TY - JOUR
ID - 111632
TI - Extremal Cacti with respect to Sombor index
JO - Iranian Journal of Mathematical Chemistry
JA - IJMC
LA - en
SN - 2228-6489
AU - Liu, Hechao
AD - School of Mathematical Sciences, South China Normal University, Guangzhou, 510631, P. R. China
Y1 - 2021
PY - 2021
VL - 12
IS - 4
SP - 197
EP - 208
KW - Sombor index
KW - Cactus
KW - Extremal value
DO - 10.22052/ijmc.2021.243026.1582
N2 - Recently, a novel topological index, Sombor index, was introduced by Gutman, defined as $SO(G)=\sum\limits_{uv\in E(G)}\sqrt{d_{u}^{2}+d_{v}^{2}}$, where $d_{u}$ denotes the degree of vertex $u$. In this paper, we first determine the maximum Sombor index among cacti with $n$ vertices and $t$ cycles, then determine the maximum Sombor index among cacti with perfect matchings. We also characterize corresponding maximum cacti.
UR - https://ijmc.kashanu.ac.ir/article_111632.html
L1 - https://ijmc.kashanu.ac.ir/article_111632_de6f31ed2e636e86763d50333fb73e29.pdf
ER -