2020-08-07T20:53:11Z
https://ijmc.kashanu.ac.ir/?_action=export&rf=summon&issue=1495
Iranian Journal of Mathematical Chemistry
Iranian J. Math. Chem.
2228-6489
2228-6489
2015
6
1
Bounds for the Co-PI index of a graph
E.
Kaya
A. D.
Maden
In this paper, we present some inequalities for the Co-PI index involving the some topological indices, the number of vertices and edges, and the maximum degree. After that, we give a result for trees. In addition, we give some inequalities for the largest eigenvalue of the Co-PI matrix of G.
Co-PI index
Co-PI matrix
Co-PI spectral radius
2015
03
01
1
13
https://ijmc.kashanu.ac.ir/article_8923_8d3d8f796557f8a3f0ae41e7b0dbc854.pdf
Iranian Journal of Mathematical Chemistry
Iranian J. Math. Chem.
2228-6489
2228-6489
2015
6
1
Relationship between topological indices and thermodynamic properties and of the monocarboxylic acids applications in QSPR
F.
Shafiei
Topological indices are the numerical value associated with chemical constitution purporting for correlation of chemical structure with various physical properties, chemical reactivity or biological activity. Graph theory is a delightful playground for the exploration of proof techniques in Discrete Mathematics and its results have applications in many areas of sciences. One of the useful indices for examination of structure- property relationship is Randic' index. In this study is represented the relationship between the Randic', Balaban and Szeged indices and Harary numbers to the enthalpies of combustion ( liquid), enthalpies of vaporization( gas), enthalpies of formation ( liquid) and enthalpies of sublimation ( ) of monocarboxylic acids (C2- C20) are established, and then, some useful topological indices for examination of the structure- property relationship are presented.
Topological indices
Graph theory
Monocarboxylic acid
QSPR
2015
03
01
15
28
https://ijmc.kashanu.ac.ir/article_8944_42c0fe9fb5ea15ff42c016263779416c.pdf
Iranian Journal of Mathematical Chemistry
Iranian J. Math. Chem.
2228-6489
2228-6489
2015
6
1
On the distance based indices of H-phenylenic nanotorus
A.
Heydari
Let G be a connected simple (molecular) graph. The distance d(u, v) between two vertices u and v of G is equal to the length of a shortest path that connects u and v. In this paper we compute some distance based topological indices of H-Phenylenic nanotorus. At first we obtain an exact formula for the Wiener index. As application we calculate the Schultz index and modified Schultz index of this graph by using the Wiener index. Finally we compute eccentric connectivity index of this graph
Wiener index
Schultz index
Modified Schultz index
eccentric connectivity index
H-Phenylenic Nanotorus
2015
03
01
29
39
https://ijmc.kashanu.ac.ir/article_9043_d3e21a0a3a8b343631cc8cf5213944e7.pdf
Iranian Journal of Mathematical Chemistry
Iranian J. Math. Chem.
2228-6489
2228-6489
2015
6
1
On the harmonic index and harmonic polynomial of Caterpillars with diameter four
M.
Iranmanesh
M.
Saheli
The harmonic index H(G) , of a graph G is defined as the sum of weights 2/(deg(u)+deg(v)) of all edges in E(G), where deg (u) denotes the degree of a vertex u in V(G). In this paper we define the harmonic polynomial of G. We present explicit formula for the values of harmonic polynomial for several families of specific graphs and we find the lower and upper bound for harmonic index in Caterpillars withf diameter 4.
Harmonic index
Harmonic polynomial
Randić index
2015
03
01
41
49
https://ijmc.kashanu.ac.ir/article_9044_a7d924dff91432835709ad82ca38516a.pdf
Iranian Journal of Mathematical Chemistry
Iranian J. Math. Chem.
2228-6489
2228-6489
2015
6
1
A new approach to compute acyclic chromatic index of certain chemical structures
I.
Rajasingh
R.
Rajan
D.
Paul
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph $G$ denoted by $chi_a '(G)$ is the minimum number $k$ such that there is an acyclic edge coloring using $k$ colors. The maximum degree in $G$ denoted by $Delta(G)$, is the lower bound for $chi_a '(G)$. $P$-cuts introduced in this paper acts as a powerful tool to prove that this bound is sharp for certain chemical structures.
Acyclic edge-coloring
Acyclic chromatic index
Maximum degree
Certain chemical structures
2015
03
01
51
61
https://ijmc.kashanu.ac.ir/article_9056_8441113ee648b7051f3b05875d262234.pdf
Iranian Journal of Mathematical Chemistry
Iranian J. Math. Chem.
2228-6489
2228-6489
2015
6
1
The matching interdiction problem in dendrimers
G.
Shirdel
N.
Kahkeshani
The purpose of the matching interdiction problem in a weighted graph is to find two vertices such that the weight of the maximum matching in the graph without these vertices is minimized. An approximate solution for this problem has been presented. In this paper, we consider dendrimers as graphs such that the weights of edges are the bond lengths. We obtain the maximum matching in some types of dendrimers. Then, it is shown that proportion of difference of two optimal and approximate answers from the weight of maximum matching in these dendrimers is equal to the maximum value.
Matching
Interdiction
Dendrimer
2015
03
01
63
79
https://ijmc.kashanu.ac.ir/article_9063_fea4b1375d823d14772cf6721875a36f.pdf
Iranian Journal of Mathematical Chemistry
Iranian J. Math. Chem.
2228-6489
2228-6489
2015
6
1
Dynamical behavior and synchronization of chaotic chemical reactors model
H.
Kheiri
B.
Naderi
In this paper, we discuss the dynamical properties of a chemical reactor model including Lyapunov exponents, bifurcation, stability of equilibrium and chaotic attractors as well as necessary conditions for this system to generate chaos. We study the synchronization of chemical reactors model via sliding mode control scheme. The stability of proposed method is proved by Barbalate’s lemma. Numerical Simulation is provided for illustration and verification of the proposed method.
Chemical reactor
chaos
Synchronization
Sliding mode
2015
03
01
81
92
https://ijmc.kashanu.ac.ir/article_9129_b06d9fe27381a69ad532999eeac3acf7.pdf