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1. INTRODUCTION 

For group theory notation and terminology not given here, we refer to [9] and for 
algebraic graph theory notation and terminology, we follow [12]. Let Γ =
(V(Γ), E(Γ)) be a simple connected graph with vertex and edge sets ܸ(Γ) 
and ܧ(Γ), respectively. For two vertices  ݑ and  ݒ of a graph Γ, we denote ݒ~ݑ 
when ݑ and ݒ are adjacent. Also, for every ݑ ∈ ܸ(Γ), we denote the set of all 
adjacent vertices of ݑ with ܰ(ݑ). In chemical graphs, each vertex represents an 
atom of the molecule, and covalent bonds between atoms are represented by an 
edge between the corresponding vertices. This shape derived from a chemical 
compound called the molecular graph, and can be a path, a tree, or in general a 
graph. A ܥସ଼ܥ net (ܷܶܥସ଼ܥ(ܴ)[݉, ݊] nanotube) is a trivalent decoration made by 
alternating 4-cycles and 8-cycles. It can cover a cylinder or a torus. The 
rhomboidal ܥସ଼ܥ tori is a molecular graph which introduced by Diudea and John in 
[7] and [8]. 
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The adjacency matrix of a given graph Γ is the |ܸ(Γ)| × |ܸ(Γ)| matrix 
ܣ = (Γ)ܣ = ൫ܽ௜௝൯ whose entries ܽ௜௝ are given by 

ܽ௜௝ = ൜1                   ݒ௜~ݒ௝
݁ݏ݅ݓݎℎ݁ݐ݋         0

    . 

The spectrum of this graph is the multi set of eigenvalues of its adjacency matrix, 
the roots of det(ܫߣ − (ܣ = 0. If ߣଵ > ଶߣ   > ⋯ > ௞ߣ  are distinct eigenvalues of 
,and their multiplicities are ݉ଵ,݉ଶ (Γ)ܣ … ,݉௞ , respectively, then we shall write 

(߁)ܿ݁݌ܵ = ቄߣଵ
[௠భ], ଶߣ

[௠మ], … , ௞ߣ
[௠ೖ]ቅ.  

Let ܩ be a non-trivial group, ܵ ⊆ ܵ and {1}ܩ = ܵିଵ ≔ ݏ|ଵିݏ} ∈ ܵ}. The 
Cayley graph of ܩ with respect to ܵ, ܩ)ݕܽܥ, ܵ), is a graph with vertex set ܩ, where 
two vertices ܽ and ܾ are adjacent if ܾܽିଵ ∈ ܵ. The concept of Cayley graphs was 
introduced by Cayley [3]. Recently, the spectrum of some well-known chemical 
graphs are computed. For example, DeVos et al. [5] determined the spectrum of 
(3,6)−fullerenes, which are cubic plane graphs whose faces have sizes 3 and 6, for 
more details see [5]. They showed that every (3,6)−fullerene can be represented as 
a quotient of a certain lattice-like graph in the plane. Using this geometric 
description, they proved that these graphs are Cayley sum graphs and used a 
theorem which describes the spectral behavior of Cayley sum graphs in terms of 
group characters. In the same time, John and Sachs calculated the spectrum of 
toroidal graphs [15]. An ݊-fold periodic locally finite graph in the Euclidean ݊-
space may be considered as the parent of an infinite class of ݊-dimensional 
toroidal finite graphs. In [15], an elementary method is developed that allows the 
characteristic polynomial of these graphs to be factored, in a uniform manner, into 
smaller polynomials, all of the same size. Applied to the hexagonal tessellation of 
the plane (the graphite sheet), this method enables the spectrum for all toroidal 
fullerenes and (3,6)−cages to be explicitly calculated. Also Alspach and Dean 
proved that honeycomb toroidal graphs, and hexagonal embeddings on a torus, are 
Cayley graphs on generalized dihedral groups [2]. Similar to [5], in this paper, we 
compute the spectrum of rhomboidal ܥସ଼ܥ(ܴ) tori. Basic properties of graph 
eigenvalues and their applications in chemistry can be found in the famous book of 
Cvetković et al. [4]. 

Afshari and Maghasedi [1], by a theorem of Sabidussi [19], proved the 
following. 
 
Theorem 1 (Afshari and Maghasedi [1]) Let ߁ =  is a ߁ Then .[݊,݊](ܴ)଼ܥସܥܷܶ
Cayley graph on ܩ = < ݃ଵ,݃ଶ,݃ଷ,݃ସ > with respect to 
ܵ = {݃ଷ,݃ଵିଵ݃ଶ݃ଷ݃ସ,݃ଵିଵ݃ସ}, where ݃௞:ܸ(߁) →  1k4, are the maps ,(߁)ܸ
݃ଵ: ௝,௜ݒ

௧ → ௝,(௜ିଵ)ݒ
௧ ݐ , = 0,1,2,3; ݃ଶ:ݒ௝,௜

௧ → ௜,(௝ାଵ)ݒ
௧ ݐ, = 0,1,2,3; ݃ଷ:ݒ௝,௜

ଷ → ௜,௝ଶݒ ,  
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௝,௜ݒ
ଶ → ௜,௝ଶݒ ௝,௜ݒ ,

ଵ → ௜,௝଴ݒ → ௜,௝ଵݒ ; ݃ସ: ௝,௜ݒ
ଷ → ௡ି௝ାଵ,௡ି௜ାଵݒ

଴ ௝,௜ݒ ,
ଶ → ௡ି௝ାଵ,௡ି௜ାଵݒ

ଵ ௝,௜ݒ ,
ଵ →

௡ି௝ାଵ,௡ି௜ାଵݒ
ଶ ௜,௝଴ݒ ,   → ௡ି௝ାଵ,௡ି௜ାଵݒ

଴  and  ܩ = ܪ ⋊ ܪ where ܭ =< ݃ଵ,݃ଶ >≅ ௡ܥ ×  ௡ܥ
is abelian and ܭ =< ݃ଷ,݃ସ >≅ ଶܥ ×  .ଶܥ
 

In this paper, we determine the adjacency spectrum of 
߁ =  We also give lower and upper bounds for a chemical .[݊,݊](ܴ)଼ܥସܥܴܶ
quantity, namely Estrada index, for a ܥସ଼ܥ net. The following is useful. Our 
approach is by using Irreducible representations of cyclic groups, direct product 
and some semidirect product groups. 
 
Theorem 2 (Diaconis and Shahshahani [6]) Consider the Cayley graph ߁ =
,ܩ)ݕܽܥ ܵ). Let (ܩ)ݎݎܫ = ଵߩ} , … ,  ௞} be the set of all non-equivalent irreducibleߩ
representations of the group ܩ and ݀௜ denote the degree of  ߩ௜ for ݅ = 1,2 … ,݇. Let 
:(ܵ)௜ߩ ௜ denote the set of eigenvalues ofߦ  = ∑ ௜(ܵ)௦∈ௌߩ  for ݅ = 1,2 … , ݇. Then, the 
set of all eigenvalues of adjacency matrix of ߁ is equal to ∪௜ୀଵ௞  ௜. Moreover, if theߦ
eigenvalue ߣ  occurs with multiplicity ݉௜(ߣ) in ߩ௜(ܵ), then the multiplicity of ߣ in 
the adjacency spectrum is ∑ ݀௜݉௜(ߣ)௞

௜ୀଵ . 
  

For more details and proofs regarding the previous theorem we refer to [6] 
and [16].

  
2. IRREDUCIBLE REPRESENTATIONS OF GROUPS 

Irreducible representations of cyclic groups, direct products and some semi-direct 
product of groups are well known. Here, we present a few brief comments. Let us recall 
some facts from representation theory of groups, for more details see [17] and [20]. Let 
 has ݊ one ܩ be a cyclic group of order ݊ generated by an element ݃ . Then ܩ
dimensional irreducible representations ߩఠ೔ , 0 ≤ ݆ ≤ ݊ − 1, where ߩఠ೔(݃௞) =

߱௝௞ , 0 ≤ ݇ ≤ ݊ − 1 and ߩ = exp (ଶగ௜
௡

). Let  ܹ = ܩ ×  be the direct product of two ܪ
groups ܩ and ܪ. Thus the elements of ܹ are the pairs (݃, ℎ), where ݃ ∈ ℎ,ܩ ∈  and  ܪ
the multiplication in ܹ is defined as (݃, ℎ)(݃ᇱ, ℎᇱ) = (݃݃ᇱ, ℎℎᇱ). Let ߮ீ  and ߖு   be 
representations of ܩ and ܪ, respectively. Then for every (݃,ℎ) ∈ ܹ, the Kronecker 
product ߠ(݃, ℎ) = ߮ீ(݃)  is an ߠ ,ு(ℎ) is a representation of ܹ. Furthermoreߖ⊗
irreducible representation of ܹ if and only if both of ߮ீ  and ߖு   are irreducible. 

Now let us recall the induced representations. Let ܩ be a finite group, and let 
݊ be a subgroup of index ܪ = Suppose that  ߮ு .|ܪ:ܩ|  is a representation of ܪ of 
degree ݇ and ܩ = ଵݐܪ ∪ ଶݐܪ ∪ …∪  into right cosets ܩ ௡ is a decomposition ofݐܪ
of ܪ, that is ݐଵ, ,ଶݐ …  ܩ of ݔ For every element .ܩ in ܪ ௡ is a right transversal ofݐ
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we define a matrix (ݔ)ܣ of degree ݇݊ as an ݊ × ݊   array of blocks, each of degree 
݇, as follows: 

(ݔ)ܣ = ቎
(ଵିଵݐݔଵݐ)෡ுߔ ⋯ (௡ିଵݐݔଵݐ)෡ுߔ

⋮ ⋱ ⋮
(ଵିଵݐݔ௡ݐ)෡ுߔ ⋯ (௡ିଵݐݔ௡ݐ)෡ுߔ

቏                                       (2.1) 

where ߔ෡ு(݃) = ݃ ෡ு(݃)  ifߔ ∈  is a representation of  ܣ and 0 otherwise. Indeed ܪ
 we employed a particular transversal, but this ,(ݔ)ܣ In the construction of .ܩ
choice does not materially affect the result, for more details see [17,69−71]. 

Let ܩ =  be a semi-direct product of groups with abelian normal ܭܪ
subgroup ܪ. Since ܪ is abelian, its irreducible characters are of degree 1 and they 
form a group ܺ. The group ܩ acts on ܺ by ߯௚(ℎ) ≔ ߯(݃ℎ݃ିଵ), where ݃ ∈  ,ܩ
߯ ∈ ܺ and ℎ ∈ Let ߯௜௞ .ܪ = {߯௜௞| ݇ ∈ ≥ 1 ,{ܭ ݅ ≤  is the number of ݎ and ݎ
conjugacy classes of ܪ, be orbits of the action of ܭ on ܺ with representatives ߯௜, 
respectively. For 1 ≤ ݅ ≤ ௜ܭ  let ,ݎ = ݇ఞ೔ = {݇ ∈ ௜௞߯| ܭ = ߯௜} be the stabilizer of 
߯௜ in ܭ and ܩ௜ =  ௜ byܩ Extend ߯௜ to .ܩ ௜ be the corresponding subgroup ofܭܪ
setting ߯̂௜(ℎ݇) = ߯௜(ℎ) for ℎ ∈ ݇ and ܪ ∈ ௜. Using the fact that  ߯௜௞ܭ = ߯௜, we see 
that ߯̂௜ is a character of degree 1 of ܩ௜. Now let ߩ be an irreducible representation 
of ܭ௜. By composing  ߩ with the canonical projection ܩ:ߨ௜ →  ௜ we obtain anܭ
irreducible representation ߩ෤ =  ௜. Finally, by taking the tensor product ofܩ of ߨ݋ߩ
߯̂௜ and ߩ෤ , we will obtain an irreducible representation ߯̂௜ ௜,௣ߠ ௜. Letܩ ෤  ofߩ⊗ =
߯̂௜ ෤ߩ⊗ ↑  Then the set of all .ܩ be the corresponding induced representation of ܩ
irreducible non-equivalent representations of ܩ is  

(ܩ)ݎݎܫ = ௜,௣|1ߠ} ≤ ݅ ≤ ߩ,ݎ ∈  .{(௜ܭ)ݎݎܫ
The interested readers can consult [20, 62−63] for more information on this 
algorithm. Let ܮ  be a subgroup of ܩ and for each representation ݂:ܮ →  ௞( ℂ)ܮܩ

መ݂(ݔ) = ቄ݂(ݔ)        ݔ ∈ ܮ
݁ݏ݅ݓݎℎ݁ݐ݋    0

. 

3. MAIN RESULTS 

We first give the irreducible representation of the group  ܩ =< ݃ଵ,݃ଶ,݃ଷ,݃ସ > as 
defined in Theorem 1. Let ߱ = exp (ଶగ௜

௡
), ܴଵ be the set of all representatives of 

orbits of the action of ܭ on  (ܪ)ݎݎܫ (as defined above) with length four when ݊ is 
even and ܴଶ be the set of all representatives of orbits of the action of ܭ on (ܪ)ݎݎܫ 
with length four when ݊ is odd. Let ଵܻ = {1,2, … , ௡

ଶ
−1} and ଶܻ = {1,2, … , ௡ିଵ

ଶ
}. 

Consider ݔ = ݃ଵ௟݃ଶ௠݃ଷ௨݃ସ௩ ∈  We define below .ܩ as an arbitrary element of ܩ
maps: 
௣,௤ߞ              ݔ: → (−1)௣௨ା௤௩              0 ≤ ,݌ ݍ ≤ 1, 
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:௣,௤ߟ              ݔ → (−1)ଵା௠ା௣௨ା௤௩    0 ≤ ,݌ ݍ ≤ 1, 

:௣ߠ              ݔ → ቈ
መ݂(ݔ) መ݂(݃ݔଷ)
መ݂(݃ଷݔ) መ݂(݃ଷ݃ݔଷ)

቉        0 ≤ ݌ ≤ 1 

ݔ:௣,௥ߴ            → ൤ ො݃(ݔ) ො݃(݃ݔସ)
ො݃(݃ସݔ) ො݃(݃ସ݃ݔସ)൨        0 ≤ ݌ ≤ 1, ݎ ∈ ଵܻ 

ݔ:௣,௥ߡ             → ቈ ℎ
෠(ݔ) ℎ෠(݃ݔଷ)
ℎ෠(݃ଷݔ) ℎ෠(݃ଷ݃ݔଷ)

቉        0 ≤ ݌ ≤ 1, ݎ ∈ ଵܻ 

ݔ:௥,௦ߢ      →

⎣
⎢
⎢
⎡ ଓ̂(ݔ) 
ଓ̂(݃ଷݔ)
ଓ̂(݃ସݔ)
ଓ̂(݃ଷ݃ସݔ)

ଓ̂(݃ݔଷ) 
ଓ̂(݃ଷ݃ݔଷ)
ଓ̂(݃ସ݃ݔଷ)
ଓ̂(݃ଷ݃ସ݃ݔଷ)

ଓ̂(݃ݔସ)
ଓ̂(݃ଷ݃ݔସ)
ଓ̂(݃ସ݃ݔସ)
ଓ̂(݃ଷ݃ସ݃ݔସ)

ଓ̂(݃ݔଷ݃ସ)
ଓ̂(݃ଷ݃ݔଷ݃ସ)
ଓ̂(݃ସ݃ݔଷ݃ସ)
ଓ̂(݃ଷ݃ସ݃ݔଷ݃ସ)⎦

⎥
⎥
⎤

, ,ݎ) (ݏ ∈ ܴଵ 

where ݂,݃,ℎ, ݅ are linear representations of ܪ < ݃ସ ܪ,< < ݃ଷ ܪ,< < ݃ଷ݃ସ > and ܪ, 
respectively, with ݂൫݃ଵ௟݃ଶ௠݃ସ௩൯ = (−1)௠ା௣௨, ݃൫݃ଵ௟݃ଶ௠݃ସ௨൯ = 
ℎ൫݃ଵ௟݃ଶ௠(݃ଷ݃ସ)௨൯߱௥(ଵି௠)(−1)௣௨ = ߱௥(ଵା௠)(−1)௣௨, and ݅൫݃ଵ௟݃ଶ௠൯ = ߱௥௟ା௦௠. We 
keep these notations after this. 
 
Lemma 1. Let ܩ =< ݃ଵ,݃ଶ,݃ଷ,݃ସ > be the group defined in Theorem 1. If ݊  is 
even, then  

(ܩ)ݎݎܫ = ൛ߞ௣,௤ ௣,௤ߟ, ௣,௤ߴ,௣ߠ, , ௣,௥ߡ , ≥ ௥ᇲ,௦ ห 0ߢ ,݌ ≥ ݍ 1, ݎ ∈ ଵܻ, ,ᇱݎ) (ݏ ∈ ܴଵ}, 
and if ݊ is odd, then 

(ܩ)ݎݎܫ = ൛ߞ௣,௤ ௣,௤ߴ, , ௣,௥ߡ , ≥ ௥ᇲ,௦ห0ߢ ≥ ݍ,݌ 1, ݎ ∈ ଶܻ, ,ᇱݎ) (ݏ ∈ ܴଶ}. 
 
Proof. By Theorem 1, ܩ = ܪ ܪ where ,ܭ⋉ =< ݃ଵ,݃ଶ >≅ ௡ܥ ×  ௡ is abelian andܥ
ܭ =< ݃ଷ,݃ସ >≅ ଶܥ ×  ଶ. Letܥ

ܺ ≔ (ܩ)ݎݎܫ} = ൛߯௥,௦ ห ߯௥,௦൫݃ଵ௟݃ଶ௠൯ = ߱௥௟ା௦௠ , 0 ≤ ,ݎ ,ݏ ݈,݉ ≤ ݊ − 1}. 
We now consider the action of ܩ on ܺ as defined before. Using the 

relations between the generators of the group ܩ, which are given in the proof of 
Theorem 1, one can easily check that the restriction of this action to the subgroup 
is given by ߯௥,௦ ܭ

ଵ = ߯௥,௦ , ߯௥,௦
௚య = ߯௡ି௦,௡ି௥ ,߯௥,௦

௚ర = ߯௡ି௥,௡ି௦ , ߯௥,௦
௚య௚ర = ߯௦,௥. 

Let ത݊ = {0,1, … , ݊ − ܣ ,{1 = {(݊ଵ,݊ଶ)|݊ଵ,݊ଶ ∈ ത݊} and 

ଵܶ = ܣ − {(0,0), ቀ௡
ଶ

, ௡
ଶ
ቁ , ቀ0, ௡

ଶ
ቁ , ቀ௡

ଶ
, 0ቁ , ݊,ݎ) − ,(ݎ (݊ − ,ݎ ,(ݎ ,ݎ) ,(ݎ (݊ − ݊,ݎ − ݎ|(ݎ ∈ ଵܻ}, 

     ଶܶ = ܣ − {(0,0), ݊,ݎ) − ,(ݎ (݊ − ,ݎ ,(ݎ ,ݎ) ,(ݎ (݊ − ݊,ݎ − ݎ|(ݎ ∈ ଶܻ}. 
Note that the length of an orbit with representative ߯௥,௦ is four if and only if 

,ݎ) (ݏ ∈ ଵܶ when ݊  is even and (ݎ, (ݏ ∈ ଶܶwhen ݊ is odd. The partition of ܺ into 
its orbits is given in Tables 1 and 2 when ݊ is even and odd, respectively. If we 
choose a representative of each orbit of ܺ, as given in Table 1, when ݊ is even, 
then we have the corresponding stabilizers as follows. 
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Table 1: ܭ−orbits of  (ܪ)ݎݎܫ when ݊ is even. 

 
Representative Elements 

߯଴,଴ 
߯೙
మ,೙మ

 

߯଴,೙మ
 

߯௥,௡ି௥ , ݎ ∈ ଵܻ 
߯௥,௥ , ݎ ∈ ଵܻ 

߯௥,௦ , ,ݎ) (ݏ ∈ ଵܶ 

߯଴,଴ 
߯೙
మ,೙మ

 

߯଴,೙మ
,߯೙

మ,଴ 
߯௥,௡ି௥ , ߯௡ି௥,௥  
߯௥,௥ ,߯௡ି௥,௡ି௥  

߯௥,௦ ,߯௦,௥ ,߯௡ି௥,௡ି௦ , ߯௡ି௦,௡ି௥  
 
଴,଴ܭ = ೙ܭ

మ,೙మ
= ଴,೙మܭ ,ܭ

=< ݃ସ ଵ,௡ିଵܭ ,< = ଶ,௡ିଶܭ = ⋯ = ೙ܭ
మିଵ,೙మାଵ

=< ݃ଷ >, 

ଵ,ଵܭ = ଶ,ଶܭ = ⋯ = ೙ܭ
మିଵ,೙మିଵ

=< ݃ଷ݃ସ > and ݇௥,௦ = 1, when (ݎ, (ݏ ∈ ଵܶ. Note that 

the length of ܴଵ is ௡(௡ିଶ)
ସ

. Also when ݊  is odd, ܭ଴,଴ = ଵ,௡ିଵܭ ,ܭ = ଶ,௡ିଶܭ = ⋯ =
೙షభܭ

మ ,೙శభమ
=< ݃ଷ > and ܭଵ,ଵ = ଶ,ଶܭ = ⋯ = ೙షభܭ

మ ,೙శభమ
=< ݃ଷ݃ସ > and ݇௥,௦ = 1, 

when (ݎ, (ݏ ∈ ଶܶ. Note that the length of ܴଶ is (௡ିଶ)మ

ସ
. 

On the other hand, (ܩ)ݎݎܫ = ൛ߩ௣,௤หߩ௣,௤(݃ଷ௨݃ସ௩) = (−1)௣௨ା௣௩ , 0 ≤ ,݌ ,ݑ,ݍ ݒ ≤ 1} 
and when ݃ ∈ {݃ଷ ,݃ସ,݃ଷ݃ସ}, ݎݎܫ(< ݃ >) = ௣(݃௨)ߩ |௣ߩ} = (−1)௣௨, 0 ≤ ݑ,݌ ≤ 1}. 
Now it is enough to follow the procedure of computing the irreducible 
representations of a semi-direct product group with an abelian normal subgroup as 
we recalled before.                                                                                                    □ 
 

Table 2: ݇−orbits of  (ܪ)ݎݎܫ when ݊ is odd. 
Representative Elements 

߯଴,଴ 
߯௥,௡ି௥ , ݎ ∈ ଶܻ 
߯௥,௥ , ݎ ∈ ଶܻ 

߯௥,௦ , ,ݎ) (ݏ ∈ ଶܶ 

߯଴,଴ 
߯௥,௡ି௥ , ߯௡ି௥,௥  
߯௥,௥ ,߯௡ି௥,௡ି௥  

߯௥,௦ ,߯௦,௥ ,߯௡ି௥,௡ି௦ , ߯௡ି௦,௡ି௥  
 

By Theorems 1 and 2 and Lemma 1, we have the following. 
 

Theorem 3 Let ߁ = ,݊](ܴ)଼ܥସܥܴܶ ݊] and ߙ௥ = cos (ଶగ௥
௡

) for all r . If ݊ is even, 

then ܵ(߁)ܿ݁݌ = ቄ±3, (±1)[ହ], ൫±√5൯
[ଶ]
ቅ ∪∪௥∈௒భ ൜൫±௔1±௕ඥ2±௔2ߙ௥൯

[ସ]
ൠ 

∪∪൫௥ᇲ,௦൯∈ భ்
൛ߣ[ସ] หߣସ − ଶߣ6 − ௥ᇲߙ)ߣ4 + (௦ߙ + 1 − ௦ߙ௥ᇲߙ4 = 0} and if ݊ is odd, 

then we have ܵ(߁)ܿ݁݌ = ൛3, (±1)[ଷ]ൟ ∪∪௥∈௒మ ൜൫±௔1±௕ඥ2±௔2ߙ௥൯
[ସ]
ൠ ∪
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∪൫௥ᇲ,௦൯∈ మ்
൛ߣ[ସ] หߣସ − ଶߣ6 − ௥ᇲߙ)ߣ4 + (௦ߙ + 1 − ௦ߙ௥ᇲߙ4 = 0}, where two symbols 

±௔ have the same sign, while the sign of ±௕  is independent. 
 
Proof. By Theorem 1, we know that ߁ = ܩ where ,(ܵ,ܩ)ݕܽܥ =< ݃ଵ,݃ଶ,݃ଷ,݃ସ >
≅ ௡ܥ) × ⋉(௡ܥ ଶܥ) × ܵ ଶ) andܥ = {݃ଷ,݃ଵିଵ,݃ଶ݃ଷ݃ସ,݃ଵିଵ݃ସ}. We consider the 
following two cases. 

Case 1. ݊  is even. By Lemma 1, we have 
(ܩ)ݎݎܫ = ൛ߞ௣,௤ ௣,௤ߟ, ௣,௤ߴ,௣ߠ, , ௣,௥ߡ , ≥ ௥ᇲ,௦ห0ߢ ,݌ ≥ ݍ 1, ݎ ∈ ଵܻ, ,ᇱݎ) (ݏ ∈ ܴଵ}. 

Using the relations between the generators of ܩ given in the proof of Theorem 1, 
one can easily see that ߞ௣,௤(ܵ) = ∑ ௣,௤(ܵ)௦∈ௌߞ = (−1)௣ + (−1)௣ା௤ + (−1)௤, 
(ܵ)௣,௤ߟ = (−1)௣ + (−1)௣ା௤ + (−1)௤ିଵ, 

(ܵ)௣ߠ                  = ൤
(−1)௣ 1 − (−1)௣

1− (−1)௣ (−1)௣ାଵ ൨, 

(ܵ)௣,௤ߴ               = ൤ (−1)௣ ߱ି௥ + (−1)௣
߱ି௥ + (−1)௣ (−1)௣ ൨, 

(ܵ)௣,௥ߡ                = ൤ (−1)௣ 1 + ߱ି௥(−1)௣
1 + ߱ି௥(−1)௣ (−1)௣ ൨, 

               .
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So, we have:  
((ܵ)௣,௤ߞ)ܿ݁݌ܵ         = {(−1)௣ + (−1)௣ା௤ + (−1)௤}, 
((ܵ)௣,௤ߟ)ܿ݁݌ܵ         = {(−1)௣ + (−1)௣ା௤ + (−1)௤ିଵ}, 
ଵ(ܵ)൯ߠ൫ܿ݁݌ܵ           = ൛±√5ൟ, ଴(ܵ)൯ߠ൫ܿ݁݌ܵ = {±1}, 

ܿ݁݌ܵ        ቀߴ଴,௥(ܵ)ቁ = ܿ݁݌ܵ ቀߡ଴,௥(ܵ)ቁ = ൛1 ± ඥ2 +  ,௥ൟߙ2

ܿ݁݌ܵ         ቀ ଵ,௥(ܵ)ቁߴ = ܿ݁݌ܵ ቀߡଵ,௥(ܵ)ቁ = ൛−1 ± ඥ2 −  ,௥ൟߙ2

ܿ݁݌ܵ        ቀߢ௥ᇲ,௦(ܵ)ቁ = ସߣ} − ଶߣ6 − ௥ᇲߙ)ߣ4 + (௦ߙ + 1 − ௦ߙ௥ᇲߙ4 = 0}.  

Note that ߢ௥ᇲ,௦(ܵ) is a Hermitian matrix and so its eigenvalues are real. 
Since the degrees of the representations ߞ௣,௤, ߟ௣,௤, ߠ௣, ߴ௣,௥, ߡ௣,௥ and ߢ௥ᇲ,௦(ܵ) are 1, 
1, 2, 2, 2 and 4, respectively, the result follows by Theorem 2. 
 

Case 2. ݊ is odd. By Lemma 1,  
(ܩ)ݎݎܫ = ൛ߞ௣,௤ ௣,௥ߴ, , ௣,௥ߡ , ≥ ௥ᇲ,௦ห0ߢ ,݌ ≥ ݍ 1, ݎ ∈ ଶܻ, ,ᇱݎ) (ݏ ∈ ଶܶ}.  

By a similar argument, one can easily obtain the result.                                          □ 



18                                                                                     AFSHARI AND MAGHASEDI 

 

 
Note that (ݎᇱ, (ݏ ∈ ܶ, then ߯௥ᇲ,௦

௞ = {߯௥ᇲ,௦ , ߯௦,௥ᇲ ,߯௡ି௥ᇲ,௡ି௦ ,߯௡ି௦,௡ି௥ᇲ}. Let 
݂௥ᇲ,௦(ߣ) ≔ ସߣ − ଶߣ6 − ௥ᇲߙ)ߣ4 + (௦ߙ + 1 − .௦ߙ௥ᇲߙ4 It is clear that ௦݂,௥ᇱ(ߣ) =
݂௥ᇲ,௦(ߣ), ߙ௡ି௥ᇱ = ௡ି௦ߙ ௥ᇱandߙ = ௦. So ݂௥ᇲ,௦ߙ = ௦݂,௥ᇱ = ݂௡ି௥ᇲ,௡ି௦ = ݂௡ି௦,௡ି௥ᇲ. 
Therefore we can arbitrarily choose any element of an orbit of length four as 
representative. This shows that our calculations are true.  
 

Let us give the following examples to clear our procedure. 
 
Example 1 If ݊ = 3  then ଶܻ = {1}, ଶܶ = {(0,1), (1,0), (0,2), (2,0)} and  ܴଶ =
{(0,1)}. Therefore, by Corollary 3,  

(߁)஺ܿ݁݌ܵ = {3, (−1)[଻], ൫−1 ± √3൯
[ସ]

, 0[ସ], 2[ସ],ߙ[ସ],ߚ[ସ],  ,{[ସ]ߛ
where ߚ,ߙ and  ߛ are the roots of  ݔଷ − ଶݔ − ݔ5 + 3 = ܱ. Note that ߙ ≈
ߚ ,2.51414 ≈ −2.08613 and ߛ ≈ 0.571993. 
 
Example 2 If ݊ = 4 then we have ଵܻ = {1}, 
ଵܶ = {(0,1), (1,0), (0,3), (3,0), (1,2), (2,1), (3,2), (2,3)} and  ܴଵ = {(0,1), (1,2)}. 

So by Theorem 3, 
(߁)஺ܿ݁݌ܵ = {±3, (±1)[ଽ] , ൫±√5൯

[ଶ]
, ൫1 ± √2൯

[ସ]
, ൫−1 ± √2൯

[ସ]
[ସ](ߙ±) , , ,[ସ](ߚ±)  ,{[ସ](ߛ±)

where ߚ,ߙ and  ߛ are roots of ݔଷ − ଶݔ − ݔ5 + 1 = ܱ. An easy calculation shows 
that ߙ ≈ ߚ,2.70928 ≈ −1.90321 and , ߛ ≈ 0.193937. 
 

At the end of this paper, using Theorem 3, we give lower and upper bounds for 
an important chemical quantity, namely Estrada index, for the graph. The Estrada 
index )(EE of the graph  is defined as the sum of the terms ݁ఒ , ߣ ∈  .(߁)ܿ݁݌ܵ
This quantity, which introduced by Ernesto Estrada, has noteworthy chemical 
applications, see [4, 10, 11, 13, 14, 18] for details. Using Theorem 3, we can obtain 
the following. 
 
Corollary 1 Let ߁ = ߚ,[݊,݊]଼ܥସܥܴܶ = ݁ coshඥ2 + ௥ߙ2 + ݁ିଵ coshඥ2 −   ௥ߙ2

and ߙ௥ = cos(ଶగ௥
௡

). If ݊ ≠ 2 is even, then 

 1 ≤ ாா(௰)ିଶ(ୡ୭ୱ୦ ଷାହୡ୭ୱ୦ ଵାଶୡ୭ୱ୦√ହାସ∑ ఉೝ)
೙
మషభ
ೝసభ

ସ(௡మିଶ௡)
< ݁ଷ 

and if ݊ ≠ 1 is odd, then  1 ≤ ாா(௰)ି௘యିଷ௘షభି଼∑ ఉೝ)
೙
మషభ
ೝసభ

ସ(௡మିଶ௡)
< ݁ଷ. 
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Proof. We  have (߁)ܧܧ = ∑ ݁ఒఒ∈ௌ௣௘௖(௰) . By Theorom 3, we know that when ݊ is 

even, ܵ(߁)ܿ݁݌ = ൛±3, (±1)[ହ], (±√5)[ଶ]ൟ ∪∪௥∈௒భ ൜൫±௔1±௕ඥ2±௔2ߙ௥൯
[ସ]
ൠ 

∪∪൫௥ᇲ,௦൯∈ோభ ൛ߣ
[ସ] หߣସ − ଶߣ6 − ௥ᇲߙ)ߣ4 + (௦ߙ + 1 − ௦ߙ௥ᇲߙ4 = 0}. Let ݂௥ᇲ,௦(ߣ) =

ସߣ − ଶߣ6 − ௥ᇲߙ)ߣ4 + (௦ߙ + 1− ,ᇱݎ) , ௦ߙ௥ᇲߙ4 (ݏ ∈ ଵܶ, and ߣଵ > ଶߣ > ଷߣ >  ସ beߣ
the roots of ݂௥ᇲ,௦. From inequality of arithmetic and geometric means, we have 

    ඥ݁∑ ఒ೔ర
೔సభ

ర
≤ ∑ ௘ഊ೔ర

೔సభ
ସ

≤ ݁ఒభ                                             (3.2) 

Since the coefficient of ߣଷ  in ݂௥ᇲ,௦(ߣ) is 0, we have ߣଵ + ଶߣ + ଷߣ + ସߣ = 0. On the 
other hand ߁  is a 3-regular graph and so by Perron-Frobenius theorem, ߣଵ < 3  
(See [12, p.178].). Therefore by (3.2), 

       4∑ ݁ఒ೔ସ
௜ୀଵ < 4݁ଷ                                                           (3.3) 

We know that for every real number ݔ, ݁௫ + ݁ି௫ = 2 cosh  Thus when ݊ is .ݔ
even, we have 

(߁)ܧܧ = 2(cosh 3 + 5 cosh 1 + 2 cosh√5 + 4݁ ∑  coshඥ2 + ௥ߙ2 +
೙
మିଵ
௥ୀଵ

4݁ିଵ ∑ coshඥ2 − ௥ߙ2
೙
మିଵ
௥ୀଵ + 4∑ ∑ ݁ఒఒ೔௙ೝᇲ,ೞୀ଴(௥ᇲ,௦)∈ భ் ). 

By inequality (3.3), 4 ≤ ∑ ݁ఒఒ೔௙ೝᇲ,ೞୀ଴ < 4݁ଷ. Also as we saw in the proof of 

Lemma 1, the length of ଵܶ is ௡
మିଶ௡
ସ

   and therefore, 1 ≤
ସ ∑ ∑ ௘ഊഊ೔೑ೝᇲ,ೞసబ(ೝᇲ,ೞ)∈ೃభ

ସ(௡మିଶ௡)
< ݁ଷ. 

This completes the proof of corollary in this case. Assume now that n  is odd. 

From Theorem 3, ܵ(߁)ܿ݁݌ = ൛3, (±1)[ଷ]ൟ ∪∪௥∈௒మ ൜൫±௔1±௕ඥ2±௔2ߙ௥൯
[ସ]
ൠ 

∪∪൫௥ᇲ,௦൯∈ మ்
൛ߣ[ସ] หߣସ − ଶߣ6 − ௥ᇲߙ)ߣ4 + (௦ߙ + 1 − ௦ߙ௥ᇲߙ4 = 0}. By the fact that 

the length of ଶܶ is (௡ିଵ)మ

ସ
 and inequality (3.3), one can similarly get the result.       □ 
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