edge is of degree 2 and the other one is of degree 3. So we have $PM_1(\Gamma) = (3+3)^{(30n-55)} \times (2+3)^{20} = 6^{(30n-55)} \times 5^{20}$ and $PM_2(\Gamma) = (3\times3)^{(3n-55)} \times (2\times3)^{20} = 3^{(90n-145)} \times 2^{20}$.

Set
$$M_{r,s}(\Gamma) = \sum_{u,v \in V} (d(u)^r d(v)^s + d(v)^r d(u)^s).$$

Proposition 8. $M_{r,s}(\Gamma) = 60 \times 3^r 3^s n - 1103^r 3^s + 20(3^r 2^s + 2^r 3^s).$

Proof. Since Γ has 30n - 55 edges with vertices of degree 3 and 20 edges in circle C_n such that one edge is of degree 2 and the other edge is of degree 3, the $M_{r,s}(\Gamma)$ index of Γ is $M_{r,s}(\Gamma) = 2 \times 3^r 3^s (30n - 55) + 20(3^r 2^s + 2^r 3^s) = (60 \times 3^r 3^s n - 1103^r 3^s + 20(3^r 2^s + 2^r 3^s).$

The atom-bond connectivity (ABC) index [8] is defined as

$$ABC(\Gamma) = \sum_{uv \in E(\Gamma)} \sqrt{\left(\frac{d(u)+d(v)-2}{d(u)d(v)}\right)}.$$

Proposition 9. The ABC index of Γ is $ABC(\Gamma) = 20n - \frac{110}{3} + 10\sqrt{2}$.

Proof. By argument similar to the above mentioned theorem, we have $ABC(\Gamma) = (30n - 55)\sqrt{\frac{3+3-2}{3\times 3}} + 20\sqrt{\frac{3+2-2}{3\times 2}} = 20n - \frac{110}{3} + 10\sqrt{2}.$

The $ABC_4(\Gamma)$ index is defined as

$$ABC_4(\Gamma) = \sum_{uv \in E(\Gamma)} \sqrt{\left(\frac{s(u)+s(v)-2}{s(u)s(v)}\right)},$$

where s(u) and s(v) are the sum of all vertices which adjacent to u and v respectively.

Proposition 10. The *ABC*₄ index of Γ is $ABC_4(\Gamma) = \frac{40}{3}n - \frac{260}{9} + 10\sqrt{\frac{14}{63}} + 20\sqrt{\frac{11}{42}}$.

Proof. By argument similar to Theorem 8, we can show that $ABC_4(\Gamma) = (30n - 65) \times$

$$\sqrt{\frac{9+9-2}{9\times9}} + 10\sqrt{\frac{9+7-2}{9\times7}} + 20\sqrt{\frac{6+7-2}{6\times7}} = \frac{40}{3}n - \frac{260}{9} + 10\sqrt{\frac{14}{63}} + 20\sqrt{\frac{11}{42}}.$$

ACKNOWLEDGMENTS. The authors would like to thank the referee for carefully reading and giving some fruitful suggestions

REFERENCES

- 1. N. Basic and T. Pisanski, Iterated altans and their properties, *MATCH Commun. Math. Comput. Chem.* **74** (2015) 645–658.
- 2. M. Eliasi, A. Iranmanesh and I. Gutman, Multiplicative version of first Zagreb index, *MATCH Commun. Math. Comput. Chem.* **68** (2012) 217–230.
- 3. I. Gutman, Altan derivatives of a graph, Iranian J. Math. Chem. 5 (2) (2014) 85–90.
- 4. I. Gutman and K. C. Das, Some properties of the second Zagreb index, *MATCH Commun. Math. Comput. Chem.* **50** (2004) 103–112.
- 5. S. Hayat and M. Imran, Computation of topological indices of certain networks, *Appl. Math. Comput.* **240** (2014) 213–228.
- 6. M. Javaid, M. U. Rehman and J. Cao, Topological indices of rhombus type silicate and oxide networks, *Canadian J. Chem.* **95** (2) (2017) 134–143.
- 7. M. H. Khalifeh, H. Yousefi-Azari and A. R. Ashrafi, Vertex and edge PI indices of Cartesian product graphs. *Discrete Appl. Math.* **156** (10) (2008) 1780–1789.
- J.-B. Liu, S. Wang, C. Wang and S. Hayat, Further results on computation of topological indices of certain networks, *IET Control Theory Appl.* 11 (13) (2017) 2065–2071.
- B. Rajan, A. William, C. Grigorious and S. Stephen, On certain topological indices of silicats, Honeycomb and hexagonal networks, *J. Comp. & Math. Sci.* 3 (5) (2012) 530–535.
- 10. M. Rosary, C. J. Deeni and D. Antony Xavier, Computing stone topological indices of triangular silicate network, *Proc.Int. Conf. Appl. Math. Theor.Comput. Sci.* 2013.
- 11. A. Soltani and A. Iranmanesh, The hyper edge-Wiener index of corona product of graphs, *Trans. Combin.* **4** (3) (2015) 1–9.
- 12. A. Soltani, A. Iranmanesh and Z. A. Majid, The edge Wiener type of topological indices, *Util. Math.* **91** (2013) 87–98.
- 13. A. Soltani, A. Iranmanesh and Z. A. Majid, The multiplicative version of the edge Wiener index, *MATCH Commun. Math. Comput. Chem.* **71** (2014) 407–416.