TY - JOUR
ID - 9044
TI - On the harmonic index and harmonic polynomial of Caterpillars with diameter four
JO - Iranian Journal of Mathematical Chemistry
JA - IJMC
LA - en
SN - 2228-6489
AU - Iranmanesh, M.
AU - Saheli, M.
AD - Department of Mathematics, Yazd University, 89195741, Yazd, Iran
Y1 - 2015
PY - 2015
VL - 6
IS - 1
SP - 41
EP - 49
KW - Harmonic index
KW - Harmonic polynomial
KW - Randić index
DO - 10.22052/ijmc.2015.9044
N2 - The harmonic index H(G) , of a graph G is defined as the sum of weights 2/(deg(u)+deg(v)) of all edges in E(G), where deg (u) denotes the degree of a vertex u in V(G). In this paper we define the harmonic polynomial of G. We present explicit formula for the values of harmonic polynomial for several families of specific graphs and we find the lower and upper bound for harmonic index in Caterpillars withf diameter 4.
UR - https://ijmc.kashanu.ac.ir/article_9044.html
L1 - https://ijmc.kashanu.ac.ir/article_9044_a7d924dff91432835709ad82ca38516a.pdf
ER -