Iranian J. Math. Chem. 12 (3) September (2021) 161 — 174

g "Ia"'j" IrANIAN JOURNAL OF

E . .

:MC2 Mathematical Chemistry

o o . -

Mathematical Journal homepage: ijmc.kashanu.ac.ir Unlversity of Kashan

Original Scientific Paper

Computing the Hosoya and the Merrifield-Simmons
Indices of Two Special Benzenoid Systems

MERT SINAN OZ!* AND ISMAIL NACI CANGUL?

'Faculty of Engineering and Natural Sciences, Department of Mathematics, Bursa Technical
University, 16320 Bursa, Turkey

2Faculty of Arts and Science, Department of Mathematics, Bursa Uludag University, 16059 Bursa,
Turkey

ARTICLE INFO ABSTRACT

Article History: Gutman et al. gave some relations for computing the Hosoya
Received: 11 Augut 2021 indices of two special benzenoid systems R, and B,. In this
Accepted: 30 September 2021 paper, we compute the Hosoya index and Merrifield-Simmons
Published online: 30 September 2021 index of R,, and P, by means of introducing four vectors for each
Academic Editor: Ali Reza Ashrafi benzenoid system and index. As a result, we compute the Hosoya
Keywords: index and the Merrifield-Simmons index of R,, and P, by means
Benzenoid systems of a product of a certain matrix of degree n and a certain vector.

Hexagonal systems
Hosoya index
Merrifield-Simmons index © 2021 University of Kashan Press. All rights reserved

1. INTRODUCTION

Let G = (V,E) be a finite simple graph with n vertices and m edges. A matching in G is a
set of independent edges such that no two edges have a common vertex. A matching
containing k mutually independent edges is called a k — matching. Maximum possible value
of k in G is called the k — matching number and it is denoted by p(G, k). By definition
p(G,0) = 1. The Hosoya index (Z index) of G was defined by Hosoya in [8]. It is denoted
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by Z(G) and is defined as Z(G) = }.},—, p(G, k), where p(G,r) # 0 whereas p(G,r + 1) =
0.

A set containing all neighbor vertices of a vertex v is called the neighborhood set
of v and we denote it by N; (v). Closed neighborhood set of v is a set containing all neighbor
vertices of v with v itself and we denote it by N [v]. Clearly, N;[v] = N;(v) U {v}. If any
two vertices in a subset of V(G) are not adjacent, then the subset is called an independent
vertex set of G. We denote the number of possible independent vertex sets in G with k
vertices by n(G, k). By definition, n(G,0) = 1 for all graphs and it is clear that n(G,1) =
n. The Merrifield-Simmons index of G is denoted by o(G) and it is defined as

0(G) = Yy=on(G, k),
where n(G,r) # 0 whereas n(G,r + 1) = 0 in [10]. In fact, the Merrifield-Simmons index
was introduced in 1982 by Prodinger and Tichy as just Fibonacci number of a graph [11].
Moreover, Ivan Gutman first named Merrifield-Simmons index in [6].

The Hosoya index and the Merrifield-Simmons index are two best known
topological invariants that play an important role in chemical graph theory. They are
intensively used and studied as molecular descriptors for determining some physico-
chemical properties of corresponding molecules in mathematical chemistry, see for detailed
survey [3, 18, 19]. In recent years, numerous papers have been published on the Hosoya
index and the Merrifield-Simmons index of various molecular structures, some of them are
listed in [2, 5, 9, 16-18, 20, 21].

Benzenoid systems are represented as finite 2 — connected graphs where the closed
regions are regular hexagons. In a benzenoid system, a vertex can belong to at most three
hexagons and a vertex that belongs to three hexagons is called an internal vertex of the
corresponding benzenoid system. A benzenoid system with no internal vertex is called
catacondensed benzenoid system. Conversely, if a benzenoid system has at least one internal
vertex, then it is called pericondensed benzenoid system, see for more details [4]. Some
studies on benzenoid (hexagonal) systems can be found in [1, 2, 6, 7, 12-15, 21]. Let us
denote two types of pericondensed benzenoid systems in Figure 1 and Figure 2 by R,, and
P,.

Figure 1. Benzenoid system R,,.
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Figure 2. Benzenoid system P,.

Gutman et al. gave relations for computing the Hosoya indices of the benzenoid
systems R, and P, in [5]. In the next section, we compute the Hosoya index and the
Merrifield-Simmons index of benzenoid systems R, and P, by means of introducing four
vectors for each value.

2. COMPUTING THE HOSOYA INDEX OF BENZENOID SYSTEMS R,
AND P,

The most used recurrence relations to compute the Hosoya and the Merrifield-Simmons
indices of a graph G are as follows, see [18]:

Z(G) = i-‘=1Z(Gl-), where G4, ..., G are connected components of G, (1a)
Z(G) =Z(G —ab) + Z(G — a — b), for an edge e = ab of G, (1b)
o(G) = l—[i-;1 o(G;), where Gy, ..., Gy, are connected components of G, (1¢)
0(G) = a(G —ab) —a(G — (Ng[a] — Ng[b])), for an edge e = ab of G. (1d)
In the next definition, we introduce the Hosoya vector of a graph G at the path P; by
means of two terminal vertices, similar to the vector introduced at an edge of G by Cruz et

al. in [2].

Definition 2.1. Let G be a graph. The Hosoya vector of G at the path P; with the terminal
vertices u and w (see Figure 3) is defined as

Zuw(G) = [Z2(G), Z(G —w), Z(G —w), Z(G —u—w)]".
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Figure 3. Graph G used in Theorems 2.1 and 3.1.
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Figure 4. Graph G used in Theorems 2.3 and 3.3.

Theorem 2.1. Let G be a graph derived from the edge-coalescence of a graph S and a
pericondensed hexagonal system with three hexagons at the path P; with the terminal

vertices a and ¢ of S (see Figure 3). Then

148 70
70 36
Zyw(G) =X+ Zy:(S), where X = 70 34
30 16

70
34
36
16

30

16

16|
8

Proof. By Definition 2.1. we need to compute Z(G),Z(G —u),Z(G —w) and Z(G —u —
w) to obtain Z,,,(G). We compute these values by deleting independent edges ad and ce

from G and using the recurrence relations (1a) and (1b) as follows:

Z(G)=Z(G—ad —ce)+Z(G—ad —c—e)
+Z(G—a—d—-ce)+Z(G—a—d—c—e)

=148Z(S) + 70Z(S —¢c)+70Z(S—a) +30Z(S—a—¢)

= (148,70,70,30) - Z,.(S),

Z(G-u)=Z(G—u—ad—ce)+Z(G—u—ad —c—e)

+Z(G—u—a—-d—ce)+Z(G—-u—a—-d—c—e)
=70Z(S)+34Z(S—c)+36Z(S—a)+16Z(S—a—c)
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= (70,36,34,16) - Z,.(S),

Z(G-w)=Z(G—w—ad —ce)+Z(G—w—ad —c—e)
+Z(G-w—-a—d—-ce)+Z(G-w—a—d—c—e)
=70Z(S)+36Z(S—c)+34Z(S—a)+16Z(S—a—c)
= (70,34,36,16) - Z,.(S),

ZG-u—-w)=Z(G—-u—-w—-ad—ce)+Z(G—u—w—ad—c—e)

+Z(G—-u—w—-a—-d-ce)+Z(G—-u—-w—a—d—c—e)

=30Z(S)+16Z(S—c) +16Z(S—a) + 8Z(S—a —¢)
= (30,16, 16,8) - Z,.(S).

148 70
70 36
As the result, we have Z,,,,(G) = X - Z,.(S), where X = 70 34
30 16

Let us present a natural result of the previous theorem.

70
34
36
16

165
30
16
16| |
8

Corollary 2.2. Let R,, be a benzenoid system with n naphthalene as shown in Figure 1. Then

Zw(Ry) = X™1.[148,70,70,30] .

Proof. By Theorem 2.1, we know that Z,,,,(G) = X - Z,.(S). If we apply Theorem 2.1 to R,,
n—1 times, then we get Z,, (R,) = X""'-Z,,(S"), where S’ is a fused pair of two
hexagons (naphthalene). Since S’ is naphthalene, it is clear that Z,,(S') =

[148,70,70,30]". As the result, Z,,,(R,) = X" - [148,70,70,30] .

In the next definition, we introduce the Hosoya vector of graph G at the path P; by

means of all three vertices of the path.

Definition 2.2. Let G be a graph. The vector at the path P; of G with vertices u, v and w

(see Figure 4) is
Z(G)
Z(G—u)
Z(G —v)
Z(G—w)
Zuvw(G) = Z(G —u— U)
Z(G—v—w)
Z(G—u—w)
Z(G—u—v—w)l
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Theorem 2.3. Let G be a graph derived from the edge-coalescence of a graph S and a

pericondensed hexagonal system with three hexagons at the path P; with the vertices a, b

and c of S (see Figure 4). Then

(107 63 55 63 34 34 37 217
52 32 24 31 16 15 19 10
45 26 25 26 15 15 15 9
52 31 24 32 15 16 19 10
31 19 15 18 10 9 11 6]
31 18 15 19 9 10 11 6
21 13 9 13 6 6 8 4

L21 13 9 13 6 6 8 4

Zuow(G) = A+ Zyp(S), where A =

Proof. By Definition 2.2, we have to compute Z(G),Z(G —u),Z(G —v), ... ,Z(G —u —
v —w) to get Z,,,,(G). This time, we delete independent edges cf, be and ad from G and
using the recurrence relations (1a), (1b), we compute these values as follows:

Z(G)=Z(G—-cf —be—ad)+Z(G—cf —be—a—d)
+Z(G—cf—b—e—ad)+Z(G—cf—b—e—a—d)
+Z(G—-—c—f—-be—ad)+Z(G—c—f—be—a—Ad)
+Z(G—c—f—-b—e—ad)+Z(G—c—f—-b—e—a—d)
= 107Z(S) + 63Z(S — a) + 55Z(S — b) + 34Z(S —a — b)

+6372(S—¢) +372(S—a—c) +34Z(S —b—c) + 217 (Z 9
— (107,63,55,63,34,34,37,21) - Zype(S),

26 -w)=z(0 " Cf)+Z(G_”_Cf)

( be — ad be —a—d
+Z( Gb —ue - ad) t (—bG—_eu—_aCj: d)
+Z( j(f; _I;ta_—cad> +2 (—fﬁgeu—_ac— d)
+Z (—fﬁgz;i ad) +Z(—f —Gb_—ue_—ca - d)
= 52Z(S) +32Z(S —a) +24Z(S—b) + 16Z(S —a—b)

+312(S =) +192(S —a— ) + 1525 —b— ) + 102 (} _ )
= (52,32,24,31,16,15,19,10) - Zgp.(S),
N (G—Vv—cf G—v—cf
-0 =202 ) 02(5 )

e—ad —be—a—d

+Z (—Gb_—ve_—cc{d) +Z (—bG—_ev—_aCj: d)
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G—v—c G—v—c
+Z(—f—be—ad>+Z(—f—be—a—d>

G—v—c G—v—c
+Z(—f—b—e—ad)+Z(—f—b—e—a—d)

= 457(S) + 26Z(S — a) + 25Z(S — b) + 15Z(S — a — b)
+26Z(S—¢) +15Z(S—a—c) + 152(S — b — ¢) + 92(
= (45,26, 25,26,15,15,15,9) - Zype(S),

9

Z(G—w)=Z(G_W_Cf)+Z(G_W_Cf)

be — ad —be—a—-d
G—w-—cf G—w-—cf
tZ —b—e—ad)+Z(—b—e—a—d)
G—w-—c G—w-—c
+Z(—f—be—ad>+Z(—f—be—a—d)

G—w-—c G—w-—c
+Z(—f—b—e—ad)+Z(—f—b—e—a—d)

= 527(S) + 31Z(S — @) + 247Z(S — b) + 152(S — a — b)
+327(S— ) +19Z(S—a —¢) + 16Z(S — b — ¢) + 10Z (i ~9
— (52,31,24,32,15,16,19,10) - Zp.(S).

Z(G-u-v)=2 (—c? _ Ilje_—vad) +Z (G—_bz:;:;f)

(O D) (6 )

_I_Z(G—u—v—c)_l_Z( G—-u—v-—c )
—f —be —ad —f—be—a—-d

+Z<G—u—v—c>+z( G—-u—v-—c )
—f—-b—e—ad —f—-b—e—a—d
=31Z(S)+19Z(S—a) + 15Z(S—b) + 10Z(S —a — b)

+18Z(S —¢) + 11Z(S — a — ¢) +9Z(S—b—c)+6Z(i:CCl)
= (31; 19; 15; 18; 101 9r 11! 6) ) Zabc(S)a

2G-v-w=2(_ 5T )2 (LT

ez(C )2 Gy )

+Z<G—v—w—c)+Z( G—-v—w-—-c )
—f —be —ad —f—be—a—-d

+Z< G—-v—w-—-c >+Z( G—-v—w-—-c )
—f—-b—e—ad —f—-b—e—a—d
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= 312(S) + 18Z(S — @) + 152(S — b) + 9Z(S — a — b)
+192(S— ) +11Z(S—a—¢) + 10Z(S — b — ¢) + 6Z (i ~9
— (31,18,15,19,9,10,11,6) - Zyo(S).

2G-u-w=z(_ T3+ 2 (T )

I G R G

+Z<G—u—w—c)+z( G—u—w-—c )
—f —be —ad —f—be—a—-d

+Z< G—-u—w-—c >+Z( G—-u—w-—c )
—f—-b—e—ad —f—-b—e—a—d

= 21Z(S) + 13Z(S — @) + 9Z(S — b) + 6Z(S — a — b)
+13Z(5—c)+8Z(S—a—c)+6Z(5—b—c)+4z(
= (21,13,9,13,6,6,8,4) - Zyp.(S),

G—-u—v—w G—-u—v—w
Z(G_u_v_w):Z(—cf—be—ad)+Z(—cf—be—a—d>

G—-u—-v—w G—u—v—w-—cf
+Z<—cf—b—e—ad)+z( -b—e—a—-d )

_I_Z(G—u—v—w—c)+Z(G—u—v—w—c>
—f —be —ad —f—be—a—d

+Z(G—u—v—w—c)_l_Z(G—u—v—w—c)
—f—-b—e—ad —f—-b—e—a-—-d
=21Z(S)+13Z(S—a)+9Z(S—b)+6Z(S—a—b)
+13Z(S—c)+82(S—a—c)+6Z(S—b—c)+4Z(

= (21, 13, 9, 13, 6; 6; 8) 4) ) Zabc(S)'

)

-9

As the result, we have Z,,,,,(G) = A+ Z4,(S), where A is as given in Theorem. W

Corollary 2.4. Let P, be a benzenoid system with n naphthalene as shown in Figure 2. Then
Zuow(B) = A™- [18,8,8,8,5,5,3,3] T.

Proof. By Theorem 2.3, we know that Z,,,,, (G) = A - Z5.(S). We apply Theorem 2.3 to P,
n times, then we get Z,,, (P,) = A" - Z,,,(S"), where S’ is a hexagon (benzene). Since S’

is a hexagon (benzene), it is clear that Z,,,, (") =[18,8,8,8,5,5,3,3] T. As the result, we
achieve Z,,,, (P,) = A™ - [18,8,8,8,5,5,3,3] 7. ]
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3. COMPUTING THE MERRIFIELD—SIMMONS INDEX OF BENZENOID
SYSTEMS R,, AND P,

In the next definition, we introduce the Merrifield-Simmons vector of graph G at the path P;
by means of terminal two vertices.

Definition 3.1. Let G be a graph. The Merrifield-Simmons vector of a graph G at the path
P; with terminal vertices u and w (see Figure 3) is defined as

ouw(G) = [0(G), 0(G — Ng[ul), 0(G — Ng[wl), (G — Ng[u] — Ng[w])]".

Theorem 3.1. Let G be a graph derived from the edge-coalescence of the graph S and a
pericondensed hexagonal system with three hexagons at the path P; with the terminal
vertices a and ¢ of S (see Figure 3). Then

114 -34 -34 13

21 -8 -9 3

34 -9 -8 3]

13 -3 -3 1

Ouw(G) =Y+ 04:(S), where Y =

Proof. By Definition 3.1, we compute o (G), 0 (G — Ng[u]), 6 (G — Ng[w]), 0 (G — Ng[u] —
N¢[w]) by deleting independent edges ad and ce from G and using the recurrence relations
(1c), (1d) as follows:

0(G) =0(G —ad —ce) —a(G —ad — Ng[c]—Ng¢[e])
—0(G — Ngla] — Ng[d] — ce) + o(G — Ngla] — Ng[d] — Nglc] — Ng[e])

— 1140(S) — 340(S — Ny[c]) — 340(S — Ng[a]) + 130 (5 __NNTC[?])
G
= (114, —34,-34,13) - 6,.(5),

0(G — Ng[u]) =0(G — Ng[u] —ad —ce) — o (21;61[\106][3]1\76&?)
G — Ng[u] — Ng[a] G — N;[u] — Ng[a]
_“( Nyld] - ce ) o (—NG [d] — Nglc]-N, [e])
S — Ngla]
= 210(S) — 90(S — Ng[c]) — 8(S — Ng[a]) + 30( T )

= (21,—-8,-9,3) : 0,.(5),

O'(G _N(;[W]) = O'(G _NG[W] —ad —ce) _O_(G —NG[W] —ad)

—Ng[c] — Ngle]

G — Ng[w] — Ng[a] G — Ng[w] — Ngla]
“’( Ngld] - ce ) 7 (—NG [d] - Nglc]N; [e]>
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= 340(S) — 80(S — Ng[c]) — 95(S — Ng[al) + 30 (S—_NIZG[(E?]>

= (34,-9,-8,3) - 0,.(5),

G —Ng[ul\ _ (G — Ng[u] — Ng[w]\ __( G — Ng[u] — Ng[w]
a( —NG[GW] ) B a( —Gad — ceG ) a(—ad —GNG[C] —7VG[e])
_G(G — Ng[u] — Ng[w] ) <G_NG [u] = Ng[w] — N [a])
—Ngla]—Ng[d] — ce —Ng[d] — Ng[c]—Ngle]
= 130(S) — 30(S — Ng[c]) — 30(S — Ng[a]) + a(

= (13,-3,-3,1) - 0,.(5).

S —Ng [a])
—Ng|c]

114 -34 -34 13

v, {21 -8 -9 3
As the result, 0,,,,(G) =Y - 04.(S), where Y = 34 —9 -8 3| u

13 -3 -3 1

Corollary 3.2. Let R,, be a benzenoid system with n naphthalene as shown in Figure 1. Then
ouw(Ry) = Y™ 1.[114,34,34,13]7.

Proof. By Theorem 3.1, we know that 0y,,(G) =Y * d,.(S). We apply Theorem 3.1 to R,
n —1 times to get oy, (Ry,) = Y™ 1 - 0,,,(S"), where S’ is a fused pair of two hexagons
(naphthalene). Since S’ is naphthalene, it is clear that gy, (S") = [114, 34,34, 13]". As the
result, oy, (R,) = Y"1 - [114,34,34,13] . m

In the next definition, we introduce the Merrifield-Simmons vector of a graph G at
the path P; by means of all three vertices of the path.

Definition 3.2. Let G be a graph. The Merrifield-Simmons vector of G at the path P; with
vertices u, v and w (see Figure 4) is defined as

[ amﬁﬁmb ]

quw(G) = | G(G - NG [U]) |
a(G — Nglwl) |
(G — Ng[u] — Ng[w)))

Theorem 3.3. Let G be a graph derived from the edge-coalescence of the graph S and a
pericondensed hexagonal system with three hexagons at the path P; with the vertices a, b
and ¢ of S (see Figure 4). Then
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134 —49 —45 —49 18
42 -14 -18 -15 5
Ouow(G) = B+ 0gpe(S), where B=|34 —-13 -9 -13 5|
42 -15 —-18 -14 5
lis -6 -9 -6 2l

Proof. By Definition 3.2, we compute o(G),0(G — Ng[u]),o(G — Ng[v]),0(G —
N¢;[w]),0(G — Ng[u] — Ng[w]) by deleting independent edges cf, be and ad from G and
using the recurrence relations (1c), (1d) as follows:

0(G) =0(G —cf —be —ad) —a(G — cf — be — Ng[a]—Ng;[d])
—0(G — cf — Ng[b] — N¢le]) — o(G — Nglc] — Ng[f] — ad)
+0(G — Nglc] — Nglf]-N¢la] — Ngld])
= 1340(S) — 490(S — Ng[a]) — 450(S — Ng[b]) — 490 (S — Ng[c])
+180(S — Ng[a] — Ng[c])
= (134, —49,—45,—49,18) - 5,,.(S),

G — Ng[u] —cf )

0(G — Ng[u]) = 0(G — Ng[u] — cf — be — ad) _G<—be — N¢la] — Ng[d]

G — Ng[u] — cf G — Ng[u] — Ng|c]
‘Gﬂwdﬁ—wdd)‘“< Nglf] - ad )

G — NG[u] - NG[C]
*“me—mm—mwﬁ

=420(S) — 140(S — N;[a]) — 180(S — Ng[b])
—150(S — Ng[c]) + 50(S — N.[a] — Ng[c])
= (42,—14,-18,-15,5) - 64,.(S),

G — Ng[v] —cf )

(G — Ng[v]) = 0(G — Ng[v] — ¢f — be — ad) _a(—be — Ng[a] — Ng[d]

G — Ng[v] —cf G — Ng[v] — Ng[c]
‘Gﬂwdﬁ—wdd)‘“< Nglf] - ad )

G — NG[V] - NG[C]
*“me—mm—mwﬁ

= 340(S) — 130(S — Ng[a]) — 90(S — N¢[b])
—130(S — Ng[c]) + 50(S — Ng[a] — Ng[c])
= (34,—13,-9,—13,5) - 0,p(S),
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9(G — No[w]) = 0(6 — No[w] — cf —be —ad) —a ("~ 113 [[(Vzv]]—_ 155 [d])

G — Ng[w] —cf G — Ng[w] — Ng[c]
- (—NG [b] — N [e]) B "< Nylf] - ad )

G — NG[W] — Ng [C]
to (—NG [f] = Ng[a] — N [d]>

=420(S) — 150(S — Ng[a]) — 180 (S — Ng[b])
—140(S — Ng[c]) + 50(S — Ng[a] — Ng[c])
= (42,—15,-18,—14,5) - 0,,:(S),

U(G —NG[U]> _ 0<G — Ng[u] _NG[W]> _J(G — Ng[u] — Ng[w] —Cf>

—Ng[w] —cf —be —ad —be — Ng[a] — Ng[d]

_J( G — Ng[u] = Ng[w] ) _ ( G — Ng[u] = Ng[w] )
—cf — Ng[b] — Ng €] —Ng[c] = Ng[f] — ad
G — Ng[u] — Ng[w] — Ng[c]

(" ol Nofa — Nld] )

= 180(S) — 60(S — N¢g[a]) —9a(S — Ng[b])

—60(S — Ng[c]) + 20(S — Ng[a] — Ng[c])

= (18,—6,—9,—6,2) - a4,:(5).

As the result, we have a,,,,,, (G) = B+ 04,-(S), where B is as given in Theorem. |

Corollary 3.4. Let B, be a benzenoid system with n naphthalene as shown in Figure 2.
Then oy, (P,) = B™-[18,5,5,5,2] .

Proof. By Theorem 3.3, we know that 6, (G) = B * d4p,-(S). We apply Theorem 3.3 to B,
n times to get 0y (B,) = B™ - 04y,(S"), where S’ is a hexagon (benzene). Since S’ is a
hexagon (benzene), it is clear that oy, (') = [18,5,5,5,2]". Consequently, gy, (B,) =
B™-[18,5,5,5,2] . |

As a consequence, we achieve the formulae of R,, and P, that depend on the number
of naphthalene to compute the Hosoya index and Merrifield-Simmons index in Corollaries
2.2 2.4 3.2 and 3.4. We believe that the methods given here for the two indices can be
extended to other topological graph indices.



Computing the Hosoya and the Merrifield—-Simmons Indices 173

REFERENCES

1. M. Alishahi and S. H. Shalmaee, On the edge eccentric and modified edge eccentric

connectivity indices of linear benzenoid chains and double hexagonal chains, J. Mol.
Struct. 1204 (2020) 127446.

2. R. Cruz, C. A. Marin and J. Rada, Computing the Hosoya Index of Catacondensed

Hexagonal Systems, MATCH Commun. Math. Comput. Chem. 77 (2017) 749-764.

3. 1. Gutman and O. E. Polansky, Mathematical Concepts in Organic Chemistry,

~

Springer, Berlin, 1986.

. I. Gutman and S. J. Cyvin, Introduction to the Theory of Benzenoid Hydrocarbons,

Springer—Verlag, Berlin, 1989.

5. 1. Gutman, N. Kolakovi¢, A. Graovac and D. Babi¢, A method for calculation of the

N O

o]

Hosoya index of polymers, Srudies Phys. Theor. Chem.63 (1989) 141—-154.

. I. Gutman, Extremal hexagonal chains, J. Math. Chem. 12 (1993) 197-210.
. I. Gultekin and B. Sahin, Some Relations between Kekulé Structure and Morgan-

Voyce Polynomials, lranian J. Math. Chem. 8 (2) (2017) 221-229.

. H. Hosoya, Topological index. A newly proposed quantity characterizing the

topological nature of structural isomers of saturated hydrocarbons, Bull. Chem. Soc.
Jpn. 44 (1971) 2332-2339.

9. G. Huang, M. Kuang and H. Deng, The expected values of Hosoya index and

10.

11.

12.

13.

14.

15.

16.

17.

Merrifield-Simmons index in a random polyphenylene chain, J. Comb. Optim. 32
(2016) 550-562.

R. E. Merrifield and H. E. Simmons, Topological Methods in Chemistry, Wiley,
New York, 1989.

H. Prodinger and R. F. Tichy, Fibonacci numbers of graphs, Fibonacci Quart. 20
(1) (1982) 16-21.

J. Rada, Vertex-degree-based topological indices of hexagonal systems with equal
number of edges, Appl. Math. Comput. 296 (2017) 270-276.

J. Rada, R. Cruz and 1. Gutman, Vertex-degree-based topological indices of
catacondensed hexagonal systems, Chem. Phys. Lett. 572 (2013) 154-157.

H. Ren and F. Zhang, Double hexagonal chains with minimal total m-electron
energy, J. Math. Chem. 42 (4) (2007) 1041-1056.

H. Ren and F. Zhang, Extremal double hexagonal chains with respect to k-
matchings and k-independent sets, Discrete Appl. Math. 155 (17) (2007) 2269-2281.
H. Ren and F. Zhang, Double hexagonal chains with maximal Hosoya index and
minimal Merrifield-Simmons index, J. Math. Chem. 42 (4) (2007) 679—-690.

W. C. Shiu, Extremal Hosoya index and Merrifield-Simmons index of hexagonal
spiders, Discrete Appl. Math. 156 (15) (2008) 2978-2985.



174 SINAN 0Z AND NACI CANGUL

18. S. Wagner and I. Gutman, Maxima and Minima of the Hosoya Index and Merrifield-
Simmons: A survey of results and techniques, Acta Appl. Math. 112 (2010) 323-346.

19. S. Wagner and H. Wang, Introduction to Chemical Graph Theory, CRC Press,
Taylor-Francis, Boca Raton, FL, 2018.

20. W. Wei and S. Li, Extremal phenylene chains with respect to the coefficients sum
of the permanental polynomial, the spectral radius, the Hosoya index and the
Merrifield-Simmons index, Discrete Appl. Math. 271 (2019) 205-217.

21. S.-J. Xu, Q.-H. He, S. Zhou and W. H. Chan, Hosoya Polynomials of Random
Benzenoid Chains, Iranian J. Math. Chem. 7 (1) (2016) 29-38.



