
Iranian J. Math. Chem. 9 (3) September (2020) 179 − 199 

 
 
Prediction of IC50 Values of 2−benzyloxy 
benzamide Derivatives using Multiple Linear 
Regression and Artificial Neural Network 
Methods 
 

FARIBA MASOOMI SEFIDDASHTI, HEDAYAT HADDADI, SAEID ASADPOUR AND 
SHIMA GHANAVATI NASAB 

Department of Chemistry, Faculty of Sciences, Shahrekord University, P. O. Box 
115, Shahrekord, Iran 

ARTICLE INFO  ABSTRACT 
Article History:  

Received  9 February 2020 
Accepted  25 March 2020 
Published online  30 September 2020 
Academic Editor: Boris Furtula 

In this study, six molecular descriptors were selected 
from a pool of variables using stepwise regression to built 
a QSAR model for a series of 2-benzyloxy benzamide 
derivatives as an SMS2 inhibitor to reduce 
atherosclerosis. Simple multiple linear regression (MLR) 
and a nonlinear method, artificial neural network (ANN), 
were used to modeling the bioactivities of the 
compounds. Modeling was carried out in total with 34 
compounds of 2-benzyl oxybenzamide derivatives. PCA 
was used to divide the compounds into two groups of two 
training series and tests. The model was constructed with 
27 combinations as training set, then the validity and 
predictive ability of the model were evaluated with the 
remaining 7 combinations. While the MLR provides an 
acceptable model for predictions, the ANN-based model 
significantly improves the predictive ability. In ANN 
model the average relative error (RE%) of prediction set 
is lower than 1% and square correlation coefficient (R2) is 
0.9912. 
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1 INTRODUCTION 

Atherosclerosis is the name of a vein disease characterized by the deposition of 
low-density lipid and cholesterol on the inner wall of medium- and large-diameter 
arteries [1]. The result of this process is the formation of fibrous-fat plaques 
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(atheroma), which gradually increases with age and cause stenosis or other 
consequences. Arteriosclerosis is one of the leading causes of death in adults in 
advanced societies and countries with high levels of stress. SM or sphingomyelin 
is one of the most important circulating phospholipids [2, 3]. Sphingomyelin levels 
in human plasma have been shown to be an independent risk factor for 
atherosclerosis as well as a predictor for patients with acute coronary syndrome 
[4,5].  

Inhibition of SPT, which is the first enzyme for SM biosynthesis, can 
dramatically reduce atherosclerosis by reducing SM. But there are many off-target 
side effects [6]. Therefore, inhibition of SMS2 is an alternative method of reducing 
SM. SMS is the last enzyme in the SM biosynthesis pathway that accelerates the 
conversion of Ceramide to SM. The SMS family consists of three members SMS1 
and SMS2 and SMS related protein or SMSr. Studies have shown that SMS1 and 
SMS2 are two factors that affect sphingomyelin levels. Given the side effects of 
SMS1 depletion, SMS2 inhibition is an optimal strategy for reducing SM levels 
[6]. 

The process of discovering and developing new drugs based on trial and 
error is time consuming, difficult and costly. Another problem that plagues 
scientists is their lack of knowledge of the drug's activity before synthesizing and 
empirically investigating it, so one of the most important goals of chemists and 
pharmaceutical researchers is to evaluate the activity of drugs before they are 
manufactured. Therefore, the need for theoretical and computational methods to 
predict the properties or activity of pharmaceutical compounds without testing 
seems inevitable. The advent of chemistry has provided a solution to these 
problems [7−9]. 

One of the most successful approaches for predicting chemical properties 
that starts only with molecular structural information is quantitative structure-
activity/properties (QSAR / QSPR) modeling. The notion that there is a close 
relationship between the bulk properties of the compounds and their molecular 
structure allows one to establish a complete relationship between the macroscopic 
and the microscopic properties of the material. The quantitative relationships 
between structure and property of mathematical equations are related to chemical 
structure with a wide range of physical, chemical, biological and technological 
properties. QSPR models, once created, can be used to predict the properties of 
compounds not yet measured or even unknown [10−13]. 

In this study, we attempted to establish a relationship between the structure 
of 2-benzyloxybenzamide derivatives and the pharmacological activity of these 
compounds as SMS2 enzyme inhibitors using (MLR) multiple linear regression 
[14] and (ANN) Artificial neural network [15, 16] methods. The descriptors were 
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selected using stepwise regression. Comparison of different linear and nonlinear 
methods in recent study has shown how different regression techniques affect the 
predictive ability of QSAR models [17]. To test the performance and stability of 
this model, we used different validation methods. 
 
2.  MATERIAL AND METHODS 

2.1. DATASET 

The dataset used in this study consisted of a series of 2-benzyloxy benzamide 
derivative that has been reported as SMS-2 inhibitors by Yali Li et al. [6]. 2D 
structure of 2-benzyloxy benzamide core is displayed in Figure 1. There were a 
total of 34 2-benzyloxy benzamide derivatives which are then split into a training 
set of 27 compounds for generating QSAR models and a test set of 7 compounds 
for validating the quality of the models. Remaining 1 compounds having IC50 value 
greater than 100 µM were removed. Compounds were selected randomly by 
Minitab with using PCA. All the structures and associated inhibitory activities are 
listed in Table 1. 
 

 
Figure 1. The 2D chemical structure of 2-benzyloxy benzamide core. 

 
2.2. MOLECULAR MODELING 

All the 2D & 3D structures were drawn and built by ChemDraw and Chem3D 
softwares respectively. Structures were optimized by MM2 algorithm in Chem3D. 
 
2.3. 2D-QSAR METHODOLOGY 

2.3.1. CALCULATION OF MOLECULAR DESCRIPTORS 

Descriptors are the mathematics of a molecule that contains it Different sources of 
chemical information have been converted and encoded to counter chemicals, 
Biological and pharmaceutical problems. To develop QSAR 2D models, Different 
physicochemical descriptors are calculated for each of the compounds in the 
dataset using DRAGON software. Dragon converts the information of molecules 
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including bond energy, bond angle, bond type, molecular mass, electronic 
properties, and so on into numeric form and stores them in descriptive format.  

2.3.2. FEATURE SELECTION 

Feature Selection methods have been employed for selecting the best Descriptors 
among the Many Descriptors Containing Low Information for Model Construction 
or are correlated with other descriptors without incurring much loss of information. 
In this study, three methods were used to reduce descriptors. 
Initially, among the pair of descriptors with a correlation coefficient above 0.95, 
one was eliminated by the Dragon software. Dragoon reduced the number of 3224 
calculated descriptors to 1419. Then descriptors that had constant or zero values 
that could not correlate the difference in structure to the difference in activity were 
removed. The number of remaining descriptors was thus reduced to 1152 
descriptors.  

The remaining descriptors, along with the activity function values, were 
entered into SPSS software. The important descriptors are selected under Stepwise 
approach. In the stepwise strategy, a multiple-linear equation was built step by 
step. First, an initial model was determined and then it was repeatedly changed by 
removing or adding a predictor variable based on stepping criteria for inclusion 
and exclusion. At every step, all variables were specified and evaluated to assign 
important descriptors.  The software offered 10 models using stepwise regression 
Method. As can be seen from this table, as the number of descriptors increases, the 
validity of the model is improved and the statistical parameters corresponding to it 
are improved. But since in the QSAR studies the appropriate model is a model 
with the lowest number of descriptors to obtain the best fit, also with respect to the 
values of the RMSE, Q2, R2 and R2adj statistical parameters finally, 6 descriptors 
was chosen as the final descriptors related to SMS-2 enzyme inhibition. The final 
descriptors given in Table 2. For the appointed models, the values of the RMSE, 
Q2, R2 and R2adj parameters are calculated as shown in Table 2, since in MLR 
analysis the number of compounds in the samples should be at least 5 times the 
number of descriptors and the descriptors should be orthogonal values [18, 19].   

According to the results shown in Table 2 and Due to the slope of this 
parameters changes, model 6 with 6 descriptors was selected as the top model and 
modeling was performed with 6 descriptors. The characteristics of the descriptors 
used in this study are presented in Table 3, as well as the values of these 
descriptors in Table 4. The selected descriptors should be independent of each 
other because in their high dependence only the descriptor with a higher 
correlation with the dependent variable is included in the model. Two-way 
correlation coefficient of descriptors was calculated by SPSS software and is 
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presented in Table 5. The results showed that the behavior of the selected 
descriptors was independent. As you can see, there is little connection between the 
descriptors. 

 
3.1. DATA SELECTION  

First, the data set that consisted 34 compounds were divided into a training set of 
27 compounds and test set of 7 compounds with ratio 80% and 20% , respectively. 
Compound number 1, 2, 9, 18, 19, 27, 29 were selected as test set and rest of the 
34 compounds as train set. In this study split of data set was done with Principal 
Component Analysis (PCA). The equation must use the minimum number of 
descriptors to obtain the best fit. To achieve this a Stepwise regression method is 
used to find out the best number of descriptors. Among the models given with the 
SPSS, after the sixth model no considerable improvement in regression coefficient 
(R2) values has been observed. 

 
3.2. MULTIPLE LINEAR REGRESSION (MLR) 

MLR is one of the statistical methods that tries to establish a linear relationship 
between dependent variables and response variable. MLR method provides 
equation linking the structural features to the dependent variable (y) of the 
compounds: 
y = a0 + a1d1 +· · ·+andn                                                                                                                                (1) 
where the intercept (a0) and the regression coefficients of the descriptors (ai) are 
determined by using the least-squares method. di has the common definition, 
variable or descriptor in this case, the elements of this vector are equivalent 
numerical values of a 3D structures of the molecules or structural descriptors. 
In the present study, SPSS 23 was used to calculate MLR models. Stepwise-MLR 
method was used as multiple linear regression to select appropriate and important 
descriptors for training and test sets. This method has proven to be a very useful 
computational method in data analysis problems[20, 21].  

The best QSAR model built using multiple linear regression (MLR) 
method is represented by the following equation: 
y= 8.2 + 9.2MATA8m + 9.4GATS8p + −6Mor30m + 3.7G2u + 
6.9Mor06m+ 3.98 G3e 
 

(2) 

N=34;          R2=0.767;           RMSE=7.46;          R2
CV=0/766 

 
(3) 

The values of the six descriptors and their corresponding correlation matrix 
are shown in tables 4 and 5. 
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Table 1. Structural formulae of compounds and their IC50 values. 

IC50(µM) STRUCTURE NUMBER  
34.2 

  

1  

49 

  

2  

43.4 

  

3  

11.7 

  

4  

3.2 

  

5  
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3.5 

  

6  

1.1 

  

7  

1.5 

  

8  

0.88 

  

9  

2.1 

  

10  
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31.8 

  

11  

1.6 

  

12  

1.4 

  

13  

60.7 

  

14  

0.74 

  

15  
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1.5 

  

16  

0.99 

  

17  

0.69 

  

18  

3.1 

  

19  

0.74 

  

20  
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1.1 

  

21  

3.8 

  

22  

0.89 

  

23  

2.8 

  

24  

0.67 

  

25  
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11.6 

  

26  

4.1 

  

27  

1.3 

  

28  

0.67 

  

29  

0.47 

  

30  
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0.52 

  

31  

0.43 

  

32  

13.5 

  

33 

13.4 

  

34 

 
Table 2. R2, RMSE, Q2, R2adj values for models with different number of descriptors. 

# Descriptors R2 RMSE Q2 R2adj 

1 0.324 13.2 0.278 0.302 
2 0.587 10.14 0.569 0.56 
3 0.647 9.38 0.632 0.611 
4 0.705 8.77 0.677 0.664 
5 0.76 8.53 0.695 0.717 
6 0.81 7.46 0.766 0.767 
7 0.853 6.6 0.816 0.814 
8 0.882 6.17 0.998 0.844 
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Table 3. Descriptors used in the 2D-QSAR study. 

Descriptor description  Descriptor blocks type  Descriptor Types 
 Moran autocorrelation-lag8 / weighted 
by atomic masses 

2D autocorrelation MATS8m  

Geary autocorrelation – lag8 / weighted 
by atomic polarizabilities 

2Dautocorrelation GATS8p  

3D-MORSE – signal 30 / weighted by 
atomic masses 

3DMoRSE Mor30m  

2st component symmetry directional 
WHIM index / unweighted 

WHIM descriptors G2u  

3D-MORSE – signal 06 / weighted by 
atomic masses 

3DMoRSE Mor06m  

3st component symmetry directional 
WHIM index weighted by atomic 
Sanderson electronegativities 

WHIM descriptors G3e  

 

 
Table 4. Values of the obtained parameters of the studied derivatives of 2-benzyloxy 
benzamide. 

Number MATS8m GATS8p Mor30m G2u Mor06m G3e 
1 -0.577 0.165 -0.976 2.938 -0.923 0.205 
2 3.228 -0.701 -0.504 -1.575 -0.980 1.184 
3 1.642 1.478 0.248 0.176 0.029 1.184 
4 -0.758 0.537 -0.854 -0.160 -0.362 0.874 
5 -0.453 0.141 -0.574 0.985 -0.515 -0.826 
6 -1.949 1.395 -2.559 -0.901 -1.720 -0.053 
7 -1.070 0.660 -0.180 0.917 -1.513 -0.208 
8 -1.086 0.802 -1.440 -0.632 -1.338 -0.414 
9 -0.462 -0.622 -0.163 -0.632 0.031 0.874 
10 -0.199 -0.488 -1.553 -0.363 -1.570 -0.517 
11 1.092 1.589 0.449 0.176 -0.598 0.874 
12 1.535 0.335 1.997 -0.632 -0.315 -0.414 
13 0.007 0.873 0.755 -0.632 0.712 -1.135 
14 1.001 2.622 0.257 0.176 0.867 1.184 
15 -0.281 -1.014 -0.469 1.052 0.925 0.514 
16 -1.210 1.111 0.117 0.648 -0.805 -0.053 
17 -0.371 0.050 0.580 -1.306 0.635 0.565 
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Table 4 (Continued). 

Number MATS8m GATS8p Mor30m G2u Mor06m G3e 
18 -0.371 0.050 0.108 -0.565 1.115 -0.620 
19 -1.119 1.221 0.554 -0.093 -0.159 -0.259 
20 1.503 -0.531 1.744 0.042 -0.402 0.102 
21 -0.133 -1.247 1.123 0.513 1.047 1.029 
22 0.623 -0.436 -1.055 -1.508 0.892 -1.547 
23 -0.174 -1.635 0.257 -0.497 0.961 -0.774 
24 0.015 -0.974 1.140 0.783 1.145 -1.650 
25 0.475 -1.140 0.782 -1.238 0.913 0.668 
26 0.861 -1.219 1.088 0.715 1.546 -0.980 
27 -0.117 -1.208 0.974 0.715 1.618 -1.393 
28 -0.084 -1.196 0.904 -0.834 1.887 -1.135 
29 -0.256 0.137 0.458 1.254 -0.794 1.699 
30 -0.938 0.588 -1.186 -0.767 -0.881 -1.187 
31 -0.125 -0.203 -0.040 -0.565 0.323 1.596 
32 -0.289 -0.254 -1.212 1.928 -0.833 -1.135 
33 0.163 -0.685 -0.653 0.648 -0.291 -0.053 
34 -0.125 -0.203 -0.119 -0.767 -0.646 1.802 

 
 
 

Table 5. Correlation matrix between different obtained descriptors. 
   MATS8M GATS8P MOR30M G2U MOR06M G3E 

MATS8M 1      
GATS8P -0.13286 1     
MOR30M 0.429756 -0.23036 1    

G2U -0.17285 0.00051 0.104558 1   
MOR06M 0.198226 -0.45511 0.578589 -0.03966 1  

G3E 0.217833 0.235266 0.031318 -0.08778 -0.22842 1 

 
 
3. RESULTS AND DISCUSSION 

The predicted values of IC50 of the train data set, using this model is plotted 
against experimental values and is shown in Figure 1. The above linear model was 
used to predict the 7external test dataset which was never used in descriptor 
selection or model building. The result show an R2= 0.767, Q2=0.642 and RMSE 
=7.46. The predicted values of IC50 of the train and test set using the MLR 
equation is given in the Table 6. 
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Table 6. Observed values and calculated values of IC50 according to MLR methods. 

Relative error% Residual IC50 predicted IC50 Observed Number 
54.24 18.55 15.65 34.20 1t 
46.03 22.55 26.45 49.00 2t 
4.78 2.07 41.33 43.40 3a 
-0.79 -0.09 11.79 11.70 4a 

-75.31 -2.41 5.61 3.20 5a 
5.26 0.18 3.32 3.50 6a 

302.03 3.32 -2.22 1.10 7a 
22.71 0.34 1.16 1.50 8a 
52.05 0.46 0.42 0.88 9t 
249.76 5.25 -3.15 2.10 10a 

3.98 1.27 30.53 31.80 11a 
-358.99 -5.74 7.34 1.60 12a 
-614.26 -8.60 10.00 1.40 13a 
14.46 8.78 51.92 60.70 14a 

-1416.00 -10.48 11.22 0.74 15a 
-130.35 -1.96 3.46 1.50 16a 
-259.73 -2.57 3.56 0.99 17a 
-1021.71 -7.05 7.74 0.69 18t 
-16.16 -0.50 3.60 3.10 19t 
-488.72 -3.62 4.36 0.74 20a 
-56.90 -0.63 1.73 1.10 21a 
-177.72 -6.75 10.55 3.80 22a 
1070.34 9.53 -8.64 0.89 23a 
222.99 6.24 -3.44 2.80 24a 
-126.03 -0.84 1.51 0.67 25a 
34.99 4.06 7.54 11.60 26a 
144.25 5.91 -1.81 4.10 27t 
395.75 5.14 -3.84 1.30 28a 

-1441.55 -9.66 10.33 0.67 29t 
405.87 1.91 -1.44 0.47 30a 

-2184.04 -11.36 11.88 0.52 31a 
-1598.26 -6.87 7.30 0.43 32a 

45.61 6.16 7.34 13.50 33a 
57.26 7.67 5.73 13.40 34a 

t test set 
a training set 
 
3.2. ARTIFICIAL NEURAL NETWORKS (ANN) 

Artificial Neural Networks (ANN) is a computer-based system that originates from 
a simple brain model, the performance of networks is very different from the 
performance of multi-linear regression. In ANN, there is no final regression 
equation showing the relationship between independent and dependent variables. 
The fitting model is determined by learning, unsupervised or unsupervised, such as 
the re-propagation algorithm. In general, a neural network architecture consists of 



194               MASOOMI SEFIDDASHTI, HADDADI, ASADPOUR AND GHANAVATI NASAB 

 

multiple layers, an input layer, an output layer, and a number of hidden layers of 
each neuron. 
 

 
Figure 2. Predicted IC50 activities by MLR in comparison with experimental. 

 
In the network, it connects to each node of the connection layers and is 

influenced by the amount of weights affected by the units connected to it. During 
the random weight training and initial random crash, adjustments are made to find 
the minimum difference between the output value and the target value. After a 
sufficient number of training iterations, the ANN learns to recognize patterns in the 
data, so it can be used for predicting new input values [22-26]. The networks used 
in this study consisted of three layers consisting of an input layer, a hidden layer, 
and an output layer. The input nodes contain five parameters in the regression 
equation and one constant. The output neuron refers to the retention index. Before 
entering the neural network, input data were stored at a ratio of 0 to 1. IC50 values 
were also used with this rule. Sigmoid transfer functions were applied in all layers. 
The weights were adjusted through a back propagation algorithm to correct the 
model behavior. This computer program is designed to generate the desired 
number of neurons in the hidden layer. In order to select the optimal model, 
different topological networks with different hidden units were performed. On the 
other hand, the values of learning factor, coefficient of movement, and core values 
of weight and bias were tested to find the best performance and fastest 
convergence. 
N=34;   Rtrain=1;   Rtest=1;   Rvalidation=0.995;   Rall=0.99999;  R2

CV=0.99998    
RMSE=15/4076; 
 

(4) 

The predicted values of IC50 of the train and test set using the ANN Model 
is given in the Table 7. 

R² = 0.7737
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Table 7. Observed values and calculated values of IC50 according to ANN methods. 

Relative error% Residual IC50 predicted IC50 Observed Number 
0.13 0.04 34.16 34.2 1a 
0.00 0.00 49.0 49 2a 
0.02 0.07 43.39 43.4 3a 
0.08 0.01 11.69 11.7 4a 
0.00 0.00 3.20 3.2 5a 
0.00 0.00 3.50 3.5 6a 
-3.36 -0.04 1.14 1.1 7t 
21.73 0.32 1.17 1.5 8v 
0.10 0.01 0.88 0.88 9a 
0.33 0.01 2.09 2.1 10t 
-0.02 -0.01 31.80 31.8 11t 
-5.27 -0.08 1.68 1.6 12t 
-0.11 -0.01 1.40 1.4 13a 
0.00 0.00 60.70 60.7 14t 
-0.01 0.00 0.74 0.74 15a 
0.02 0.00 1.50 1.5 16a 
-0.10 -0.01 0.99 0.99 17a 
1.66 0.01 0.68 0.69 18v 
4.90 0.15 2.95 3.1 19v 
-0.02 0.00 0.74 0.74 20a 
0.04 0.01 1.10 1.1 21a 
0.91 0.03 3.76 3.8 22v 
-0.12 -0.01 0.89 0.89 23a 
-0.02 -0.01 2.80 2.8 24a 
0.02 0.00 0.67 0.67 25a 
0.03 0.01 11.59 11.6 26a 
-0.01 0.00 4.10 4.1 27a 
-0.04 -0.01 1.30 1.3 28a 
0.01 0.00 0.67 0.67 29a 
-1.45 -0.01 0.48 0.47 30v 
0.00 0.00 0.52 0.52 31a 
0.00 0.00 0.43 0.43 32a 
0.00 0.00 13.50 13.5 33a 
-0.27 -0.04 13.44 13.4 34a 

t test set 
v validation set 
a training set 

 
Finally, the main results of these two models are shown in Table 8. We 

evaluated the best QSAR equations created in this study. Based on these results, 
comparing the quality of the MLR model shows that the ANN model is 
significantly more predictive because the ANN approach has better results than the 
MLR. As can be seen from this table, ANN establishes a favorable relationship 
between the molecular descriptors and the activity of the compounds studied. 
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Figure 3. Predicted IC50 activities by ANN in comparison with experimental. 

 
 

4. CONCLUSION 

In the present study, quantitative analysis of the structure-activity relationship 
(QSAR) was performed on 34 molecules. The QSAR model was developed using 
multiple linear regression (MLR) and neural network (ANN) paradigms. Stepwise 
regression method was used to select the most significant descriptors. Six types of 
descriptors were used to construct the MLR model and the neural network for 2-
benzyloxy benzamide derivatives, which include MATS8m, GATS8p, MOR30m, 
G2u, MOR06m and G3e. While the MLR provides an acceptable model for 
predictions, the ANN-based model significantly improves the predictive. It 
provides the best results among those we have tested. To compare the accuracy 
and predictability of the models presented, key statistical indicators such as R2 and 
RMSE are presented in different models using different statistical tools and 
descriptions. To compare the results of the two models, Table 7, is presented. 
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Table 8. Comparing values of IC50 experimental and predicted results using MLR & ANN 
methods. 
 

Relative 
error% 

ANN predicted  Relative 
error% 

MLR predicted  IC50 observed Number  

0.13 34.16 54.24 15.65 34.2 1 
-0.01 49.00 46.03 26.45 49 2 
0.02 43.39 4.78 41.33 43.4 3 
0.08 11.69 -0.79 11.79 11.7 4 
0.04 3.199 -75.31 5.61 3.2 5 
-0.02 3.50 5.26 3.32 3.5 6 
-3.36 1.137 302.03 -2.22 1.1 7 
21.73 1.17 22.71 1.16 1.5 8 
0.10 0.88 52.05 0.42 0.88 9 
0.33 2.09 249.76 -3.14 2.1 10 
-0.02 31.80 3.98 30.53 31.8 11 
-5.27 1.68 -358.99 7.34 1.6 12 
-0.11 1.40 -614.26 10.00 1.4 13 
0.00 60.70 14.46 51.92 60.7 14 
-0.01 0.74 -1416.00 11.22 0.74 15 
0.02 1.50 -130.35 3.45 1.5 16 
-0.10 0.99 -259.73 3.56 0.99 17 
1.66 0.68 -1021.71 7.74 0.69 18 
4.90 2.95 -16.16 3.60 3.1 19 
-0.02 0.74 -488.72 4.38 0.74 20 
0.04 1.10 -56.90 1.73 1.1 21 
0.91 3.76 -177.72 10.55 3.8 22 
-0.12 0.89 1070.34 -8.64 0.89 23 
-0.02 2.80 222.99 -3.44 2.8 24 
0.02 0.67 -126.03 1.52 0.67 25 
0.03 11.59 34.99 7.54 11.6 26 
-0.01 4.10 144.25 -1.81 4.1 27 
-0.04 1.30 395.75 -3.84 1.3 28 
0.01 0.67 -1441.55 10.33 0.67 29 
-1.45 0.48 405.87 -1.44 0.47 30 
-0.70 0.52 -2184.04 11.88 0.52 31 
-0.86 0.43 -1598.26 7.30 0.43 32 
-0.01 13.50 45.61 7.34 13.5 33 
-0.27 13.44 57.26 5.73 13.4 34 
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