M-Polynomial of some Graph Operations and Cycle Related Graphs

Bommanahal Basavanagoud́, Anand Prakash Barangi and
Praveen Jakkannavar
Department of Mathematics, Karnatak University, Dharwad - 580 003, Karnataka, India

ARTICLE INFO

Article History:
Received: 29 August 2018
Accepted: 5 May 2019
Published online 30 July 2019
Academic Editor: Sandi Klavžar
Keywords:
M-polynomial
Degree-based topological index Line graph
Subdivision graph
Wheel graph

> ABSTRACT
> In this paper, we obtain M-polynomial of some graph operations and cycle related graphs. As an application, we compute Mpolynomial of some nanostructures viz., $T U C_{4} C_{8}[p, q]$ nanotube, $T U C_{4} C_{8}[p, q]$ nanotorus, line graph of subdivision graph of $T U C_{4} C_{8}[p, q]$ nanotube and $T U C_{4} C_{8}[p, q]$ nanotorus, Vtetracenic nanotube and V-tetracenic nanotorus. Further, we derive some degree based topological indices from the obtained polynomials.

1. Introduction

Let G be a simple, connected, undirected graph of order n and size m with vertex set $V(G)$ and edge set $E(G)$. The degree $d_{G}(v)$ of a vertex $v \in V(G)$ is the number of edges incident to it in G. An isolated vertex or singleton graph is a vertex with degree zero. Let $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the vertices of G and let $d_{i}=d_{G}\left(v_{i}\right)$. The subdivision graph $S(G)$ [24] of a graph G is the graph obtained by inserting a new vertex onto each edge of G. Let G_{1} and G_{2} be two graphs of order n_{1}, n_{2} and size m_{1}, m_{2} respectively. The union [24] of G_{1} and G_{2} is the graph with vertex set $V_{1} \cup V_{2}$ and edge set $E_{1} \cup E_{2}$ is denoted by $G_{1} \cup G_{2}$ and $\left|V\left(G_{1} \cup G_{2}\right)\right|=n_{1}+n_{2},\left|E\left(G_{1} \cup G_{2}\right)\right|=m_{1}+m_{2}$. The join [24] $G_{1}+G_{2}$ of G_{1} and G_{2} is the graph obtained from $G_{1} \cup G_{2}$ by joining each vertex of G_{1} with every vertex of G_{2} by an edge. Order and size of $G_{1}+G_{2}$ are $n_{1}+n_{2}$ and $m_{1}+m_{2}+n_{1} n_{2}$, respectively. The

[^0]corona [24] $G_{1} \circ G_{2}$ of two graphs G_{1} and G_{2} of order n_{1} and n_{2} respectively, is defined as the graph obtained by taking one copy of G_{1} and n_{1} copies of G_{2} and then joining the $i^{\text {th }}$ vertex of G_{1} to every vertex in the $i^{\text {th }}$ copy of G_{2}. For undefined graph theoretic terminologies and notions refer [24].

Several topological indices have been defined in the literature. Among them some standard topological indices are first Zagreb index [22], second Zagreb index [23], modified second Zagreb index [10], Randic' index [36], harmonic index [16], symmetric division index [10] and inverse sum index [10]. The general form of these degree-based topological indices of a graph is given by

$$
T I(G)=\sum_{e=u v \in E(G)} f\left(d_{G}(u), d_{G}(v)\right)
$$

where $f=f(x, y)$ is a function appropriately chosen for the computation. Table 1 gives the standard topological indices defined by $f(x, y)$. For more details on degree-based and distance based topological indices refer [1-7,12,13,18,19,21,32,39-41,43,45].

It would be interesting that, if all these topological indices are obtained from a single expression. This role is played by polynomials. In fact there are several graph polynomials like PI polynomial [3], Tutte polynomial [14], matching polynomial [15,20], Schultz polynomial [25], Zang-Zang polynomial [46], etc., Among them, the Hosoya polynomial [26] is the best and well-known polynomial which plays a vital role in determining distance-based topological indices such as Wiener index [44], hyper Wiener index [9] of graphs. Similarly, M-polynomial which was introduced in 2015 by Deutsch and Klavžar in [10], which is useful in determining many degree-based topological indices (listed in Tables 1 and 2). This motivates us to study M-polynomial of some graph operations and some cycle related graphs. Recently, the study of M-polynomial are reported in [8,11,28,33-35,37].

Table 1. [10] Operators to derive degree-based topological indices from M-polynomial.

Notation	Topological Index	$\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$	Derivation from $\boldsymbol{M}(\boldsymbol{G} ; \boldsymbol{x}, \boldsymbol{y})$
$M_{1}(G)$	First Zagreb	$x+y$	$\left.\left(D_{x}+D_{y}\right)(M(G ; x, y))\right\|_{x=y=1}$
$M_{2}(G)$	Second Zagreb	$x y$	$\left.\left(D_{x} D_{y}\right)(M(G ; x, y))\right\|_{x=y=1}$
$\mathrm{M}_{2}^{\mathrm{m}}(G)$	Second modified Zagreb	$\frac{1}{x y}$	$\left.\left(S_{x} S_{y}\right)(M(G ; x, y))\right\|_{x=y=1}$
$S_{D}(G)$	Symmetric division	$\frac{x^{2}+y^{2}}{x y}$	$\left.\left(D_{x} S_{y}+D_{y} S_{x}\right)(M(G ; x, y))\right\|_{x=y=1}$
$H(G)$	Harmonic	$\frac{2}{x+y}$	$\left.2 S_{x} J(M(G ; x, y))\right\|_{x=1}$
$I_{n}(G)$	Inverse sum	$\frac{x y}{x+y}$	$\left.S_{x} J D_{x} D_{y}(M(G ; x, y))\right\|_{x=1}$

where, $D_{x}=x \frac{\partial f(x, y)}{\partial x}, D_{y}=y \frac{\partial f(x, y)}{\partial y}, S_{x}=\int_{0}^{x} \frac{f(t, y)}{t} d t, S_{y}=\int_{0}^{y} \frac{f(x, t)}{t} d t$ and $J(f(x, y))=$ $f(x, x)$ are the operators. Along with these operators, we also mention two more operators in Table 2 to calculate general sum connectivity index and first general Zagreb index.

Definition 1. [10] Let G be a graph. Then M-polynomial of G is defined as

$$
M(G ; x, y)=\sum_{i \leq j} m_{i j}(G) x^{i} y^{j}
$$

where $m_{i j}, i, j \geq 1$, is the number [19] of edges $u v$ of G such that $\left\{d_{G}(u), d_{G}(v)\right\}=\{i, j\}$.

Table 2: New operators to derive degree-based topological indices from M-polynomial.

Notation	Topological Index	$\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$	Derivation from M(G; $\boldsymbol{x}, \boldsymbol{y})$
$\chi_{\alpha}(G)$	General sum connectivity [21]	$(x+y)^{\alpha}$	$\left.D_{x}^{\alpha}(J(M(G ; x, y)))\right\|_{x=1}$
$M_{1}^{\alpha}(G)$	First general Zagreb [31]	$x^{\alpha-1}+y^{\alpha-1}$	$\left.\left(D_{x}^{\alpha-1}+D_{y}^{\alpha-1}\right)(M(G ; x, y))\right\|_{x=y=1}$

Note 1: Hyper Zagreb index is obtained by taking $\alpha=2$ in general sum connectivity index. Note 2: Taking $\alpha=2,3$ in first general Zagreb index, first Zagreb and forgotten topological indices are obtained respectively.

2. M-Polynomial of some Graph Operations

In this section, we obtain M-polynomial of some graph operations.

Lemma 2.1. For any r-regular graph G of order n and size m, the M-polynomial of G is given by $M(G ; x, y)=m x^{r} y^{r}$.

Proof. Since G is a r-regular graph with m edges and every edge is incident on vertex of degree r, the proof follows.

The product [24] $G \times H$ of graphs G and H has the vertex set $V(G \times H)=V(G) \times$ $V(H)$ and $(a, x)(b, y)$ is an edge of $G \times H$ if and only if $[a=b$ and $x y \in E(H)]$ or $[x=y$ and $a b \in E(G)]$.

Theorem 2.2. Let G be an r_{1}-regular graph of order n_{1} and H be an r_{2}-regular graph of order n_{2}. Then $M(G \times H ; x, y)=n_{1} n_{2} x^{r_{1}+r_{2}} y^{r_{1}+r_{2}}$.

Proof. Since the graphs G and H are regular graphs of degree r_{1} and r_{2} respectively. Therefore the graph obtained by product of G and H is a regular graph of degree $r_{1}+r_{2}$ with $n_{1} n_{2}$ vertices. Hence the result follows from Lemma 2.1.

Figure 1. Some cycle related graphs.

The composition [24] $G[H]$ of graphs G and H with disjoint vertex sets $V(G)$ and $V(H)$ and edge sets $E(G)$ and $E(H)$ is the graph with vertex set $V(G[H])=V(G) \times V(H)$ and $(a, x)(b, y)$ is an edge of $G[H]$ if and only if $[a$ is adjacent to b in $G]$ or $[a=b$ and x is adjacent to y in H].

Theorem 2.3. Let G be an r_{1}-regular graph of order n_{1} and H be an r_{2}-regular graph of order n_{2}. Then, $M(G[H] ; x, y)=n_{1} n_{2} x^{n_{2} r_{1}+r_{2}} y^{n_{2} r_{1}+r_{2}}$.

Proof. Since G and H are regular graphs of degree r_{1} and r_{2} respectively. The graph obtained by the composition of two graphs G and H is a regular graph of degree $n_{2} r_{1}+r_{2}$ with $n_{1} n_{2}$ vertices. Hence the result follows from Lemma 2.1.

3. M-Polynomial of Cycle Related Graphs

In this section, we obtain M-polynomial of some cycle related graphs, Figure 1. Definitions 2-10 can be found in [17], definition 11 is in [42] and definitions 12-16 can be found in [30, 38]. We also derive some topological indices (mentioned in Tables 1 and 2) of these graphs from the respective M-polynomials. For more details on wheel related graphs refer [17,27,38,42] and references cited there in.

Definition 2. The fan graph $F_{n},(n \geq 3)$ is defined as the graph $K_{1}+P_{n}$, where K_{1} is singleton graph and P_{n} is the path on n vertices.

Theorem 3.1. Let F_{n} be a fan of order $n+1$ and size $2 n-1$. Then,

$$
M\left(F_{n} ; x, y\right)=2 x^{2} y^{3}+2 x^{2} y^{n}+(n-3) x^{3} y^{3}+(n-2) x^{3} y^{n} .
$$

Proof. The fan F_{n} has $n+1$ vertices and $2 n-1$ edges. It is easy to see that $\left|m_{\{2,3\}}\right|=$ $2,\left|m_{\{2, n\}}\right|=2$ and the remaining edge partition of F_{n} is as follows:

$$
\begin{aligned}
& \left|E_{\{3,3\}}\right|=\mid u c \in E\left(F_{n}\right): d_{u}=3 \text { and } d_{c}=3 \mid=(n-3), \\
& \left|E_{\{3, n\}}\right|=\mid u c \in E\left(F_{n}\right): d_{u}=3 \text { and } d_{c}=n \mid=(n-2),
\end{aligned}
$$

proving the result.

Corollary 3.2. If F_{n} is a Fan, then

1. $M_{1}\left(F_{n}\right)=n^{2}+9 n-10$,
2. $M_{2}\left(F_{n}\right)=3 n^{2}+7 n-15$,
3. $\mathrm{M}_{2}^{m}\left(F_{n}\right)=\frac{n^{2}+3 n+3}{9 n}$,
4. $S_{D}\left(F_{n}\right)=\frac{n^{3}+7 n^{2}+4 n-6}{3 n}$,
5. $H\left(F_{n}\right)=\frac{n^{2}+2 n+12}{3(n+2)}+\frac{9 n-23}{5(n+3)}$,
6. $I_{n}\left(F_{n}\right)=\frac{3 n(n-2)}{n+3}+\frac{3(5 n-7)}{10}+\frac{4 n}{n+2}$,
7. $\chi_{\alpha}\left(F_{n}\right)=2 \cdot 5^{\alpha}+2(n+2)^{\alpha}+(n-3) \cdot 6^{\alpha}+(n-2)(n-3)^{\alpha}$,
8. $M_{1}^{\alpha}\left(F_{n}\right)=2^{\alpha+2}+3^{\alpha}(2 n-5)+3^{\alpha}(n-1)+n^{\alpha+1}$.

Proof. The M-polynomial for fan F_{n} is given by

$$
M\left(F_{n} ; x, y\right)=2 x^{2} y^{3}+2 x^{2} y^{n}+(n-3) x^{3} y^{3}+(n-2) x^{3} y^{n}
$$

Using the expressions from Tables 1 and 2, we have

$$
\begin{aligned}
& D_{x}=x \frac{\partial f(x, y)}{\partial x}=4 x^{2} y^{n}+4 x^{2} y^{3}+3(n-3) x^{3} y^{3}+3(n-2) x^{3} y^{n} \\
& D_{y}=y \frac{\partial f(x, y)}{\partial y}=2 n x^{2} y^{n}+6 x^{2} y^{3}+3(n-3) x^{3} y^{3}+n(n-2) x^{3} y^{n} \\
& S_{x}=\int_{0}^{x} \frac{f(t, y)}{t} d t=x^{2} y^{n}+x^{2} y^{3}+\frac{(n-3)}{3} x^{3} y^{3}+\frac{(n-2)}{3} x^{3} y^{n} \\
& S_{y}=\int_{0}^{y} \frac{f(x, t)}{t} d t=\frac{2}{n} x^{2} y^{n}+\frac{2}{3} x^{2} y^{3}+\frac{(n-3)}{3} x^{3} y^{3}+\frac{(n-2)}{n} x^{3} y^{n} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& M_{1}\left(F_{n}\right)=\left.\left(D_{x}+D_{y}\right)\left(M\left(F_{n} ; x, y\right)\right)\right|_{x=y=1}=n^{2}+9 n-10, \\
& M_{2}\left(F_{n}\right)=\left.\left(D_{x} D_{y}\right)\left(M\left(F_{n} ; x, y\right)\right)\right|_{x=y=1}=3 n^{2}+7 n-15, \\
& \mathrm{M}_{2}^{m}\left(F_{n}\right)=\left.\left(S_{x} S_{y}\right)\left(M\left(F_{n} ; x, y\right)\right)\right|_{x=y=1}=\frac{1}{3 n}+\frac{n+3}{9}, \\
& S_{D}\left(F_{n}\right)=\left.\left(D_{x} S_{y}+D_{y} S_{x}\right)\left(M\left(F_{n} ; x, y\right)\right)\right|_{x=y=1}=\frac{n^{3}+7 n^{2}+4 n-6}{3 n}, \\
& H\left(F_{n}\right)=\left.2 S_{x} J\left(M\left(F_{n} ; x, y\right)\right)\right|_{x=1}=\frac{n^{2}+2 n+12}{3(n+2)}+\frac{9 n-23}{5(n+3)}, \\
& I_{n}\left(F_{n}\right)=\left.S_{x} J D_{x} D_{y}(M(F n ; x, y))\right|_{x=1}=\frac{3 n(n-2)}{n+3}+\frac{3(5 n-7)}{10}+\frac{4 n}{n+2}, \\
& \chi_{\alpha}\left(F_{n}\right)=\left.D_{x}^{\alpha}\left(J\left(M\left(F_{n} ; x, y\right)\right)\right)\right|_{x=1}=2 \cdot 5^{\alpha}+2(n+2)^{\alpha}+(n-3) \cdot 6^{\alpha}+(n-2)(n-3)^{\alpha}, \\
& M_{\alpha}^{1}\left(F_{n}\right)=\left.\left(D_{x}^{\alpha}+D_{y}^{\alpha}\right)\left(M\left(F_{n} ; x, y\right)\right)\right|_{x=y=1}=2^{\alpha+2}+3^{\alpha}(2 n-5)+3^{\alpha}(n-1)+n^{\alpha+1} .
\end{aligned}
$$

Definition 3. The wheel $W_{n}=C_{n}+K_{1}$ is a graph with $n+1$ vertices and $2 n$ edges, where the vertex c with degree n is called the central vertex while the vertices on the cycle C_{n} are called rim vertices.

Theorem 3.3. Let W_{n} be a wheel of order $n+1$ and size $2 n$. Then,

$$
M\left(W_{n} ; x, y\right)=n x^{3} y^{3}\left(1+y^{n-3}\right)
$$

Proof. The wheel W_{n} has $n+1$ vertices and $2 n$ edges. The edge set of W_{n} can be partitioned as,

$$
\begin{aligned}
\left|E_{\{3,3\}}\right| & =\mid u v \in E\left(W_{n}\right): d_{u}=3 \text { and } d_{v}=3 \mid=n, \\
\left|E_{\{3, n\}}\right| & =\mid u c \in E\left(W_{n}\right): d_{u}=3 \text { and } d_{c}=n \mid \\
& =\left|E\left(W_{n}\right)-\left|E_{\{3,3\}}\right|=n .\right.
\end{aligned}
$$

Corollary 3.4. If W_{n} is a wheel, then

1. $M_{1}\left(W_{n}\right)=n^{2}+9 n$,
2. $M_{2}\left(W_{n}\right)=3 n^{2}+9 n$,
3. $M_{2}^{m}\left(W_{n}\right)=\frac{n+3}{9}$,
4. $S_{D}\left(W_{n}\right)=\frac{n^{2}+6 n+9}{3}$,
5. $H\left(W_{n}\right)=\frac{n^{2}+9 n}{3(n+3)}$,
6. $I_{n}\left(W_{n}\right)=\frac{3 n}{2}+\frac{3 n^{2}}{n+3}$,
7. $\chi_{\alpha}\left(W_{n}\right)=n\left(6^{\alpha}+(n+3)^{\alpha}\right)$,
8. $M_{1}^{\alpha}\left(W_{n}\right)=3^{\alpha+1}+n^{\alpha}$.

Proof. Let $M\left(W_{n} ; x, y\right)=\sum_{i \leq j} m_{i j}\left(W_{n}\right) x^{i} y^{j}=n x^{3} y^{3}\left(1+y^{n-3}\right)$. Using the expressions from Tables 1 and 2, we have

$$
\begin{aligned}
& D_{x}=x \frac{\partial f(x, y)}{\partial x}=3 n x^{3} y^{3}+3 n x^{3} y^{n} \\
& D_{y}=y \frac{\partial f(x, y)}{\partial y}=3 n x^{3} y^{3}+n^{2} x^{3} y^{n} \\
& S_{x}=\int_{0}^{x} \frac{f(t, y)}{t} d t=\frac{n x^{3} y^{3}}{3}+\frac{n x^{3} y^{n}}{3} \\
& S_{y}=\int_{0}^{y} \frac{f(x, t)}{t} d t=\frac{n x^{3} y^{3}}{3}+x^{3} y^{n} .
\end{aligned}
$$

Thus we get,
$M_{1}\left(W_{n}\right)=\left.\left(D_{x}+D_{y}\right)\left(M\left(W_{n} ; x, y\right)\right)\right|_{x=y=1}=n^{2}+9 n$,
$M_{2}\left(W_{n}\right)=\left.\left(D_{x} D_{y}\right)\left(M\left(W_{n} ; x, y\right)\right)\right|_{x=y=1}=3 n^{2}+9 n$,
$\mathrm{M}_{2}^{m}\left(W_{n}\right)=\left.\left(S_{x} S_{y}\right)\left(M\left(W_{n} ; x, y\right)\right)\right|_{x=y=1}=\frac{n}{9}+\frac{1}{3}$,
$S_{D}\left(W_{n}\right)=\left.\left(D_{x} S_{y}+D_{y} S_{x}\right)\left(M\left(W_{n} ; x, y\right)\right)\right|_{x=y=1}=\frac{n^{2}+6 n+9}{3}$,
$H\left(W_{n}\right)=\left.2 S_{x} J\left(M\left(W_{n} ; x, y\right)\right)\right|_{x=1}=\frac{n}{3}+\frac{2 n}{n+3}$,
$I_{n}\left(W_{n}\right)=\left.S_{x} J D_{x} D_{y}\left(M\left(W_{n} ; x, y\right)\right)\right|_{x=1}=\frac{3 n}{2}+\frac{3 n^{2}}{n+3}$,
$\chi_{\alpha}\left(W_{n}\right)=\left.D_{x}^{\alpha}\left(J\left(M\left(W_{n} ; x, y\right)\right)\right)\right|_{x=1}=n\left(6^{\alpha}+(n+3)^{\alpha}\right)$,
$M_{1}^{\alpha}\left(W_{n}\right)=\left.\left(D_{x}^{\alpha}+D_{y}^{\alpha}\right)\left(M\left(W_{n} ; x, y\right)\right)\right|_{x=y=1}=3^{\alpha+1}+n^{\alpha}$.

Definition 4. The gear graph G_{n} is a wheel graph with a vertex added between each pair adjacent vertices of the outer circle.

Theorem 3.5. Let G_{n} be a gear graph. Then $M\left(G_{n} ; x, y\right)=2 n x^{2} y^{3}+n x^{3} y^{n}$.

Proof. Let G_{n} is a graph having $(2 n+1)$ vertices and $3 n$ edges. The edge partition of G_{n} is given by,

$$
\begin{aligned}
\left|E_{\{2,3\}}\right| & =\mid u v \in E\left(G_{n}\right): d_{u}=2 \text { and } d_{v}=3 \mid=2 n, \\
\left|E_{\{3, n\}}\right| & =\mid u v \in E\left(G_{n}\right): d_{u}=3 \text { and } d_{v}=n \mid \\
& =\left|E\left(G_{n}\right)\right|-\left|E_{\{2,3\}}\right|=n .
\end{aligned}
$$

Using definition of M-polynomial and above edge partitions, we get the desired result.

Corollary 3.6. If G_{n} is a gear graph, then

1. $M_{1}\left(G_{n}\right)=n^{2}+13 n$,
2. $M_{2}\left(G_{n}\right)=3 n^{2}+12 n$,
3. $M_{2}^{m}\left(G_{n}\right)=\frac{n+1}{3}$,
4. $S_{D}\left(G_{n}\right)=\frac{n^{2}}{3}+\frac{13 \mathrm{n}}{3}+3$,
5. $H\left(G_{n}\right)=\frac{4 n}{5}+\frac{n}{n+3}$,
6. $I_{n}\left(G_{n}\right)=\frac{12 n}{5}+\frac{3 n^{2}}{n+3}$,
7. $\chi_{\alpha}\left(G_{n}\right)=2 n 5^{\alpha}+n(n+3)^{\alpha}$,
8. $M_{1}^{\alpha}\left(G_{n}\right)=n\left(2^{\alpha+1}+3^{\alpha+1}+n^{\alpha}\right)$.

Definition 5. The helm H_{n} is a graph obtained from a wheel W_{n} with central vertex c, by attaching a pendant edge to each rim vertex of W_{n}. A closed helm $C H_{n}$ is the graph with central vertex c, obtained from a helm by joining each pendant vertex to form a cycle.

Theorem 3.7. Let H_{n} be a helm. Then $M\left(H_{n} ; x, y\right)=n x y^{4}+n x^{4} y^{4}+n x^{4} y^{n}$.

Proof. Let H_{n} is a graph having $(2 n+1)$ vertices and $3 n$ edges. The edge partition of H_{n} is given by,

$$
\begin{aligned}
\left|E_{\{1,4\}}\right| & =\mid u v \in E\left(H_{n}\right): d_{u}=1 \quad \text { and } \quad d_{v}=4 \mid=n, \\
\left|E_{\{4,4\}}\right| & =\mid u v \in E\left(H_{n}\right): d_{u}=4 \text { and } d_{v}=4 \mid=n, \\
\left|E_{\{4, n\}}\right| & =\mid u v \in E\left(H_{n}\right): d_{u}=4 \text { and } d_{v}=n \mid \\
& =\left|E\left(H_{n}\right)\right|-\left|E_{\{1,4\}}\right|-\left|E_{\{4,4\}}\right|=n .
\end{aligned}
$$

Corollary 3.8. If H_{n} is a helm graph, then

1. $M_{1}\left(H_{n}\right)=n^{2}+17 n$,
2. $M_{2}\left(H_{n}\right)=4 n^{2}+20 n$,
3. $M_{2}^{m}\left(H_{n}\right)=\frac{5 n+4}{16}$,
4. $S_{D}\left(H_{n}\right)=\frac{n(n+1)}{4}+6 n+4$,
5. $H\left(H_{n}\right)=\frac{2 n}{5}+\frac{n}{4}+\frac{2 n}{n+4}$,
6. $I_{n}\left(H_{n}\right)=\frac{n^{2}}{n+4}+\frac{14 n}{5}$,
7. $\chi_{\alpha}\left(H_{n}\right)=n\left(5^{\alpha}+8^{\alpha}+(n+4)^{\alpha}\right.$,
8. $M_{1}^{\alpha}\left(H_{n}\right)=n\left(4^{\alpha+1}+n^{\alpha}\right)$.

Theorem 3.9. Let $C H_{n}$ be a closed helm. Then

$$
M\left(C H_{n} ; x, y\right)=n x^{3} y^{3}+n x^{3} y^{4}+n x^{4} y^{4}+n x^{4} y^{n}
$$

Proof. Let $C H_{n}$ is a graph having $(2 n+1)$ vertices and $4 n$ edges. The edge partition of CH_{n} is given by,

$$
\begin{aligned}
& \left|E_{\{3,3\}}\right|=\mid u v \in E\left(C H_{n}\right): d_{u}=3 \quad \text { and } \quad d_{v}=3 \mid=n, \\
& \left|E_{\{3,4\}}\right|=\mid u v \in E\left(C H_{n}\right): d_{u}=3 \text { and } d_{v}=4 \mid=n, \\
& \left|E_{\{4,4\}}\right|=\mid u v \in E\left(C H_{n}\right): d_{u}=4 \text { and } d_{v}=4 \mid=n, \\
& \left|E_{\{4, n\}}\right|=\mid u v \in E\left(C H_{n}\right): d_{u}=4 \text { and } d_{v}=n \mid=n .
\end{aligned}
$$

Corollary 3.10. If CH_{n} is a gear graph, then

1. $M_{1}\left(C H_{n}\right)=n^{2}+25 n$,
2. $M_{2}\left(C H_{n}\right)=4 n^{2}+37 n$,
3. $M_{2}^{m}\left(C H_{n}\right)=\frac{37 n+36}{144}$,
4. $S_{D}\left(C H_{n}\right)=\frac{73 n+3}{12}$,
5. $H\left(C H_{n}\right)=\frac{n}{3}+\frac{n}{4}+\frac{2 n}{7}+\frac{2 n}{n+4}$,
6. $I_{n}\left(C H_{n}\right)=\frac{3 n}{2}+\frac{12 n}{7}+\frac{4 n^{2}}{n+4}+2 n$,
7. $\chi_{\alpha}\left(C H_{n}\right)=n\left(6^{\alpha}+7^{\alpha}+8^{\alpha}+(n+4)^{\alpha}\right)$,
8. $M_{1}^{\alpha}\left(C H_{n}\right)=n\left(3^{\alpha+1}+4^{\alpha+1}+n^{\alpha}\right)$.

Definition 6. The flower $F l_{n}$ is the graph obtained from a helm H_{n} by joining each pendant vertex to the central vertex c of the helm.

Theorem 3.11. Let $F l_{n}$ be a flower. Then

$$
M\left(F l_{n} ; x, y\right)=n x^{2} y^{4}+n x^{2} y^{2 n}+n x^{4} y^{4}+n x^{4} y^{2 n}
$$

Proof. Let flower $F l_{n}$ is a graph having $(2 n+1)$ vertices and $4 n$ edges. The edge partition of $F l_{n}$ is given by,

$$
\begin{aligned}
\left|E_{\{2,4\}}\right| & =\mid u v \in E\left(F l_{n}\right): d_{u}=2 \quad \text { and } \quad d_{v}=4 \mid=n, \\
\left|E_{\{2,2 n\}}\right| & =\mid u v \in E\left(F l_{n}\right): d_{u}=2 \quad \text { and } \quad d_{v}=2 n \mid=n, \\
\left|E_{\{4,4\}}\right| & =\mid u v \in E\left(F l_{n}\right): d_{u}=4 \text { and } d_{v}=4 \mid=n, \\
\left|E_{\{4,2 n\}}\right| & =\mid u v \in E\left(F l_{n}\right): d_{u}=4 \text { and } d_{v}=2 n \mid \\
& =\left|E\left(F l_{n}\right)\right|-\left|E_{\{2,4\}}\right|-\left|E_{\{2,2 n\}}\right|-\left|E_{\{4,4\}}\right|=n .
\end{aligned}
$$

Corollary 3.12. If $F l_{n}$ is a flower graph, then

1. $M_{1}\left(F l_{n}\right)=4 n(n+5)$,
2. $M_{2}\left(F l_{n}\right)=12 n(n+2)$,
3. $M_{2}^{m}\left(F l_{n}\right)=\frac{3 n+6}{16}$,
4. $S_{D}\left(F l_{n}\right)=\frac{3 n^{2}}{2}+\frac{5 n}{2}+3$,
5. $H\left(F l_{n}\right)=\frac{n}{n+1}+\frac{n}{n+2}+\frac{7 n}{8}$,
6. $I_{n}\left(F l_{n}\right)=\frac{4 n}{3}+\frac{2 n^{2}}{n+1}+\frac{4 n^{2}}{n+2}+2 n$,
7. $\chi_{\alpha}\left(F l_{n}\right)=\mathrm{n}\left(6^{\alpha}+8^{\alpha}+(2 \mathrm{n}+2)^{\alpha}+(2 \mathrm{n}+4)^{\alpha}\right)$,
8. $M_{1}^{\alpha}\left(F l_{n}\right)=n\left(2^{\alpha+1}+4^{\alpha+1}+n^{\alpha} 2^{\alpha+1}\right)$.

Definition 7. The sunflower graph $S F_{n}$ is a graph obtained from a wheel with central vertex c, n-cycle $v_{0}, v_{1}, \ldots, v_{n-1}$ and additional n vertices $w_{0}, w_{1}, \ldots, w_{n-1}$ where w_{i} is joined by edges to v_{i}, v_{i+1} for $i=0,1, \ldots, n-1$ where $i+1$ is taken modulo n.

Theorem 3.13. Let $S F_{n}$ be a sunflower. Then $M\left(S F_{n} ; x, y\right)=2 n x^{2} y^{5}+n x^{5} y^{5}+n x^{5} y^{n}$.

Proof. The sunflower graph $S F_{n}$ is a graph having $(2 n+1)$ vertices and $4 n$ edges. The edge partition of $S F_{n}$ is given by,

$$
\begin{aligned}
\left|E_{\{2,5\}}\right| & =\mid u v \in E\left(S F_{n}\right): d_{u}=2 \quad \text { and } d_{v}=5 \mid=2 n, \\
\left|E_{\{5,5\}}\right| & =\mid u v \in E\left(S F_{n}\right): d_{u}=5 \text { and } d_{v}=5 \mid=n, \\
\left|E_{\{5, n\}}\right| & =\mid u v \in E\left(S F_{n}\right): d_{u}=5 \text { and } d_{v}=n \mid \\
& =\left|E\left(S F_{n}\right)\right|-\left|E_{\{2,5\}}\right|-\left|E_{\{5,5\}}\right|=n .
\end{aligned}
$$

Corollary 3.14. If $S F_{n}$ is a sunflower graph, then

1. $M_{1}\left(S F_{n}\right)=n^{2}+29 n$,
2. $M_{2}\left(S F_{n}\right)=5 n(n+9)$,
3. $M_{2}^{m}\left(S F_{n}\right)=\frac{n}{5}+\frac{n}{25}+\frac{1}{5}$,
4. $S_{D}\left(S F_{n}\right)=\frac{n^{2}+39 n+25}{5}$,
5. $H\left(S F_{n}\right)=\frac{4 n}{7}+\frac{n}{5}+\frac{2 n}{n+5}$,
6. $I_{n}\left(S F_{n}\right)=\frac{5 n^{2}}{n+5}+\frac{5 n}{2}+\frac{20 n}{7}$,
7. $\chi_{\alpha}\left(S F_{n}\right)=n\left(2 \cdot 7^{\alpha}+10^{\alpha}+(n+5)^{\alpha}\right)$,
8. $M_{1}^{\alpha}\left(S F_{n}\right)=n\left(2^{\alpha+1}+5^{\alpha+1}+n^{\alpha}\right)$.

Definition 8. The friendship graph f_{n} is a collection of n-triangles with a common vertex. Friendship graph can also be obtained from a wheel $W_{2 n}$ with cycle $C_{2 n}$ by deleting alternate edges of the cycle. That is $f_{n}=K_{1}+n K_{2}$.

Theorem 3.15. Let f_{n} be a friendship graph. Then $M\left(f_{n} ; x, y\right)=n x^{2} y^{2}+2 n x^{2} y^{2 n}$.

Proof. Let friendship graph f_{n} is a graph having $(2 n+1)$ vertices and $3 n$ edges. The edge partition of f_{n} is given by,

$$
\begin{aligned}
\left|E_{\{2,2\}}\right| & =\mid u v \in E\left(f_{n}\right): d_{u}=2 \text { and } d_{v}=2 \mid=n, \\
\left|E_{\{2,2 n\}}\right| & =\mid u v \in E\left(f_{n}\right): d_{u}=2 \text { and } d_{v}=2 n \mid \\
& =\left|E\left(f_{n}\right)\right|-\left|E_{\{2,2\}}\right|=2 n .
\end{aligned}
$$

Corollary 3.16. If f_{n} is a flower graph, then

1. $M_{1}\left(f_{n}\right)=4 n(n+2)$,
2. $M_{2}\left(f_{n}\right)=4 n(2 n+1)$,
3. $M_{2}^{m}\left(f_{n}\right)=\frac{n+2}{4}$,
4. $S_{D}\left(f_{n}\right)=2\left(n^{2}+n+1\right)$,
5. $H\left(f_{n}\right)=\frac{n}{2}+\frac{2 n}{n+1}$,
6. $I_{n}\left(f_{n}\right)=n+\frac{4 n^{2}}{n+1}$,
7. $\chi_{\alpha}\left(f_{n}\right)=n\left(4^{\alpha}+2^{\alpha+1}(n+1)^{\alpha}\right)$,
8. $M_{1}^{\alpha}\left(f_{n}\right)=n 2^{\alpha+1}(n+2)$.

Definition 9. A web graph is the graph obtained by joining a pendant edge to each vertex on the outer cycle of the closed helm. $W(t, n)$ is the generalized web with t cycles each of order n.

Theorem 3.17. Let $W(t, n)$ be a generalized web. Then

$$
M(W(t, n) ; x, y)=n x y^{4}+n(2 t-1) x^{4} y^{4}+n x^{4} y^{n}
$$

Proof. Let generalized web $W(t, n)$ is a graph having $(t n+n+1)$ vertices and $n(2 t+1)$ edges. The edge partition of $W(t, n)$ is given by,

$$
\begin{aligned}
\left|E_{\{1,4\}}\right| & =\mid u v \in E(W(t, n)): d_{u}=1 \quad \text { and } \quad d_{v}=4 \mid=n, \\
\left|E_{\{4,4\}}\right| & =\mid u v \in E(W(t, n)): d_{u}=4 \quad \text { and } d_{v}=4 \mid=n(2 t-1), \\
\left|E_{\{4, n\}}\right| & =\mid u v \in E(W(t, n)): d_{u}=4 \text { and } d_{v}=n \mid \\
& =|E(W(t, n))|-\left|E_{\{1,4\}}\right|-\left|E_{\{4,4\}}\right|=n .
\end{aligned}
$$

Corollary 3.18. If $W(t, n)$ be a generalized web, then

1. $M_{1}(W(t, n))=n(n+8(2 t-1)+9)$,
2. $M_{2}(W(t, n))=4 n(n+4(2 t-1)+1)$,
3. $M_{2}^{m}(W(t, n))=\frac{n}{4}+\frac{n(2 t-1)}{16}+\frac{1}{4}$,
4. $S_{D}(W(t, n))=\frac{n^{2}}{2}+\frac{n}{4}+2 n(2 t-1)+4 n+4$,
5. $H(W(t, n))=\frac{2 n}{5}+\frac{n(2 t-1)}{4}+\frac{2 n}{n+4}$,
6. $I_{n}(W(t, n))=\frac{4 n}{5}+2 n(2 t-1)+\frac{4 n^{2}}{n+4}$,
7. $\chi_{\alpha}(W(t, n))=n\left(5^{\alpha}+(2 t-1) 8^{\alpha}+(4+n)^{\alpha}\right.$,
8. $M_{1}^{\alpha}(W(t, n))=2 n \cdot 4^{\alpha}+2 n \cdot 4^{\alpha}(2 t-1)+n^{\alpha+1}+n$.

Definition 10. The crown (or sun) $C W_{n}$ is a corona of form $C_{n} \circ K_{1}$ where $n \geq 3$. That is crown is a helm without central vertex.

Theorem 3.19. Let $C W_{n}$ be a crown graph. Then

$$
M\left(C W_{n} ; x, y\right)=n x y^{3}+n x^{3} y^{3}
$$

Proof. Let $C W_{n}$ is a crown graph having $2 n$ vertices and $2 n$ edges. The edge partition of $C W_{n}$ is given by,

$$
\begin{aligned}
\left|E_{\{1,3\}}\right| & =\mid u v \in E\left(C W_{n}\right): d_{u}=1 \quad \text { and } d_{v}=3 \mid=n, \\
\left|E_{\{3,3\}}\right| & =\mid u v \in E\left(C W_{n}\right): d_{u}=3 \text { and } d_{v}=3 \mid \\
& =\left|E\left(C W_{n}\right)\right|-\left|E_{\{1,3\}}\right|=n .
\end{aligned}
$$

Corollary 3.20. If $C W_{n}$ is a flower graph, then

1. $M_{1}\left(C W_{n}\right)=10 n$,
2. $M_{2}\left(C W_{n}\right)=12 n$,
3. $M_{2}^{m}\left(C W_{n}\right)=\frac{4 n}{9}$,
4. $S_{D}\left(C W_{n}\right)=\frac{10 n}{3}$,
5. $H\left(C W_{n}\right)=\frac{n}{2}+\frac{n}{3}$,
6. $I_{n}\left(C W_{n}\right)=\frac{9 n}{4}$,
7. $\chi_{\alpha}\left(C W_{n}\right)=n\left(4^{\alpha}+6^{\alpha}\right)$,
8. $M_{1}^{\alpha}\left(C W_{n}\right)=n\left(3^{\alpha+1}+1\right)$.

The duplication of an edge [42] $e=u v$ by a new vertex v^{\prime} in a graph G produces a new graph G^{\prime} by adding a new vertex v^{\prime} such that $N\left(v^{\prime}\right)=\{u, v\}$.

Definition 11. Consider a wheel $W_{n}=C_{n}+K_{1}$ with $v_{1}, v_{2}, \ldots, v_{n}$ as its rim vertices and c as its central vertex. Let $e_{1}, e_{2}, \ldots, e_{n}$ be the rim edges of W_{n} which are duplicated by new vertices $w_{1}, w_{2}, \ldots, w_{n}$, respectively and let $f_{1}, f_{2}, \ldots, f_{n}$ be the spoke edges of W_{n} which are duplicated by the vertices $u_{1}, u_{2}, \ldots, u_{n}$, respectively. The resultant graph is called duplication of the wheel denoted by $D u W_{n}$.

Theorem 3.21. Let $D u W_{n}$ be the duplication of the wheel. Then

$$
M\left(D u W_{n} ; x, y\right)=3 n x^{2} y^{6}+n x^{2} y^{2 n}+n x^{6} y^{6}+n x^{6} y^{2 n}
$$

Proof. Let duplication of the wheel $D u W_{n}$ is a graph having $(3 n+1)$ vertices and $6 n$ edges. The edge partition of $D u W_{n}$ is given by,

$$
\begin{aligned}
\left|E_{\{2,6\}}\right| & =\mid u v \in E\left(D u W_{n}\right): d_{u}=2 \text { and } d_{v}=6 \mid=3 n, \\
\left|E_{\{2,2 n\}}\right| & =\mid u v \in E\left(D u W_{n}\right): d_{u}=2 \text { and } d_{v}=2 n \mid=n, \\
\left|E_{\{6,6\}}\right| & =\mid u v \in E\left(D u W_{n}\right): d_{u}=6 \text { and } d_{v}=6 \mid=n, \\
\left|E_{\{6,2 n\}}\right| & =\mid u v \in E\left(D u W_{n}\right): d_{u}=6 \text { and } d_{v}=2 n \mid \\
& =\left|E\left(D u W_{n}\right)\right|-\left|E_{\{2,6\}}\right|-\left|E_{\{2,2 n\}}\right|-\left|E_{\{6,6\}}\right|=n .
\end{aligned}
$$

Corollary 3.22. If $C W_{n}$ be the duplication of the wheel, then

1. $M_{1}\left(D u W_{n}\right)=4 n(n+11)$,
2. $M_{2}\left(D u W_{n}\right)=8 n(2 n+9)$,
3. $M_{2}^{m}\left(D u W_{n}\right)=\frac{5 n+6}{18}$,
4. $S_{D}\left(D u W_{n}\right)=\frac{4 n^{2}+17 n+16}{4}$,
5. $H\left(D u W_{n}\right)=\frac{3 n}{4}+\frac{n}{n+1}+\frac{n}{6}+\frac{n}{n+3}$,
6. $I_{n}\left(D u W_{n}\right)=\frac{9 n}{2}+\frac{8 n^{2}}{n+1}+3 n$,
7. $\chi_{\alpha}\left(D u W_{n}\right)=n\left(3 \cdot 8^{\alpha}+12^{\alpha}+(2 n+2)^{\alpha}+(2 n+6)^{\alpha}\right)$,
8. $M_{1}^{\alpha}\left(D u W_{n}\right)=\left(4 n \cdot 2^{\alpha}+6 n \cdot 6^{\alpha}+(2 n)^{\alpha+1}\right)$.

Definition 12. A uniform n-fan split graph $S F_{n}^{r}$, contains a star S_{n-1} with hub at x such that the deletion of n edges of S_{n-1} partitions the graph into n independent fans $F_{r}^{i}=P_{r}^{i}+$ $K_{1},(1 \leq i \leq n)$ and a isolated vertex, Figure 2.

Figure 2. Self explanatory examples of $S F_{4}^{9}, S W_{4}^{9}$ and $\mathrm{KW}(6,9)$ graphs.

Theorem 3.23. Let $S F_{n}^{r}$ be a uniform n-fan split graph. Then

$$
M\left(S F_{n}^{r} ; x, y\right)=2 n x^{2} y^{3}+2 n x^{2} y^{r+1}+n(r-3) x^{3} y^{3}+n(r-2) x^{3} y^{r+1}+n x^{n} y^{r+1}
$$

Proof. The uniform n-fan split graph $S F_{n}^{r}$ has $(n r+n+1)$ vertices and $2 n r$ edges. The edge set of $S F_{n}^{r}$ can be partitioned as,

$$
\begin{aligned}
\left|E_{\{2,3\}}\right| & =\mid u v \in E\left(S F_{n}^{r}\right): d_{u}=2 \quad \text { and } d_{v}=3 \mid=2 n, \\
\left|E_{\{2, r+1\}}\right| & =\mid u c \in E\left(S F_{n}^{r}\right): d_{u}=2 \text { and } d_{c}=r+1 \mid=2 n, \\
\left|E_{\{3,3\}}\right| & =\mid u c \in E\left(S F_{n}^{r}\right): d_{u}=3 \text { and } d_{c}=3 \mid=n(r-3), \\
\left|E_{\{3, r+1\}}\right| & =\mid u c \in E\left(S F_{n}^{r}\right): d_{u}=3 \text { and } d_{c}=r+1 \mid=n(r-2), \\
\left|E_{\{n, r+1\}}\right| & =\mid u c \in E\left(S F_{n}^{r}\right): d_{u}=n \text { and } d_{c}=r+1 \mid \\
& =\left|E\left(S F_{n}^{r}\right)-\left|E_{\{2,3\}}\right|-\left|E_{\{2, r+1\}}\right|-\left|E_{\{3,3\}}\right|-\left|E_{\{3, r+1\}}\right|=n .\right.
\end{aligned}
$$

Corollary 3.24. If $S F_{n}^{r}$ be a uniform n-fan split graph, then

1. $M_{1}\left(S F_{n}^{r}\right)=n\left(r^{2}+11 r+n-9\right)$,
2. $M_{2}\left(S F_{n}^{r}\right)=n\left(3 r^{2}+n r+10 r+n-17\right)$,
3. $M_{2}^{m}\left(S F_{n}^{r}\right)=\frac{9+n\left(3+4 r+r^{2}\right)}{9(r+1)}$,
4. $S_{D}\left(S F_{n}^{r}\right)=\frac{3 n^{2}+3(r+1)^{2}+n\left(r^{3}+9 r^{2}+13 r-10\right)}{3(r+1)}$,
5. $H\left(S F_{n}^{r}\right)=\frac{2 n}{15}\left(\frac{15}{n+r+1}-\frac{90}{r+4}+\frac{30}{r+3}+10 r-9\right)$,
6. $I_{n}\left(S F_{n}^{r}\right)=\frac{n^{2}(r+1)}{(n+r+1)}+\frac{n\left(45 r^{3}+184 r^{2}+83 r-272\right)}{10(r+3)(r+4)}$,
7. $\chi_{\alpha}\left(S F_{n}^{r}\right)=2 n 5^{\alpha}+2 n(r+3)^{\alpha}+n(r-3) 6^{\alpha}+n(r-2)(r+4)^{\alpha}+n(n+r+1)^{\alpha}$
8. $M_{1}^{\alpha}\left(S F_{n}^{r}\right)=4 n \cdot 2^{\alpha}+2 n(r-3) 3^{\alpha}+n(r-2) 3^{\alpha}+2 n \cdot 3^{\alpha}+n^{\alpha+1}+n(r-2)(r+1)^{\alpha}+n(r+1)^{\alpha}$.

Definition 13. The graph $S W_{n}^{r}$ contains a star S_{n-1} with hub at x such that the deletion of the n edges of S_{n-1} partitions the graph into n independent wheels $W_{r}^{i}=C_{r}^{i}+K_{1},(1 \leq$ $i \leq n)$ and an isolated vertex, Figure 2.

Theorem 3.25. Let $S W_{n}^{r}$ be the graph having $(n r+n+1)$ vertices and $n(2 r+1)$ edges. Then

$$
M\left(S W_{n}^{r} ; x, y\right)=n r x^{3} y^{3}+n r x^{3} y^{r+1}+n x^{n} y^{r+1}
$$

Proof. Let $S W_{n}^{r}$ is a graph having $(n r+n+1)$ vertices and $n(2 r+1)$ edges. The edge partition of $S W_{n}^{r}$ is given by,

$$
\begin{aligned}
\left|E_{\{3,3\}}\right| & =\mid u v \in E\left(S W_{n}^{r}\right): d_{u}=3 \text { and } d_{v}=3 \mid=n r, \\
\left|E_{\{3, r+1\}}\right| & =\mid u v \in E\left(S W_{n}^{r}\right): d_{u}=3 \text { and } d_{v}=r+1 \mid=n r, \\
\left|E_{\{n, r+1\}}\right| & =\mid u v \in E\left(S W_{n}^{r}\right): d_{u}=n \text { and } d_{v}=r+1 \mid \\
& =\left|E\left(S W_{n}^{r}\right)\right|-\left|E_{\{3, r+1\}}\right|-\left|E_{\{3,3\}}\right|=n .
\end{aligned}
$$

Corollary 3.26. If $S W_{n}^{r}$ graph, then

1. $M_{1}\left(S W_{n}^{r}\right)=n^{2}+n(r+1)+n r(r+10)$,
2. $M_{2}\left(S W_{n}^{r}\right)=n^{2}(r+1)+3 n r(r+4)$,
3. $M_{2}^{m}\left(S W_{n}^{r}\right)=\frac{n r^{2}+4 n r+9}{9(r+1)}$,
4. $S_{D}\left(S W_{n}^{r}\right)=\frac{3 n^{2}+3(r+1)^{2}+n r(r+4)^{2}}{3(r+1)}$,
5. $H\left(S W_{n}^{r}\right)=\frac{2 n}{(n+r+1)}+n r\left(\frac{r+10}{3(r+4)}\right)$,
6. $I_{n}\left(S W_{n}^{r}\right)=\frac{9 n r(r+2)}{2(r+4)}+\left(\frac{n^{2}(r+1)}{(n+r+4)}\right)$,
7. $\chi_{\alpha}\left(S W_{n}^{r}\right)=\mathrm{nr} \cdot 6^{\alpha}+\mathrm{nr}(\mathrm{r}+4)^{\alpha}+\mathrm{n}(\mathrm{n}+\mathrm{r}+1)^{\alpha}$,
8. $M_{1}^{\alpha}\left(S W_{n}^{r}\right)=3 \mathrm{nr} \cdot 3^{\alpha}+\mathrm{n}^{\alpha+1}+\mathrm{nr}(\mathrm{r}+1)^{\alpha}+\mathrm{n}(\mathrm{r}+1)^{\alpha}$.

Definition 14. Let $u_{i},(1 \leq i \leq n)$ be the vertices of the complete graph K_{n}. Let $W_{r}^{i}=C_{r}^{i}+$ K_{1} be the wheel with hubs $w^{i},(1 \leq i \leq n)$, respectively. Let $u_{i} w^{i},(1 \leq i \leq n)$ be an edge. The graph so constructed is called uniform n-wheel split graph $K W(n, r)$, Figure 2.

Note: A uniform n-wheel split graph $K W(n, r)$ is a graph in which the deletion of n edges $u_{i} w^{i},(1 \leq i \leq n)$ partitions the graph into a complete graph and n independent wheels W_{r}. This graph can be thought of as a generalization of the standard split graph in the sense that the elements of the independent sets are replaced by wheels here.

Figure 3. Graphs $S W(6,9)$ and $K D W(6,9)$.

Theorem 3.27. Let $K W(n, r)$ be a uniform n-wheel split graph. Then

$$
M(K W(n, r) ; x, y)=n r x^{3} y^{3}+n r x^{3} y^{r+1}+n x^{n} y^{r+1}+\binom{n}{2} x^{n} y^{n}
$$

Proof. Let $K W(n, r)$ uniform n-wheel split graph having $n(r+2)$ vertices and $\frac{n}{2}(4 r+$ $n+1)$ edges. The edge partition of $K W(n, r)$ is given by,

$$
\begin{aligned}
\left|E_{\{3,3\}}\right| & =\mid u v \in E(K W(n, r)): d_{u}=3 \quad \text { and } \quad d_{v}=3 \mid=n r, \\
\left|E_{\{3, r+1\}}\right| & =\mid u v \in E(K W(n, r)): d_{u}=3 \quad \text { and } \quad d_{v}=r+1 \mid=n r, \\
\left|E_{\{n, r+1\}}\right| & =\mid u v \in E(K W(n, r)): d_{u}=n \text { and } d_{v}=r+1 \mid=n, \\
\left|E_{\{n, n\}}\right| & =\mid u v \in E(K W(n, r)): d_{u}=n \text { and } d_{v}=n \mid \\
& =\left|E(K W(n, r))-\left|E_{\{3,3\}}\right|-\left|E_{\{3, r+1\}}\right|-\left|E_{\{n, r+1\}}\right|=\binom{n}{2} .\right.
\end{aligned}
$$

Corollary 3.28. If $K W(n, r)$ be a uniform n-wheel split graph, then

1. $M_{1}(K W(n, r))=n^{3}+n(r+1)+n r(r+10)$,
2. $M_{2}(K W(n, r))=\frac{n^{4}-n^{3}+2 n^{2}(r+1)+6 n r(r+4)}{2}$,
3. $M_{2}^{m}(K W(n, r))=\frac{1}{18}\left(\frac{9(r+3)+2 n r(r+4)}{(r+1)}-\frac{9}{n}\right)$,
4. $S_{D}(K W(n, r))=r-n+1+\frac{n r(r+4)^{2}}{3(r+1)}+n^{2}\left(\frac{r+2}{r+1}\right)$,
5. $H(K W(n, r))=n r\left(\frac{r+10}{3(r+4)}\right)+n\left(\frac{n+r+3}{2(n+r+1)}\right)-\frac{1}{2}$,
6. $I_{n}(K W(n, r))=\frac{1}{4} n^{2}(n+3)+\frac{9 n r}{2}-\frac{9 n r}{(r+4)}-\frac{n^{3}}{(n+r+1)}$,
7. $\chi_{\alpha}(K W(n, r))=n r \cdot 6^{\alpha}+n r(r+4)^{\alpha}+n(n+r+1)^{\alpha}+\binom{n}{2}(2 n)^{\alpha}$
8. $M_{1}^{\alpha}(K W(n, r))=n r \cdot 3^{\alpha+1}+n^{\alpha+1}+n(n-1) n^{\alpha}+n r(r+1)^{\alpha}+n(r+1)^{\alpha}$.

Definition 15. Let $u_{i},(1 \leq i \leq n)$ be the vertices of a star S_{n-1} with a hub at x. Let $u_{i} w^{i},(1 \leq i \leq n)$ be an edge. Let $W_{r}^{i}=C_{r}^{i}+K_{1}$ be wheels with hubs $w^{i},(1 \leq i \leq n)$. The graph so obtained is denoted by $\operatorname{SW}(n, r)$, Figure 3.

Theorem 3.29. Let $S W(n, r)$ be the graph having $n(r+2)+1$ vertices and $2 n(r+1)$ edges. Then

$$
M(S W(n, r) ; x, y)=n x^{2} y^{n}+n x^{2} y^{r+1}+n r x^{3} y^{3}+n r x^{3} y^{r+1}
$$

Proof. Let $S W(n, r)$ is a graph having $n(r+2)+1$ vertices and $2 n(r+1)$ edges. The edge partition of $S W(n, r)$ is given by,

$$
\begin{aligned}
\left|E_{\{2, n\}}\right| & =\mid u v \in E(S W(n, r)): d_{u}=2 \quad \text { and } \quad d_{v}=n \mid=n, \\
\left|E_{\{2, r+1\}}\right| & =\mid u v \in E(S W(n, r)): d_{u}=2 \quad \text { and } \quad d_{v}=r+1 \mid=n, \\
\left|E_{\{3,3\}}\right| & =\mid u v \in E(S W(n, r)): d_{u}=3 \quad \text { and } \quad d_{v}=3 \mid=n r, \\
\left|E_{\{3, r+1\}}\right| & =\mid u v \in E(S W(n, r)): d_{u}=3 \quad \text { and } \quad d_{v}=r+1 \mid \\
& =\left|E(S W(n, r))-\left|E_{\{2, n\}}\right|-\left|E_{\{2, r+1\}}\right|-\left|E_{\{3,3\}}\right|=n r .\right.
\end{aligned}
$$

Corollary 3.30. If $S W(n, r)$ be a graph, then

1. $M_{1}(S W(n, r))=n^{2}+n(r+5)+n r(r+10)$,
2. $M_{2}(S W(n, r))=2 n^{2}+2 n(r+1)+3 n r(r+4)$,
3. $M_{2}^{m}(S W(n, r))=\frac{2 n r^{2}+8 n r+9(n+r+1)}{18(r+1)}$,
4. $S_{D}(S W(n, r))=\frac{3 n^{2}(r+1)+3 n\left(r^{2}+2 r+5\right)+2\left(6(r+1)+n r(r+4)^{2}\right)}{6(r+1)}$,
5. $H(S W(n, r))=\frac{n r(r+10)}{3(r+4)}+\frac{2 n(n+r+5)}{(n+2)(r+3)}$,
6. $I_{n}(S W(n, r))=\frac{2 n^{2}}{n+2}+\frac{2 n(r+1)}{r+3}+\frac{9 n r(r+2)}{2(r+4)}$,
7. $\chi_{\alpha}(S W(n, r))=n(n+2)^{\alpha}+n(r+3)^{\alpha}+n r \cdot 6^{\alpha}+n r(r+4)^{\alpha}$,
8. $M_{1}^{\alpha}(S W(n, r))=n 2^{\alpha+1}+n r \cdot 3^{\alpha+1}+n^{\alpha+1}+n(r+1)^{\alpha}+n r(r+1)^{\alpha}$.

Definition 16. Let $x_{i},(1 \leq i \leq n)$ be the vertices of the complete graph K_{n}. Let $W_{r}^{i}=C_{r}^{i}+$ K_{1} be wheel with hub $w^{i},(1 \leq i \leq n)$. Let $x_{i} w^{i},(1 \leq i \leq n)$ be an edge. Subdivide each edge $x_{i} w^{i}$ by $u_{i},(1 \leq i \leq n)$. The graph so obtained is denoted by $K D W(n, r)$, Figure 3.

Theorem 3.31. Let $K D W(n, r)$ be the graph having $n(r+3)$ vertices and $\frac{n}{2}(4 r+n+3)$. Then

$$
M(K D W(n, r) ; x, y)=n x^{2} y^{n}+n x^{2} y^{r+1}+n r x^{3} y^{3}+n r x^{3} y^{r+1}+\binom{n}{2} x^{n} y^{n}
$$

Proof. Let $K D W(n, r)$ is a graph having $n(r+3)$ vertices and $\frac{n}{2}(4 r+n+3)$ edges. The edge partition of $K D W(n, r)$ is given by,

$$
\begin{aligned}
\left|E_{\{2, n\}}\right| & =\mid u v \in E(K D W(n, r)): d_{u}=2 \quad \text { and } \quad d_{v}=n \mid=n, \\
\left|E_{\{2, r+1\}}\right| & =\mid u v \in E(K D W(n, r)): d_{u}=2 \quad \text { and } \quad d_{v}=r+1 \mid=n, \\
\left|E_{\{3,3\}}\right| & =\mid u v \in E(K D W(n, r)): d_{u}=3 \quad \text { and } \quad d_{v}=3 \mid=n r, \\
\left|E_{\{3, r+1\}}\right| & =\mid u v \in E(K D W(n, r)): d_{u}=3 \quad \text { and } \quad d_{v}=r+1 \mid=n r, \\
\left|E_{\{n, n\}}\right| & =\mid u v \in E(K D W(n, r)): d_{u}=n \quad \text { and } \quad d_{v}=n \mid \\
& =|E(K D W(n, r))|-\left|E_{\{2, n\}}\right|-\left|E_{\{2, r+1\}}\right|-\left|E_{\{3,3\}}\right|-\left|E_{\{3, r+1\}}\right|=\binom{n}{2} .
\end{aligned}
$$

Corollary 3.32. If $K D W(n, r)$ be a graph, then

1. $M_{1}(K W(n, r))=n^{3}+n(r+5)+n r(r+10)$,
2. $M_{2}(K W(n, r))=\frac{n(n(n(n-1)+4)+4)+n r(3 r+14)}{2}$,
3. $M_{2}^{m}(K W(n, r))=\frac{9 n^{2}-9(r+1)+2 n(9(r+1)+n r(r+4))}{18 n(r+1)}$,
4. $S_{D}(K W(n, r))=\frac{3(r+1)\left(3 n^{2}+4\right)+3 n\left(r^{2}+3\right)+2 n r(r+4)^{2}}{6(r+1)}$,
5. $H(K W(n, r))=n\left(\frac{1}{2}+\frac{2}{n+2}+\frac{2}{r+3}\right)+n r\left(\frac{1}{3}+\frac{2}{r+4}\right)-\frac{1}{2}$,
6. $I_{n}(K W(n, r))=\frac{n^{3}}{4}+n^{2}\left(\frac{2}{n+2}-\frac{1}{4}\right)+\frac{2 n(r+1)}{r+3}+\frac{9 n r(2+r)}{2(r+4)}$,
7. $\chi_{\alpha}(K W(n, r))=n(n+2)^{\alpha}+n(r+3)^{\alpha}+n r \cdot 6^{\alpha}+n r(r+4)^{\alpha}+\binom{n}{2}(2 n)^{\alpha}$,
8. $\quad M_{1}^{\alpha}(K W(n, r))=n \cdot 2^{\alpha+1}+n r \cdot 3^{\alpha+1}+n^{\alpha+1}+n(r+1)^{\alpha}+n r(r+1)^{\alpha}+(n-1) n^{\alpha+1}$

4. M-Polynomial of some Nanostructures

In science and technology, nanostructures play a vital role in small electronic devices to big satellites, pharmaceutical and medical treatments, communication and information, food science and so on. Among these, M-polynomial of dendrimers were studied in [33], Vphenylenic nanotubes and nanotori in [29] titania nanotubes in [34], Armchair polyhex nanotube and zig-zag polyhex nanotubes were encountered in [35]. In this paper, we consider $T U C_{4} C_{8}[p, q]$ nanotube, $T U C_{4} C_{8}[p, q]$ nanotorus, line graph of the subdivision graph of $T U C_{4} C_{8}[p, q]$ nanotube and $T U C_{4} C_{8}[p, q]$ nanotorus, V-tetracenic nanotube and V -tetracenic nanotorus and compute M -polynomial.

Let p and q denote the number of squares in a row and the number of rows of squares, respectively in nanotube and nanotorus of $T U C_{4} C_{8}[p, q]$. The nanotube and nanotorus of $T U C_{4} C_{8}[4,3]$ is shown in Figure 4 (a), (b) respectively. The line graph of subdivision graph of $T U C_{4} C_{8}[4,3]$ nanotube is given in Figure 5 (b). The line graph of
subdivision graph of $T U C_{4} C_{8}[4,2]$ nanotorus is given in Figure 6 (b). The structures Vtetracenic nanotube and V-tetracenic nanotorus are given in Figures 7 and 8, respectively.

Figure 4. (a) $T U C_{4} C_{8}[4,3]$ nanotube; (b) $T U C_{4} C_{8}[4,3]$ nanotorus.

(a)

(b)

Figure 5. (a) Subdivision graph of $T U C_{4} C_{8}[4,3]$ of nanotube; (b) line graph of the subdivision graph of $T U C_{4} C_{8}[4,3]$ of nanotube.

(a)

(b)

Figure 6. (a) Subdivision graph of $T U C_{4} C_{8}[4,2]$ of nanotorus; (b) line graph of the subdivision graph of $T U C_{4} C_{8}[4,2]$ of nanotorus.

We now obtain M-polynomial of these nanostructures as follows.

Theorem 4.1. Let $A=T U C_{4} C_{8}[p, q]$ nanotube. Then

$$
M(A ; x, y)=4 p x^{2} y^{3}+(6 p q-5 p) x^{3} y^{3}
$$

Proof. The $T U C_{4} C_{8}[p, q]$ nanotube has $4 p q$ vertices and $6 p q-p$ edges. The edge set of $T U C_{4} C_{8}[p, q]$ nanotube can be partitioned as,

$$
\begin{aligned}
\left|E_{\{2,3\}}\right| & =\mid u v \in E(A): d_{u}=2 \text { and } d_{v}=3 \mid=4 p, \\
\left|E_{\{3,3\}}\right| & =\mid u v \in E(A): d_{u}=3 \text { and } d_{v}=3 \mid \\
& =\left|E(A)-\left|E_{\{2,3\}}\right|=6 p q-5 p .\right.
\end{aligned}
$$

Theorem 4.2. Let $B=T U C_{4} C_{8}[p, q]$ nanotorus. Then, $M(B ; x, y)=6 p q x^{3} y^{3}$.
Proof. The $T U C_{4} C_{8}[p, q]$ nanotorus is a 3-regular graph with $6 p q$ edges. Thus, from Lemma 2.1, M-polynomial of $T U C_{4} C_{8}[p, q]$ nanotorus is $M(B ; x, y)=6 p q x^{3} y^{3}$.

Theorem 4.3. Let C be the line graph of subdivision graph of $T U C_{4} C_{8}[p, q]$ nanotube. Then

$$
M(C ; x, y)=2 p x^{2} y^{2}+4 p x^{2} y^{3}+p(18 q-11) x^{3} y^{3} .
$$

Proof. The line graph of subdivision graph of $T U C_{4} C_{8}[p, q]$ nanotube has $12 p q-2 p$ vertices and $18 p q-5 p$ edges. The edge partition of line graph of subdivision graph of $T U C_{4} C_{8}[p, q]$ nanotube is given by,

$$
\begin{aligned}
\left|E_{\{2,2\}}\right| & =\mid u v \in E(C): d_{u}=2 \quad \text { and } \quad d_{v}=2 \mid=2 p, \\
\left|E_{\{2,3\}}\right| & =\mid u v \in E(C): d_{u}=2 \text { and } d_{v}=3 \mid=4 p, \\
\left|E_{\{3,3\}}\right| & =\mid u v \in E(C): d_{u}=3 \text { and } d_{v}=3 \mid \\
& =\left|E(C)-\left|E_{\{2,2\}}\right|-\left|E_{\{2,3\}}\right|=18 p q-11 p .\right.
\end{aligned}
$$

Theorem 4.4. Let D be the line graph of subdivision graph of $T U C_{4} C_{8}[p, q]$ nanotorus.

$$
\text { Then } M(D ; x, y)=18 p q x^{3} y^{3} .
$$

Proof. The line graph of subdivision graph of $T U C_{4} C_{8}[p, q]$ nanotorus is a 3-regular graph with $18 p q$ edges. Thus, from Lemma 2.1 we have, $M(D ; x, y)=18 p q x^{3} y^{3}$.

Figure 7. V-tetracenic nanotube $G[p, q]$.
Theorem 4.5. Let H be the V-tetracenic nanotube. Then

$$
M(H ; x, y)=16 p x^{2} y^{3}+(27 q-20) p x^{3} y^{3} .
$$

Proof. The V-tetracenic nanotube has $18 p q$ vertices and $27 p q-4 p$ edges. The edge partition of V-tetracenic nanotube is obtained as,

$$
\begin{aligned}
\left|E_{\{2,3\}}\right| & =\mid u v \in E(H): d_{u}=2 \text { and } d_{v}=3 \mid=16 p, \\
\left|E_{\{3,3\}}\right| & =\mid u v \in E(H): d_{u}=3 \text { and } d_{v}=3 \mid \\
& =|E(H)|-\left|E_{\{2,3\}}\right|=27 p q-20 p .
\end{aligned}
$$

Figure 8. V-tetracenic nanotorus $G[p, q]$.
Theorem 4.6. Let I be the V-tetracenic nanotorus. Then $M(I ; x, y)=27 p q x^{3} y^{3}$.

Proof. The proof follows from Lemma 2.1 as V-tetracenic nanotorus is 3-regular graph with $27 p q$ edges.

We skip calculating topological indices of these nanostructures as it is routine work.

5. Concluding Remarks

In this paper, we have proposed new operators to derive general sum connectivity index and first general Zagreb index of a graph from the respective M-polynomial. Further, we have obtained M-polynomials of some graph operations and cycle related graphs. In addition, some degree based topological indices of these graphs are derived. The advantage of M-polynomial is that, from that one expression we can obtain several degree-based topological indices. It is very challenging to obtain new operators to derive all the degreebased topological indices from M-polynomial.

Acknowledgement. The authors are thankul to the referees for useful suggestions. B. Basavanagoud supported by University Grants Commission (UGC), Government of India, New Delhi, through UGC-SAP DRS-III for 2016-2021 : F. 510 / 3 / DRS-III /2016 (SAP-I).
A. P. Barangi supported by Karnatak University, Dharwad, Karnataka, India, through University Research Studentship (URS), No.KU/Sch/URS/2017-18/471, dated $3^{\text {rd }}$ July 2018. P. Jakkannavar supported by Directorate of Minorities, Government of Karnataka, Bangalore, through M. Phil/Ph. D Fellowship-2017-18: No. DOM/FELLOWSHIP/CR-29/2017-18, dated $9^{\text {th }}$ August 2017.

REFERENCES

1. M. S. Anjum and M. U. Safdar, K Banhatti and K hyper-Banhatti indices of nanotubes, Eng. Appl. Sci. Lett. 2 (1) (2019) 19-37.
2. A. R. Ashrafi, T. Došlić and A. Hamzeh, Extremal graphs with respect to the Zagreb coindices, MATCH Commun. Math. Comput. Chem. 65 (2011) 85-92.
3. A. R. Ashrafi, B. Manoochehrian and H. Yousefi-Azari, On the PI polynomial of a graph, Util. Math. 71 (2006) 97-108.
4. B. Basavanagoud, A. P. Barangi and S. M. Hosamani, First neighbourhood Zagreb index of some nano structures, Proc. Inst. Appl. Math. 7 (2) (2018) 178-193.
5. B. Basavanagoud and P. Jakkannavar, Kulli-Basava indices of graphs, Int. J. Appl. Eng. Res. 14(1) (2019) 325-342.
6. B. Basavanagoud and P. Jakkannavar, Computing leap Zagreb indices of generalized xyz-point-line transformation graphs $\mathrm{T}^{\mathrm{xyz}}(\mathrm{G})$ when $\mathrm{z}=+$, J. Comp. Math. Sci. 9 (10) (2018) 1360-1383.
7. B. Basavanagoud, Chitra E, On the leap Zagreb indices of generalized xyz-pointline transformation graphs $\mathrm{T}^{\mathrm{xyz}}(\mathrm{G})$ when $\mathrm{z}=1$, Int. J. Math. Combin., 2 (2018) 4466.
8. B. Basavanagoud and P. Jakkannavar, M-polynomial and degree-based topological indices of graphs, Electronic J. Math. Anal. Appl., 8 (1) (2020) 75-99.
9. G. G. Cash, Relationship between the Hosoya polynomial and the hyper-Wiener index, Appl. Math. Lett. 15 (2002) 893-895.
10. E. Deutsch and S. Klavžar, M-Polynomial and degree-based topological indices, Iran. J. Math. Chem. 6 (2) (2015) 93-102.
11. E. Deutsch and S. Klavžar, M-Polynomial revisited: Bethe cacti and an extension of Gutman's approach, J. Appl. Math. Comput. 60 (2019) 253-264.
12. N. De, Computing reformulated first Zagreb index of some chemical graphs as an application of generalized hierarchical product of graphs. Open J. Math. Sci. 2 (1) (2018) 338-350.
13. N. De, Hyper Zagreb index of bridge and chain graphs, Open J. Math. Sci. 2 (1) (2018) 1-17.
14. T. Došlić, Planar polycyclic graphs and their Tutte polynomials, J. Math. Chem. 51 (2013) 1599-1607.
15. E. J. Farrell, An introduction to matching polynomials, J. Combin. Theory Ser. B 27 (1979) 75-86.
16. S. Fajtlowicz, On conjectures of Graffiti - II, Congr. Numer. 60 (1987) 187-197.
17. J. A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. \#DS6, (2018) 502 pages.
18. W. Gao, M. Asif and W. Nazeer, The study of honey comb derived network via topological indices, Open J. Math. Anal. 2 (2) (2018) 10-26.
19. I. Gutman, Molecular graphs with minimal and maximal Randić indices, Croat. Chem. Acta 75 (2002) 357-369.
20. I. Gutman, The acyclic polynomial of a graph, Publ. Inst. Math. 22 (36) (1979) 63-69.
21. I. Gutman, Degree-based topological indices, Croat. Chem. Acta 86 (2013) 351-361.
22. I. Gutman and N. Trinajstić, Graph theory and molecular orbitals, Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535-538.
23. I. Gutman, B. Ruščić, N. Trinajstić and C. F. Wilcox, Graph theory and molecular orbitals, XII. Acyclic polyenes, J. Chem. Phys. 62 (1975) 3399-3405.
24. F. Harary, Graph Theory, Addison-Wesely, Reading, 1969.
25. F. Hassani, A. Iranmanesh and S. Mirzaie, Schultz and modified Schultz polynomials of C_{100} fullerene, MATCH Commun. Math. Comput. Chem. 69 (2013) 87-92.
26. H. Hosoya, On some counting polynomials in chemistry, Discrete Appl. Math. 19 (1988) 239-257.
27. I. Javaid and S. Shokat, On the partition dimension of some wheel related graphs, J. Prime Res. Math. 4 (2008) 154-164.
28. S. M. Kang, W. Nazeer, W. Gao, D. Afzal and S. N. Gillani, M-polynomials and topological indices of dominating David derived networks, Open Chem. 16 (2018) 201-213.
29. Y. C. Kwun, M. Munir, W. Nazeer, R. Rafique and S. M. Kang, M-polynomials and topological indices of V-phenylenic nanotubes and nanotori, Sci. Reports 7 (2017) Art. 8756.
30. Y. Kins, Radio labeling of certain graphs, Ph.D. Thesis, University of Madras, India, November 2011.
31. X. Li and H. Zhao, Trees with the first three smallest and largest generalized topological indices, MATCH Commun. Math. Comput. Chem. 50 (2004) 57-62.
32. X. Li and Y. Shi, A survey on the Randić index, MATCH Commun. Math. Comput. Chem. 59 (2008) 127-156.
33. M. Munir, W. Nazeer, S. Rafique and S. M. Kang, M-polynomial and related topological indices of nanostar dendrimers, Symmetry 8 (2016) 97.
34. M. Munir, W. Nazeer, S. Rafique, A. R. Nizami and S. M. Kang, M-polynomial and degree-based topological indices of titania nanotubes, Symmetry 8 (2016) 117.
35. M. Munir, W. Nazeer, S. Rafique, A. R. Nizami and S. M. Kang, M-Polynomial and Degree-Based Topological Indices of Polyhex Nanotubes Symmetry, 8 (2016) 149.
36. M. Randić, On characterization of molecular branching, J. Am. Chem. Soc. 97 (1975) 6609-6615.
37. M. Riaz, W. Gao and A. Q. Baig, M-Polynomials and degree-based Topological Indices of Some Families of Convex Polytopes. Open J. Math. Sci. 2 (1) (2018) 18-28.
38. S. Roy, Packing chromatic number of certain fan and wheel related graphs, $A K C E$ Int. J. Graphs Comb. 14 (2017) 63-69.
39. Z. Shao, A. R. Virk, M. S. Javed, M. A. Rehman and M. R. Farahani, Degree based graph invariants for the molecular graph of Bismuth Tri-Iodide, Eng. Appl. Sci. Lett. 2 (1) (2019) 1-11.
40. H. Siddiqui and M. R. Farahani, Forgotten polynomial and forgotten index of certain interconnection networks, Open J. Math. Sci. 1 (1) (2017) 44-59.
41. Z. Tang, L. Liang and W. Gao, Wiener polarity index of quasi-tree molecular structures, Open J. Math. Sci. 2 (1) (2018) 73-83.
42. S. K. Vaidyaa and M. S. Shukla, b-Chromatic number of some wheel related graphs, Malaya J. Math. 2 (4) (2014) 482-488.
43. A. R. Virk, M. N. Jhangeer and M. A. Rehman, Reverse Zagreb and reverse hyperZagreb indices for silicon carbide $S i_{2} C_{3} I[r, s]$ and $S_{2} C_{3} I I[r, s]$, Eng. Appl. Sci. Lett. 1 (2) (2018) 37-50.
44. H. Wiener, Structural determination of paraffin boiling points. J. Am. Chem. Soc. 69 (1947) 17-20.
45. L. Yan, M. R. Farahani and W. Gao, Distance-based indices computation of symmetry molecular structures, Open J. Math. Sci. 2 (1) (2018) 323-337.
46. H. Zhang, F. Zhang, The Clar covering polynomial of hexagonal systems I, Discrete Appl. Math. 69 (1996) 147-167.

[^0]: ${ }^{\bullet}$ Corresponding Author (Email address: b.basavanagoud@gmail.com)
 DOI: 10.22052/ijmc.2019.146761.1388

