The F–Index for some Special Graphs and some Properties of the F–Index

Document Type : Research Paper

Authors

1 Department of Mathematics, Science and Research Branch, Islamic Azad University, P. O. Box 14515 – 1775, Tehran, Iran

2 Tarbiat Modares University

3 Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia

4 Islamic Azad University

Abstract

The "forgotten topological index" or "F–index" has been introduced by Furtula and Gutman in 2015. The F–index of a (molecular) graph is defined as the sum of cubes of the vertex degrees of the graph. In this paper, we compute this topological index for some special graphs such as Wheel graph, Barbell graph and Friendship graph. Moreover, the effects on the F–index are observed when some operations such as edge switching, edge moving and edge separating are applied to the graphs. Finally, we investigate degeneracy of F–index for small graphs.

Keywords

Main Subjects


1. H. Abdo, D. Dimitrov, I. Gutman, Onextremal trees with respect to the 􀜨–
index, Kuwait J. Sci., in press.
2. M. Ajmal, W. Nazeer, W. Khalid, S. M. Kang, Forgotten polynomial and
forgotten index for the line graphs of Banana tree graph, Firecracker graph
and subdivision graphs, Global J. Pure Appl. Math. 13 (6) (2017)
26732682.
3. M. Azari, A. Iranmanesh, Chemical graphs constructed from rooted
product and their Zagreb indices, MATCH Commun. Math. Comput. Chem.
70 (2013) 901919.
4. M. Azari, A. Iranmanesh, I. Gutman, Zagreb indices of bridge and chain
graphs, MATCH Commun. Math. Comput. Chem. 70 (2013) 921938.
5. Z. Che, Z. Chen, Lower and upper bounds of the forgotten topological
index, MATCH Commun. Math. Comput. Chem.76 (2016) 635648.
6. N. De, 􀜨–index of bridge and chain graphs, Malay. J. Fund. Appl. Sci. 12
(4) (2016) 109113.
7. M. Dehmer, V. Kraus, F. Emmert-Streib, S. Pickl, What is quantitative
graph theory? In: Quantitative Graph Theory: Mathematical Foundations
and Applications, Eds. M. Dehmer, F. Emmert-Streib, Discrete
Mathematics and Its Applications, Chapman and Hall/CRC, 2014, pp.
133.
8. J. Devillers, A. T. Balaban (Eds.), Topological indices and related
descriptors in QSAR and QSPR, Gordon and Breach, Amsterdam, 1999.
9. M. V. Diudea, QSPR / QSAR studies by molecular descriptors, Nova Sci.
Publ., Huntington, NY, 2000.
10. T. Dos􀷔lić, B. Furtula, A. Graovac, I. Gutman, S. Moradi, Z. Yarahmadi, On
vertex–degree–based molecular structure descriptors, MATCH Commun.
Math. Comput. Chem. 66 (2011) 613626.
11. B. Furtula, I. Gutman, A forgotten topological index, J. Math. Chem. 53
(2015) 11841190.
12. S. Ghobadi, M. Ghorbaninejad, The forgotten topological index of four
operations on some special graphs, Bull. Math. Sci. Appl. 16 (2016) 8995.
13. I. Gutman, A. Ghalavand, T. Dehghan–Zadeh, A. R. Ashrafi, Graphs with
smallest forgotten index, Iranian J. Math. Chem. 8 (3) (2017) 259−273.
14. I. Gutman, B. Rus􀷔c􀷔ić, N. Trinajstić, C. F. Wilcox, Graph theory and
molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975) 3399.
15. I. Gutman, N. Trinajsti􀜿́, Graph theory and molecular orbitals. Total 􀟨–
electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972)
535538.
16. Y. Hu, X. Li, Y. Shi, T. Xu, I. Gutman, On molecular graphs with smallest
and greatest zeroth–order general Randi􀜿́ index, MATCH Commun. Math.
Comput. Chem. 54 (2005) 425434.
17. M. Karelson, Molecular descriptors in QSAR / QSPR, Wiley–Interscience,
New York, 2000.
18. M. H. Khalifeh, H. Yousefi–Azari, A. R. Ashrafi, The first and second
Zagreb indices of some graph operations, Discrete Appl. Math. 157 (2009)
804811.
19. E. V. Konstantinova, The discrimination ability of some topological and
information distance indices for graphs of unbranched hexagonal systems,
J. Chem. Inf. Comput. Sci. 36 (1) (1996) 5457.
20. X. Li, H. Zhao, Trees with the first three smallest and largest generalized
topological indices, MATCH Commun. Math. Comput. Chem. 50 (2004)
5762.
21. X. Li, J. Zheng, A unified approach to the extremal trees for different
indices, MATCH Commun. Math. Comput. Chem. 54 (2005) 195208.
22. M. Liu, B. Liu, Some properties of the first general Zagreb index, Austral.
J. Comb. 47 (2010) 285294.
23. U. Mary, A. Antony, The first and second Zagreb indices for some special
graphs, SK International J. Mult. Res. Hub. 2 (10) (2015) 17.
24. S. Nikolić, G. Kovac􀷔ević, A. Milic􀷔ević, N. Trinajstić, The Zagreb indices
30 years after, Croat. Chem. Acta 76 (2003) 113124.
25. R. Todeschini, V. Consonni, Handbook of molecular descriptors, Wiley–
VCH, Weinheim, 2000.
26. K. Xu, J. Wang, K. C. Das, S. Klavz􀷔ar, Weighted Harary indices of apex
trees and 􀝇–apex trees, Discrete Appl. Math.189 (2015) 3040.
27. A. Yousefi, A. Iranmanesh, A. Tehranian, Computation of forgotten
topological index of some nanostructures, J. Comput. Theor. Nanosci. 13
(2016) 91459150.
28. B. Zhou, Zagreb indices, MATCH Commun. Math. Comput. Chem. 52
(2004) 113118.