1. L. Biegler, Solution of dynamic optimization problems by successive quadratic programming and orthogonal collocation, Comput. Chem. Eng. 8 (1984) 243−248.
2. L. Biegler, An overview of simultaneous strategies for dynamic optimization, Chem. Eng Process: Process Intensif. 46 (11) (2007) 1043−1053.
3. H. Bock and K. Plitt, A multiple shooting algorithm for direct solution of optimal control problems. In: Proceedings of the 9th IFAC world congress, Budapest. Pergamon Press, 1984, pp. 243-247.
4. C. A. Coello, A comprehensive survey of evolutionary-based multi-objective optimization techniques, Knowl. Inf. Syst.1 (3) (1999) 269−308.
5. C. A. Coello andM. S. Lechuga, MOPSO: A proposal for multiple objective particle swarm optimization, In: Proceeding of Congress on Evolutionary Computation (CEC2002), Honolulu, HI. 1 (2002) 1051−1056.
6. I. Das and J. E. Dennis, Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multi-criteria optimization problems, SIAM. J.Optimiz. 8 (3) (1998) 631−657.
7. K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms,Wiley 2001.
8. K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, A fast and elitist multi-objective geneticalgorithm: NSGA-II, IEEE. Trans. Evolut. Comput. 6 (2) (2002) 182−197.
9. T. Erickson, A. Mayer andJ. Horn, The niched Pareto genetic algorithm 2 applied to the design of ground water remediation systems, Evolutionary Multi-Criterion Optimization: First International Conference, EMO. (2001) 681−695.
- C. M. Fonseca, Multi-Objective Genetic Algorithms with Application to Control Engineering Problems, Ph.D. Thesis, University of Sheffield. Sheffield, 1995.
- S. M. K. Heris and H. Khaloozadeh, Open- and closed-loop multi-objective optimal strategies for HIV therapy using NSGA-II, IEEE. Trans. Biomed. Eng. 58 (6) (2011) 1678−1685.
- J. Knowles andD. Corne, ThePareto archived evolution strategy: A new baseline algorithm for Pareto multi-objective optimization, Proceedings of the 1999 IEEE Congress on Evolutionary Computation 1999.
- S. Kukkonen and K. Deb, Improved Pruning of Non-Dominated Solutions Based on Crowding Distance for Bi-Objective Optimization Problems, IEEE Congress on Evolutionary Computation, pp. 91−98, 2007.
- D. Kundu, K. Suresh, S. Ghosh, S. Das and B. K. Panigrahi, Multi-objective optimization with artificial weed colonies, J. Inf. Sci. 181 (2011) 2441−2454.
- D. Leineweber, I. Bauer, H. Bock and J. Schlder, An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization, Part I: Theoretical aspects, Comput. Chem. Eng. 27 (2003) 157−166.
- F. Logist, P. M. Van Erdeghem and J. F. Van Impe, Efficient deterministic multiple objective optimal control of (bio)chemical processes, Chem. Eng. Sci. 64 (2009) 2527−2538.
- F. Logist, B. Houska, M. Diehl and J. Van Impe, Fast Pareto set generation for nonlinear optimal control problems with multiple objectives, Struct. Multidisc. Optim. 42 (2010) 591−603.
- F. Logist, B. Houska, M. Diehl and J. Van Impe, Robust multi-objective optimal control of uncertain (bio)chemical processes, Chem. Eng. Sci. 66 (2011) 4670−4682.
- F. Logist, S. Sager, C. Kirchesand and J. Van Impe, Efficient multiple objective optimal control of dynamic systems with integer controls, J. Process Control 20 (2010) 810−822.
- F. Logist, M. Vallerio, B. Houska, M. Diehl and J. Van Impe, Multi-objective optimal control of chemical processes using ACADO toolkit, Comput. Chem. Eng. 37 (2012) 191−199.
- R. Mehrabian and C. Lucas, A novel numerical optimization algorithm inspired from weed colonization, Ecol. Inform. 1 (4) (2006) 355−366.
- A. Messac, A. Ismail-Yahaya and C. A. Mattson, The normalized normal constraint method for generating the Pareto frontier, Struct. Multidisc. Optim. 25 (2) (2003) 86−98.
- K. Miettinen, Nonlinear Multi-Objective Optimization, Kluwer, Boston, 1999.
- A. H. Nikoofard, H. Hajimirsadeghi, A. Rahimi-Kian and C. Lucas, Multi-objective invasive weed optimization: Application to analysis of Pareto improvement models in electricity markets, Appl. Soft. Comput. 12 (2012) 100−112.
- H. Modares and M. N. Sistani, Solving nonlinear optimal control problems using a hybrid IPSOSQP algorithm, Eng. Appl. Artif. Intel. 24 (2011) 476−484.
- H. Ohno, E. Nakanishi and T. Takamatsu, Optimal control of a semi-batch fermentation, Biotechnol. Bioeng. 18 (1976) 847−864.
- G. C. Onwubolu and B. V. Babu, New Optimization Techniques in Engineering, Springer Verlag, Heidelberg, Germany 2004.
- N. Patel and N. Padhiyar, Modified genetic algorithm using box complex method: Application to optimal control problems, J. Process Control 26 (2015) 35−50.
- N. Patel and N. Padhiyar, Multi-objective dynamic optimization study of fed-batch bio-reactor, Chem. Eng. Res. Des. 119 (2017) 160−170.
- S. Panuganti, P. Roselyn John, D. Devraj and S. Sekhar Dash, Voltage stability constrained optimal power flow using NSGA-II, Comput. Water Energy Envir. Eng. 2 (2013) 1−8.
- S. Park and W. Fred Ramirez, Optimal production of secreted protein in fed-batch reactors, AIChE. J. 34 (1988) 1550−1558.
- D. Sarkar and J. Modak, Genetic algorithms with filters for optimal control problems infed-batch bioreactors, Bioprocess Biosyst. Eng. 26 (2004) 295−306.
- D. Sarkar and J. M. Modak, Pareto-optimal solutions for multi-objective optimization offed-batch bioreactors using non-dominated sorting genetic algorithm, Chem. Eng. Sci. 60 (2) (2005) 481−492.
- J. D. Schafier, Multiple objective optimization with vector evaluated genetic algorithms, Proceedings of the First International Conference of Genetic Algorithms, Pittsburgh, pp. 93−100, 1985.
- N. Srinivas and K. Deb, Multi-objective function optimization using non-dominated sorting genetic algorithms, Evolut.Comput.2 (3) (1995) 221−248.
- F. Sun, W. Du, R. Qi, F. Qian and W. Zhong, A hybrid improved genetic algorithm and its application in dynamic optimization problems of chemical processes, Chin. J. Chem. Eng. 21 (2013) 144−154.
- E. Zitzler and L. Thiele, Multi-objective evolutionary algorithms: A comparative case study and the strength Pareto approach, IEEE Trans. Evolut. Comput. 3 (1999) 257−271.
- E. Zitzler, M. Laumanns and L. Thiele, SPEA2: Improving the strength Pareto evolutionary algorithm, Zurich, Switzerland: Swiss Federal Institute Technology, 2001.
- X. Zhang, J. Xu and G. Cui, Research on invasive weed optimization based on the cultural framework, 3rd International Conference on Bio-Inspired Computing: Theories and Applications, IEEE Conference Publications, pp. 129–134, 2008.
- P. Zhang, H. Chen, X. Liu and Z. Zhang, An iterative multi-objective particle swarm optimization-based control vector parameterization for state constrained chemical and biochemical engineering problems, Biochem. Eng. J. 103 (2015) 138−151.