TY - JOUR
ID - 73763
TI - The Extremal Graphs for (Sum-) Balaban Index of Spiro and Polyphenyl Hexagonal Chains
JO - Iranian Journal of Mathematical Chemistry
JA - IJMC
LA - en
SN - 2228-6489
AU - Zuo, Y.
AU - Tang, Y.
AU - Deng, H. Y.
AD - College of Mathematics and Statistics, Hunan Normal University, Changsha, Hunan 410081, P. R. China
Y1 - 2018
PY - 2018
VL - 9
IS - 4
SP - 241
EP - 254
KW - Balaban index
KW - sum-Balaban index
KW - spiro hexagonal chain, polyphenyl hexagonal chain
DO - 10.22052/ijmc.2018.143823.1381
N2 - As highly discriminant distance-based topological indices, the Balaban index and the sum-Balaban index of a graph $G$ are defined as $J(G)=\frac{m}{\mu+1}\sum\limits_{uv\in E} \frac{1}{\sqrt{D_{G}(u)D_{G}(v)}}$ and $SJ(G)=\frac{m}{\mu+1}\sum\limits_{uv\in E} \frac{1}{\sqrt{D_{G}(u)+D_{G}(v)}}$, respectively, where $D_{G}(u)=\sum\limits_{v\in V}d(u,v)$ is the distance sum of vertex $u$ in $G$, $m$ is the number of edges and $\mu$ is the cyclomatic number of $G$. They are useful distance-based descriptor in chemometrics. In this paper, we focus on the extremal graphs of spiro and polyphenyl hexagonal chains with respect to the Balaban index and the sum-Balaban index.
UR - https://ijmc.kashanu.ac.ir/article_73763.html
L1 - https://ijmc.kashanu.ac.ir/article_73763_77c3dbe43fd89410f6e92ef2ba7b252a.pdf
ER -